The T2K and KamLAND-Zen Physics Programs

Outline:

- Introduction
- T2K
 - -> Overview
 - -> Oscillation Results
 - -> Neutrino Cross Sections
 - -> Future Sensitivity
- KamLAND-Zen
 - -> Overview
 - -> Results
 - -> Outlook
- Summary

Bruce Berger

Erice - September 23, 2013

Three-Flavor Picture

• The MNSP picture:

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Oscillation/mixing measurements have told us:
 - "Solar" θ_{12} , Δm^2_{21}
 - -> Includes sign of Δm^2_{21}
 - -> Solar experiments, KamLAND
 - "Atmospheric" θ_{23} , Δm_{23}
 - -> Atmospheric, accelerator expts
 - -> No sign information for Δm_{23}^2
 - -> θ_{23} octant unknown, near maximal
 - $\cdot \theta_{13}$ measurements
 - -> Reactor, accelerator expts
- We don't know:
 - + $\delta_{\mbox{\scriptsize CP}}$ CP violation in neutrinos
 - absolute mass scale or hierarchy
 - nature of neutrino

Common theme?

What do T2K and KamLAND-Zen have in common?

- One collaborator BEB
- Japan
 - -> KamLAND-Zen and Super-K (T2K far detector) are the Kamioka mine
- Motivated by a larger question: Why does the universe contain matter but little antimatter?

Leptogenesis (Conventional) leptogenesis requires:

- CP violation in the neutrino sector:
 Measuring CP violation is a major goal
 - of the neutrino oscillation program
- Majorana neutrinos
- Seesaw mechanism
- -> Decays of right-handed neutrinos produce L violation, which the B-L conserving sphaleron process in the SM converts to a baryon number asymmetry

The T2K Experiment

Super Kamiokande 50,000 tons of water 10,000 phototubes

Tokai accelerator complex and location of near detector (ND280)

- 295 km baseline
- 'Quasimonochromatic' beam
 - -> first use of the off-axis technique
- \cdot Beam peak energy tuned to ~600 MeV, to give L/E at
 - -> first maximum in ν_{μ} oscillation probability
 - -> first maximum in v_{e} appearance probability

The T2K Experiment

- Beam produced at J-PARC
- Conventional beam,
 31 GeV protons on graphite target
- Muon neutrino beam is produced by decays of pions in flight: $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- 96 m decay pipe; length chosen to suppress muon decays
- Decay kinematics give a correlation between neutrino energy, direction

• Off-axis angle: peaked beam, suppression of feed-down backgrounds

Erice - September 23, 2013

T2K Near Detectors

- On-axis and off-axis detectors in a cylindrical 'pit' 280 m from the target
- INGRID on axis
 - -> measures beam profile, position, and stability
- ND280 off-axis detector inside former UA1/NOMAD magnet

ND280 Off-Axis Detectors

Far Detector: Super-K

50 kiloton water Cherenkov detector

- Fiducial volume 22.5 kt
- Overburden 2700 m water equivalent
- Inner detector
 -> 11,129 20" PMTs
 -> 40% photocathode coverage
- 1885 8" OD PMTs
- Dead-time free DAQ system (2008)
 -> Time and charge of all PMT hits recorded and processed offline
- $\boldsymbol{\cdot}$ Good performance for sub-GeV $\boldsymbol{\nu}$ detection
 - -> Energy reconstruction: ΔE/E ~10% (for CCQE 2-body kinematics)
 -> Good e / μ separation

Events in Super-K

Examples of fully-contained events in Super-K (MC)

Muon vs. electron discrimination based on ring shape: electron rings are 'fuzzier' due to electron scattering

 $\pi^{\rm 0}$ event: two rings, can mimic electron if rings overlap or if one ring is not reconstructed

Oscillation Analysis Structure

Cross-Section Model

Analyses done with the NEUT and GENIE generators

Charged-Current Quasielastic (CCQE)

- Llewellyn-Smith base model
- Smith-Moniz fermi gas model for nucleus
- Spectral function implemented for comparison to RFG

Single Pion Production (CC/NC1 π)

Rein-Seghal resonance model

Deep Inelastic Scattering (DIS) and Charged Current multi-pion

- GRV98 PDF
- Bodek-Yang correction

Final State Interactions (FSI)

- Cascade model track secondary particles until they leave the nucleus
- Separate models used for low (<500 MeV) and high momentum

Note: in analyses, MC "true" event classification done <u>after</u> FSI

Systematic Variations

Generator parameters are varied within conservative prior uncertainties constrained by fits to external data

Example: we use MiniBooNE 1π data (CC and NC) and fit to NEUT predictions to generate input value

-> Add *ad hoc* parameters to improve the fit - but break internal theoretical purity

Parameter	Туре	Interaction Type	
M _A QE	axial mass	CCQE	
Mares	axial mass	CC/NC 1p	
CCQE (3 E _n bins)	normalization	CCQE	
CC1p (2 E _n bins)	normalization	CC1p	
NCp ^o	normalization	NC1p	
₽ _F	Fermi momentum	CCQE-RFG	
E _b	binding energy	CCQE-RFG	
spectral function	model comparison	CCQE-SF	

ND280 Data Inputs

Charged-current (CC) sample:

- Select the highest-momentum negative track starting in FGD1
- TPC particle ID consistent with a muon
- Charged-current sample separated into three subsamples by event topology:

<u>CC0π</u>

no pions in the final state

<u>CC1π</u>+

exactly $1\pi^+$ in the final state

<u>CC other</u>

any other number of pions, or any tagged photons

-> Samples constrain CCQE and CC π + cross-section model parameters

ve Selection Cuts

- # veto hits < 16
- Fid. Vol. = 200 cm
- # of rings = 1
- Ring is e-like
- Evisible > 100 MeV
- no Michel electrons
- fiTQun π^0 cut
- 0 < E_v < 1250 MeV

v_e Appearance Analysis

- Dataset: 6.39 x 10²⁰ protons on target (p.o.t) through April 12, 2013
- Expected background: 4.64 ± 0.53 events
- Signal level: 20.4 ± 1.8 events $sin^2 2\theta_{13} = 0.1$ $sin^2 2\theta_{23} = 1.0$ $|\Delta m^2_{32}| = 2.4 \times 10^{-3} \text{ eV}^2$ $\delta_{CP} = 0$
- + 5.5 σ sensitivity to exclude θ_{13} = 0
- Oscillation parameters extracted with two different methods
 - -> electron p- θ distribution
 - -> reconstructed E_v distribution

Bruce Berger

Effects of θ_{23} Uncertainty

- v_e appearance probability also depends on the value of θ_{23}
- Fixing θ₂₃ to values at the edges of the current allowed region shifts the contours

 -> currently less than 1σ effect
- Future improved θ_{23} measurements will be important for parameter extraction in long-baseline experiments
- •T2K is working on a combined analysis of appearance and disappearance modes

Note: contours are 1D contours at fixed values of δ_{CP} , not 2D contours

Bruce Berger

Erice - September 23, 2013

ν_{μ} Disappearance Results

 $\begin{array}{l} T2K \; (\theta_{23} \leq \pi/4) \; 68\% \; C.L. \\ T2K \; (\theta_{23} \leq \pi/4) \; 90\% \; C.L. \\ T2K \; (\theta_{23} \geq \pi/4) \; 68\% \; C.L. \\ T2K \; (\theta_{23} \geq \pi/4) \; 68\% \; C.L. \\ T2K \; (\theta_{23} \geq \pi/4) \; 90\% \; C.L. \end{array}$ • Dataset: 3.01 × 10²⁰ p.o.t (-> summer 2012) 0.003 Updated result now shows contours 0.0028 $\Delta m_{32}^2 | (eV^2/c^4)$ for both octants of θ_{23} 0.0026 -> difference due to effects of θ_{13} 0.0024 (fixed to $\sin^2 2\theta_{13} = 0.098$) 0.0022 ▼ T2K best fit $(\theta_{23} \le \pi/4)$ • Best-fit point: $sin^2 2\theta_{23} = 1.00$ T2K best fit $(\theta_{23} \ge \pi/4)$ (same for both) $\Delta m_{32}^2 = 2.44 \times 10^{-3} \text{ eV}^2$ 0.0020.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 • Future results likely to be reported $\sin^2(2\theta_{23})$ vs. $\sin^2\theta_{23}$ instead of $\sin^22\theta_{23}$ Δm^2_{32} | (eV²/c⁴ T2K $3\nu (\theta_{22} \le \pi/4) 90\%$ CL 0.00 T2K $3\nu (\theta_{23}^{25} \ge \pi/4) 90\%$ CL Events / (0.1 GeV) T2K data 30 '2K 2011 2∨ 90% CL No oscillation hypothesis 25 MINOS 2013 2v 90% CL 0.003 T2K best fit SK zenith 2012 3v 90% CL 20Ē SK L/E 2012 2v 90% CL 15 0.003 10 0.0025 Ratio to no oscillations 1.5 ▼ T2K 3v ($\theta_{23} \le \pi/4$) best fit 0.002 \odot T2K $3v (\theta_{22}^{23} \ge \pi/4)$ best fit 0.9 0.92 0.94 0.96 0.98 $\sin^2(2\theta_{23})$ Reconstructed v energy (GeV) arXiv:1308.0465 [hep-ex] Erice - September 23, 2013 19 **Bruce Berger**

Cross Section Measurements

T2K has an ambitious program to measure a range of neutrino interaction cross sections

- -> multiple targets (C, H_2O , lead, iron)
- -> reconstruction of pions, π^0 s, nucleons

First measurements:

-> CC inclusive on carbon Phys. Rev. D 87, 092003 (2013), arXiv:1302.4908

- -> CCQE vs. E, on carbon Preliminary result: David Hadley at NuFact 2013
- -> NC elastic Preliminary result: Dan Ruterbories at NuFact 2013

Upcoming measurements:

- -> Differential cross-sections with more data -> $CC1\pi^+$
- -> Event selections sensitive to multinucleon effects
- -> Coherent pion production
- -> CC measurements on iron with INGRID
- -> Antineutrinos cross sections, etc...

T2K Future

Initial T2K goals

- -> Observe v_e appearance DONE
- -> Constrain oscillation parameters $\theta_{13},\,\delta_{\text{CP}}$
- -> Measure θ_{23} oscillation precisely

Updated goals

-> Precisely measure:

- θ₂₃
- Δm^{2}_{32}

-> Constrain as well as possible:

- δ_{CP}
- θ_{23} octant
- Mass hierarchy?

What future running configuration will optimize T2K's sensitivity?

- -> Charge to the Future Sensitivity Task Force
- -> Detailed studies over the last year

Decision will be made based on these studies, plus input on accelerator status and prospects

T2K Sensitivity for $\delta_{CP} \neq 0$

 θ_{13} constrained by projected reactor sensitivity: $\delta(\sin^2 2\theta_{13}) = 0.005$

Bruce Berger

T2K Sensitivity for $\delta_{CP} \neq 0$

 θ_{13} constrained by projected reactor sensitivity: $\delta(sin^2 2\theta_{13}) = 0.005$

Bruce Berger

T2K Sensitivity for θ_{23} Octant

• Solid: no systematics, Dashed: current systematics

-> Assumes true $\sin^2 2\theta_{13} = 0.1$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, θ_{13} constrained by projected reactor sensitivity: $\delta(\sin^2 2\theta_{13}) = 0.005$

Erice - September 23, 2013

Conclusions - T2K

- 7.5 σ discovery of v_e appearance in a v_{μ} beam
- Improved v_u disappearance results
- Continued improvement in oscillation analyses to come!
 More statistics, combined analysis
 - -> Analysis improvements, e.g. neutrino interaction modeling
- Broad program of neutrino cross-section measurement
- Collaboration is assessing future run plans to optimize sensitivity -> At full statistics, T2K may have sensitivity to constrain δ_{CP} and the θ_{23} octant

Neutrinoless Double Beta Decay

- Double beta decay in even-even nuclei when ordinary β -decay is energetically forbidden
- If neutrinos are Majorana, neutrinoless double-beta decay can proceed by a loop diagram with no neutrinos in the final state
- This process is sensitive to a m_{ββ}, a weighted sum over all three masses, all mixing angles, δ_{CP}, plus Majorana phases (weighted by U_{e1}, U_{e2}, U_{e3}: m₁, m₂ dominate)
 Allowed regions depend on hierarchy

$$\langle m_{\beta\beta} \rangle = \sum_{i=1}^{3} |U_{ei}|^2 m_i \epsilon_i$$

 Rate also depends on phase space and nuclear matrix elements

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} \left| M^{0\nu} \right| \left| \langle m_{\beta\beta} \rangle \right|^2$$

<m^> / •

Detecting $0\nu\beta\beta$

 $\boldsymbol{\cdot}$ KamLAND-Zen is sensitive to the total energy of the two $\boldsymbol{\beta}$'s

- $\mathbf{0}_{\mathbf{V}\beta\beta}$ experimental goals:
 - -> Low background under $0\nu\beta\beta$ peak
 - -> Good energy resolution
 - -> $2\nu\beta\beta$ can be a background!

KamLAND Detector

- 1 kton liquid scintillator
- Mineral oil buffer outside 120-µm nylon balloon
- 1879 PMTs 1325 17" - fast 554 20" - efficient
- Water Čerenkov
 Outer Detector
- Event position from light arrival times ~12 cm resolution
- Event energy from total light yield
 ~6.2%/√E(MeV) resolution

Erice - September 23, 2013

KamLAND-Zen

Basic idea: Deploy a mini-balloon full of Xe-loaded scintillator into the middle of KamLAND

Running detector

- -> relatively low cost, quick start
- -> detector well understood
- -> experience with balloons, LS purification
- -> ongoing antineutrino program outside Xe mini-balloon

Large and clean

-> negligible external backgrounds -> no escaping/invisible β/γ energy

Highly scalable

- -> 100s of kg of ¹³⁶Xe in first phase
- -> up to several tons

with larger mini-balloon

Disadvantage: energy resolution (4.0% at 2.458 MeV)

Xe-Loaded LS

Technical challenges: Xe-loaded liquid scintillator (LS)

- Match light yield to existing KamLAND LS
 -> Achieved: matched to within 3%
- Similar overall density to existing KamLAND LS, for mini-balloon integrity
 -> Tuned to 0.10% higher density
- Xe loading: (2.52 ± 0.07) % by weight
- Composition: 82% decane 18% pseudocumene 2.7 g/L PPO (2.52 ± 0.07) % Xe
- Xe is (90.93 ± 0.05)% ¹³⁶Xe, (8.89 ± 0.01)% ¹³⁴Xe
- 129 kg ¹³⁶Xe in the fiducial volume

Mini-Balloon

Technical challenges: Mini-Balloon

- Very thin: 25 μm nylon
- Welded seams (!)
- Must be Xe barrier
- High transparency
- Low contaminations of U, Th, K

Tests in water to establish procedures for deployment, inflation, LS replacement

80 μm polyethylene test balloon

 $25\ \mu\text{m}$ Nylon 6 balloon

First Results

77.6 days of data, 129 kg ¹³⁶Xe in fiducial volume (1.2 m radius)

-> Clear 2vββ signal

-> Very interesting peak just above 2.458 MeV...

²³⁸U Series

²³²Th Series

External BC Spallation

4

$^{136}\text{Xe}~\text{2v}\beta\beta$ Half Life

First measured by EXO-200 (2011)

 $T_{1/2}^{2v}$ = 2.11 ± 0.04 (stat) ± 0.21 (syst) × 20²¹ yr PRL 107, 212501 (2011)

-> 5x larger than 2002 DAMA limit

KamLAND-Zen (2012)

 $T_{1/2}^{2v}$ = 2.38 ± 0.02 (stat) ± 0.14 (syst) × 20²¹ yr Phys.Rev.C 85, 045504 (2012)

-> Consistent with EXO-200 result

Current results:

KamLAND: $T_{1/2}^{2v} = 2.30 \pm 0.02 \text{ (stat)} \pm 0.12 \text{ (syst)} \times 20^{21} \text{ yr}$ Phys.Rev.C 86, 021601 (2012)

EXO-200: $T_{1/2}^{2v} = 2.172 \pm 0.017 \text{ (stat)} \pm 0.060 \text{ (syst)} \times 20^{21} \text{ yr}$

arXiv:1306.6106 (June 25, 2013)

300

250

200 keV

sting 150

10⁴

10³

10²

10¹

Events/0.05MeV

1500

2000

- Data

Xe 2vßf

Visible Energy (MeV)

reconstructed energy $\beta\beta$ (keV)

2500

Erice - September 23, 2013

Background Identification

Peak at 2.6 MeV is too high to be $0\nu\beta\beta$

-> Inconsistent at > 8σ

2.6 MeV background properties

- uniformly distributed in the Xe-LS
 -> not seen in LS outside the mini-balloon
- no correlation with muon events
- long-lived background: stable on ~30 day timescale
- Search of all decays in the ENSDF database identified 4 candidates

with peak in the $0\nu\beta\beta$ region, $T_{1/2}$ > 30 days

- ^{110m}Ag $T_{1/2} = 250 \text{ days}$
- ^{208}Bi $T_{1/2}^{-} = 3.68 \times 10^5 \text{ years}$
- ⁸⁸Y $T_{1/2} = 107 \text{ days}$
- ^{60}Co $T_{1/2}^{-} = 5.27$ years
- -> Fits to peak shape prefer ^{110m}Ag
- -> ^{110m}Ag also most consistent with decay rate

Filtration campaign: remove background if particulate

¹³⁶Xe $0\nu\beta\beta$ Results

Comparison with ⁷⁶Ge claim

Comparisons between isotopes are complicated by nuclear matrix element (NME) uncertainties

Plot T_{1/2} (⁷⁶Ge) vs. T_{1/2} (¹³⁶Xe): NME models are diagonal lines, marked by <m_{ββ}> in eV

KamLAND-Zen: $T_{1/2}$ (¹³⁶Xe) > 1.9 x 10²⁵ yr EXO-200: $T_{1/2}$ (¹³⁶Xe) > 1.6 x 10²⁵ yr

Combined: $T_{1/2}$ (¹³⁶Xe) > 3.4 × 10²⁵ yr

(Sensitivity: 1.6 x 10^{25} yr) $\frac{5}{2}_{2}^{5}$ 10^{25}

-> Incompatible with KK 2006 claim at 97.5% CL

Near Future: Background Reduction

Next step for KamLAND-Zen: removing the ^{110m}Ag

Conclusions - KamLAND-Zen

- Discovery of the Majorana nature of the neutrino via neutrinoless double beta decay helps address several critical questions:
 - -> absolute neutrino mass
 - -> neutrino mass mechanism
 - -> matter dominance of the Universe
- KamLAND-Zen measurements to date
 - -> $T_{1/2}$ (¹³⁶Xe 0v2 β) > 1.9 x 10²⁵ yr
 - -> $m_{\beta\beta}$ < (0.16-0.33) eV
- Combined analysis of KamLAND-Zen and EXO-200 excludes the Klapdor-Kleingrothaus 2006 claim at 97.5% CL
- We expect a sensitivity of ~80 meV with one year of running after the current purification
- Future phases of KamLAND-Zen and KamLAND2-Zen will allow us to push the limit well into the inverted hierarchy region

Backup Slides

 v_{e} Vertex Distributions at SK

-> With increased statistics, the p-values for the test distributions have increased

	RUN1+2+3	RUN4	RUN1+2+3+4
Dwall	34.4%	54.7%	20.9%
$From wall \text{ beam}_{ }$	6.04%	85.6%	8.93%
$R^2 + Z$	32.4%	98.1%	64.5%

^{110m}Ag background source?

Fallout:

- -> Already observed Cesium likely from Fukushima-I
- -> ^{110m}Ag is a component of reactor fallout
- -> ^{110m}Ag found in assayed of soil at Tohoku, where the mini-balloon was produced

Spallation:

- -> Estimated spallation production of many isotopes on ¹³⁶Xe
- -> Large uncertainties due to limited data
- -> Spallation production underground should be negligible based on GEANT4 simulation
- -> Spallation production above ground before the ¹³⁶Xe was brought into the mine is a possible source of ^{110m}Ag, ⁸⁸Y

