Search for double beta decays of palladium isotopes into excited states

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 35th Course Erice 23/09/2013

Björn Lehnert

Institut für Kern- und Teilchenphysik

Outline

- Why double beta decays into excited states
- Palladium 101
- Three experiments...
- Outlook

Experiments:

- 1. Felsenkeller
- 2. HADES

Physics Letters B 705 47–51 (2011)

- 3. LNGS

Physical Review C 87, 034312 (2013)

Why DBD into excited states?

- Adds nuclear structure information
- \bullet Eventually helps constraining NME calculations for $0\nu\beta\beta$
- \bullet Potential resonance enhancement for $0\nu ECEC$
- Convenient experimental signature (y-lines)
- So far only discovered in 100 Mo (1995) and 150 Nd (2004)

		11.11.15		Suhonen et al.	Stoica et al.
$\begin{array}{c} \textbf{Compilation of 2nubb} \\ \textbf{0}_1^+ \text{ transitions} \end{array}$	Nuclei	$E_{2\beta}$, keV	Experiment $T_{1/2}$, y	Theory [18, 19]	Theory [23]
	¹⁵⁰ Nd	2627.1	$= 1.4^{+0.5}_{-0.4} \times 10^{20}$ [8]	-	
	⁹⁶ Zr	2202.5	$> 6.8 \times 10^{19}$ [22]	$(2.4 - 2.7) \times 10^{21}$	3.8×10^{21}
	¹⁰⁰ Mo	1903.7	$= 6.2^{+0.9}_{-0.7} \times 10^{20}$	1.6×10^{21} [29]	2.1×10^{21}
	⁸² Se	1507.5	$> 3.0 \times 10^{21}$ [24]	$(1.5 - 3.3) \times 10^{21}$	-
	⁴⁸ Ca	1274.8	$> 1.5 \times 10^{20}$ [20]	-	
	116Cd	1048.2	$> 2.0 \times 10^{21}$ [26]	1.1×10^{22}	1.1×10^{21}
A.S. Barabash	⁷⁶ Ge	916.7	$> 6.2 \times 10^{21}$ [30]	$(7.5 - 310) \times 10^{21}$	4.5×10^{21}
arXiv:0710.2194 (2007)	¹³⁰ Te	735.3	$> 2.3 \times 10^{21}$ [31]	$(5.1 - 14) \times 10^{22*})$	-3

Why and why not Palladium?

Isotope	Q (MeV)	Percent natural abund.	Element cost [5] (\$/kg)	$G^{0\nu}$ (10 ⁻¹⁴ /yr) [6]	<i>M</i> ^{0ν} (avg) [7]	Annual world production [5] (tons)	$0\nu/2\nu$ rate [2,8] (10^{-8})
⁴⁸ Ca	4.27	0.19	0.16	6.06	1.6	2.4×10^{8}	0.016
⁷⁶ Ge	2.04	7.8	1650	0.57	4.8	118	0.55
⁸² Se	3.00	9.2	174	2.48	4.0	2000	0.092
⁹⁶ Zr	3.35	2.8	36	5.02	3.0	1.4×10^{6}	0.025
¹⁰⁰ Mo	3.04	9.6	35	3.89	4.6	2.5×10^{5}	0.014
¹¹⁰ Pd	2.00	11.8	23000	1.18	6.0	207	0.16
116Cd	2.81	7.6	2.8	4.08	3.6	2.2×10^{4}	0.035
¹²⁴ Sn	2.29	5.6	30	2.21	3.7	2.5×10^{5}	0.072
¹³⁰ Te	2.53	34.5	360	3.47	4.0	~150	0.92
¹³⁶ Xe	2.46	8.9	1000	3.56	2.9	50	1.51
150Nd	3.37	5.6	42	15.4	2.7	~104	0.024

PHYSICAL REVIEW D 87, 071301(R) (2013)

- \bullet $^{110}\mathrm{Pd}$ is one out 11 DBD candidates with a Q-value above 2 MeV
- \bullet $^{110}\mathrm{Pd}$ has the 2nd highest natural abundance
- 102 Pd is a double EC candidate
- But: Extremely expensive and no Pd detector technology

	Chart of Nuclei				Palladium: ¹¹⁰ Pd and ¹⁰² P							
	Proto		N=126	6 Cd 59	¹⁰⁸ 48 CC 60	¹⁰⁹ 48 Cd 61	¹¹⁰ 48 Cd 62	¹¹¹ 48 Cd 63	¹¹² 48 Cd 64			
	2-28	N=82		6.50 h 5/2+ Δ=-86985 (6) β+=100%	Stable >410Py 0+ Δ=-89252 (6) Abndnc=0.89% (3) 2β+ ?	12 µs 1/2+ Eex=59.6 (0.4) IT=100%	Stable 0+ ∆=-90353.0 (2.7) Abndnc=12.49% (18)	48.50 m 11/2- Eex=396.214	Stable 0+ ∆=-90580.5 (2.7) Abndnc=24.13% (21)			
곝	Z=20 N=50 N=20		Neutrons	² Ag ₅₀	¹⁰⁷ 47 AG 60	¹⁰⁸ Ag 61	¹⁰⁹ 47 AG 62	Ag 63	¹¹¹ Ag 64			
1	Eex=134.45 IT=1008 Δ==84791 (17) β+=1008	Eex=6.9 (0.4) β+-1008 IT>0.078 Δ=-85111 (6 β+=1008	Eex=25,465 IT=1008 β+=0.34K (7) Δ=-87068 (11) β+=1008	8 d 6+ Eex-89.66 β+=1008 IT <=4.2e-68 β0.58	44.3 s 7/2+ Stable 1/2- Eex=93.125 Δ=-88402 (4) IT=100% Abrdinc=51.839% ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.6 s 7/2+ Stable 1/2- Eex=88.0341	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64.8 s 7/2+ Eex+59.82 1T=99.38 (2) 8-=0.7% (2) 64.8 s 7/2+ 4.45 0 1/2- Δ=-88221 (3) β=-1008			
	¹⁰² 46 PC 56	46 Pd 57	¹⁰⁴ 46 PC 58	¹⁰⁵ 46 PC 59	¹⁰⁰ 46 PC 60	¹⁰⁷ Pd ₆₁	¹⁰⁸ 46 PC 62	⁴⁶ Pd 63	¹¹⁰ 46 P C 64			
	Stable 0+ Δ=-87925.1 (3.0) Abndnc=1.02% (1) 2β+?	25 ns 11/2- Eex=784.79	+ Stable 0+ .9 Δ=-89390 (4) Abndnc=11.14% (8)	Stable 5/2+ ∆=-88413 (4) Abndnc=22.33% (8)	Stable 0+ ∆=-89902 (4) Abndnc=27.33% (3)	21.3 s 11/2- Eex=214.6 IT=100% β-=100%	Stable 0+ ∆=-89524 (3) Abndnc=26.46% (9)	4.696 π 11/2- Eex=138.990 Δ=-87607 (3) 1T=1008 β-=1008	Stable >600Py 0+ Δ=-88349 (11) Abndnc=11.72% (9) 2β- ?			
	45 Rh 56	2 ² Rh 57	¹⁰³ ₄₅ Rh 58	45 Rh 59	45 Rh 60	45 Rh 61	45 Rh 62	45 Rh 63	45 Rh 64			
	4.34 d 9/2+ Eex=157.32 Δ=-87408 (17) ∈=93.68 (2) IT=6.48 (2)	3.742 y 6+ 0 d (1-, Eex=140.75 Δ 35 (2 β+=1008 β+=10 IT=0.2338 (24) β	-) 56.114 m 7/2+ Stable 1/2- Eex-39.756 d=-88022.2 (2.8) IT=100% Abndmc=100.%	$\begin{array}{c} 4.34 \text{ m S+} \\ \text{Eex=128.957} \\ \text{IT=100K} \\ \beta=0.13K \ (1) \end{array} \qquad \begin{array}{c} 42.3 \text{ s } 1+ \\ \Delta=-86949.8 \ (2.6 \\ \beta=-100K \\ \beta=-100K \\ \beta=-0.45K \ (10) \end{array}$	45 s 1/2- 5ex=129.781 Δ=-87846 (4) 1T=100% β-=100%	$\begin{array}{cccc} 131 & = & (6) + & & 29.80 & s & 1+ \\ & & & & & & \\ & & & & & & \\ & & & & $	>10 μs 1/2- Eex=268.36 1T=100% 21.7 ± 7/2+ Δ=-86863 (12) β-=100%	6.0 = (5) (+ \vec{r}) 16.8 s 1+ Eex=-60 (110) Δ=-85020 (110) β ==100% β ==100%	80 s 7/2+ Δ=-85011 (12) β-=100%			
	¹⁰⁰ 44 RU 56	¹⁰¹ 44 Ru 57	¹⁰² 44 RU 58	44 RU 59	¹⁰⁴ 4Ru 60	¹⁰⁵ RU 61	¹⁰⁶ Ru 62	¹⁰⁷ Ru 63	¹⁰⁸ Ru 64			
	Stable 0+ ∆=-89219.0 (2.0) Abndnc=12.60% (7)	17.5 µs 11/2- Stable 5/2 Eexe527.5 d=-87949.7 (2 IT=100K Abndhc=17.06K	Stable 0+ 0 Δ=-89098.0 (2.0) (Abndnc=31.55% (14)	1.69 ms 11/2- Eex=238.2 IT=100K β-=100K	Stable 0+ Δ=-88089 (3) Abndnc=18.62% (27) 2β- ?	4.44 h 3/2+ Δ=-85928 (3) β-=100%	373.59 d 0+ Δ=-86322 (8) β-=100%	3.75 m (5/2)+ Δ=-83920 (120) β-=100%	4.55 m 0+ Δ=-83670 (120) β-=100%			
	• ¹⁰² Pd:	2vECE	$CC, 2\nu EC$	3+	• 1	¹⁰ Pd: 2vf	β-β-					
	• nat abundance: 1.02 %					at abun	dance: 11	1.72~%				
5	• Q-valu	ue: 1172	2 keV) -value 2	2017.9 ke	V PRL 1	08,062502(2	012		

Palladium Sample

- (a) Pd block from unknown origin
- Contaminated with ²⁴¹Am
- \bullet Cleaned by C. HAFNER GmbH+Co. KG >99.95% purity
- (b) 802.35 g Pd in 1cm x 1cm x 1mm plates ($\rho_{eff} = 10.2 \text{ g/cm}^3$)

Pd DBD Knowledge

$^{110}\mathrm{Pd}$

• Best & only experimental half-life limit for g.s. transition from 1952

• No previous experimental limit for excited state transitions

• Theoretical expectations starting with half-lives $O(10^{23})$ for 0_1^+

$^{102}\mathrm{Pd}$

- No previous experimental limit
- No theoretical calculation

	I	Physical Review C 8	7,034312 (2013)
Expt./Th.	Lower limit	Reference	Year of
model	$T_{1/2}$ (yr)		publication
¹¹⁰ Pd gr	round state	101-10	
Expt.	1×10^{17} (68% CL)	[24]	1952
PHFM	1.41×10^{20} and 3.44×10^{20}) ^{20a} [26]	2005
SSDH	1.75×10^{20}	[27]	2000
SSDH	$1.2-1.8 \times 10^{20b}$	[28]	1998
SRPA	$1.6 imes 10^{20}$	[29]	1994
OEM	1.24×10^{21}	[30]	1994
QRPA	1.16×10^{19}	[31]	1990
SSD	$1.2 imes 10^{20}$	[32]	2005
pnQRPA	1.1×10^{20} and 0.91×10	^{20c} [33]	2011
$^{110}{ m Pd} \ 2_1$	+ @ 65	7.76 keV	
Expt.	4.40 × 10 ¹⁹ (95% CL)	[25]	2011
SSD	4.4×10^{25}	[32]	2005
SRPA	8.37×10^{25}	[29]	1994
pnQRPA	1.48×10^{25}	[34]	2007
pnQRPA	0.62×10^{25} and 1.3×10	^{25c} [33]	2011
110 Pd 0 ₁	+ @ 147	3.12 keV	
Expt.	5.89 × 10 ¹⁹ (95% CL)	[25]	2011
SSD	2.4×10^{26}	[32]	2005
pnQRPA	4.2×10^{23} and 9.1×10^{23}	^{3c} [33]	2011
110 Pd 2_2	e ⁺ @ 14	75.80 keV	
SSD	3.8×10^{31}	[32]	2005
pnQRPA	11×10^{30} and 7.4×10^{30}	^{0c} [33]	2011
¹¹⁰ Pd 0;	2 ⁺ @ 17	31.33 keV	
SSD	5.3×10^{29}	[32]	2005
¹¹⁰ Pd 2 ₃	g ⁺ @ 17	83.48 keV	
SSD	1.3×10^{35}	[32]	20058

VKTA Rossendorf - The Felsenkeller

• Built in 1982 in cavity of old brewery in Dresden, Germany

- Used to help decommissioning nuclear facilities
- \bullet 47 m Monzonite (120 m w.e.)
- $\bullet~\mu\text{-flux}$ reduced by factor 20
- Up to 10 experimental HPGe setups in 2 chambers

The Detector

- HPGe Canberra 90 % efficiency
- Detector simulation with AMOS (Radiat. Protect. Dosim. 119 (2006) 479)

- 16.2 d measurement
- 13.0 kg \cdot y exposure
- Energy and efficiency calibration with 8 nuclides in SiO₂ sample geometry
- Correction for self-absorption with MC simulations with AMOS code
 - \bullet 1.6 keV FWHM @ 815 keV
 - \bullet 3.9 % FEP efficiency @ 815 keV

- Fit of gaussian signal can result in underfluctuation
- Limit calculation using Feldman-Cousins in single analysis bin
- \bullet Quoting half-life limit for y-line with best limit
- No systematic uncertainties considered for limit

Physics Letters B 705 47–51 (2011)

B. Lehnert, K. Zuber

cts/bin

HADES - High Activity Disposal Experimental Site

• Operated by SCK · CEN in Mol, Belgium

Mol

- Used to study disposal of nuclear waste in clay
- IRMM low-background laboratory
- \bullet 175 m overburden (500 m w.e.)
- $\bullet~\mu\text{-flux}$ reduced by factor 1000

- 2 HPGe Canberra p-type with 80% and 90% efficiency; Muon-veto above detector
 Two DAQ:
 - Multi parameter system in list mode (offline)
 - MCA in histogram mode
- Detector simulation with EGS4

Analysis: HADES

- Analysis only with single detector spectra (no coincidence possible)
- \bullet 46.5 d measurement; 35.9 kg y exposure
- Analysis analog to Felsenkeller measurement
- Limits for all possible decay branches were calculated
- Limit of best decay branch was quoted as limit of decay mode

Decay mode	γ line energy (keV)	Emission probability	Detection efficiency	Signal count limit	$T_{1/2}$ limit (yr)
¹¹⁰ Pd 2 ⁺ ₁ 657.76 keV	657.76 keV	100%	4.70%	12.4	$1.72 imes 10^{20}$
¹¹⁰ Pd 0 ₁ ⁺ 1473.12 keV	815.33 keV	100%	3.84%	8.4	1.98×10^{20}
	657.76 keV	100%	3.94%	12.4	1.44×10^{20}
¹¹⁰ Pd 2 ⁺ ₂ 1475.80 keV	1475.80 keV	35.25%	1.32%	11.5	5.17×10^{19}
	818.02 keV	64.75%	2.40%	16.3	6.67×10^{19}
	657.76 keV	64.75%	2.53%	12.4	9.26×10^{19}
¹¹⁰ Pd 0 ₂ ⁺ 1731.33 keV	1073.7 keV 657.76 keV ^a 255.49 keV 1475.80 keV 818.02 keV	86.73% 95.32% 13.27% 4.68% 8.59%	1.89% 3.78% 0.36% 0.12% 0.24%	10.1 12.4 25.3 11.5 16.3	$\begin{array}{l} 8.50\times10^{19}\\ 1.38\times10^{20}\\ 6.46\times10^{18}\\ 4.87\times10^{18}\\ 6.63\times10^{18}\end{array}$
¹¹⁰ Pd 2 ₃ ⁺ 1783.48 keV	1783.48 keV	21.57%	0.88%	6.2	6.45×10^{19}
	1125.71 keV	78.43%	2.48%	12.0	9.41×10^{19}
	657.76 keV	78.43%	2.99%	12.4	1.09×10^{20}

Full Spectra Comparison

Region of Interests

counts/bin

Background of Pd Sample

Nuclide	E (keV)	Massic activity (mBq/kg)	Decision threshold $(\alpha = 95\%)$ (mBq/kg)	Weighted me massic activ (mBq/kg)	ean 'ity)	• Only ²¹⁴ Pb and ²¹⁴ Bi with measured activity
²¹⁴ Pb	295.22 351.93	$1.9 \pm 1.0 \\ 1.3 \pm 0.5$	1.4 0.6	1.4 ± 0.4		• Background dominated by environment
²¹⁴ Bi	609.32 1120.29 1238.11 1377.67 1764.54	1.9 ± 0.4 2.0 ± 0.8 	0.4 0.9 2.2 2.7 3.2	1.9 ± 0.4	ł	 and not by sample No indication for irreducible background of ^{110m}Ag, ¹⁰²Rh, ^{102m}Rh Improvement possible external br
²¹⁰ Pb ²²⁸ Ac	46.54 911.20 968 97	_	414.3 0.5			• Improvement possible external bg reduction
²¹² Pb ²⁰⁸ Tl	238.63 583.19 2614.51		0.9 0.7 0.6 0.3		/(d 10 keV)	10 Pd sample Background
⁴⁰ K ¹³⁷ Cs ⁶⁰ Co	1460.82 661.66 1173.23		1.0 0.2 0.2		counts	
18	0+ 110 46	Cd	0.1 98.64% <u>59</u> β- 249.79 d 24.6 s 9 β- 99.70% 1 0 <u>Y</u> <u>0</u> <u>Y</u> 1 10 10 10 10 10 10 10 10 10			$10^{-1} = 500 1000 1500 2000 2500 \\ E [keV]$

New Half-Life Limits for ¹¹⁰Pd and ¹⁰²Pd

TABLE VI. Summary of measured half-life limits for all ¹¹⁰Pd and ¹⁰²Pd double- β -decay excited-state transitions.

Decay mode	$T_{1/2}$ limit (yr) (95%)
¹¹⁰ Pd 2 ⁺ ₁ 657.76 keV	1.72×10^{20}
¹¹⁰ Pd 0 ⁺ ₁ 1473.12 keV	1.98×10^{20}
¹¹⁰ Pd 2 ⁺ ₂ 1475.80 keV	9.26×10^{19}
110 Pd 0^+_2 1731.33 keV	1.38×10^{20}
¹¹⁰ Pd 2 ⁺ ₃ 1783.48 keV	1.09×10^{20}
¹⁰² Pd 2 ⁺ ₁ 475.10 keV	5.95×10^{18}
¹⁰² Pd 0 ⁺ ₁ 943.69 keV	$5.81 imes 10^{18}$
¹⁰² Pd 2 ⁺ ₂ 1103.05 keV	$8.55 imes 10^{18}$

Limit improved by factor 3 for 0₁⁺ and 2₁⁺ state in ¹¹⁰Pd
Experimental limits for all possible excited state transitions in ¹¹⁰Pd and ¹⁰²Pd

Outlook @ LNGS

- \bullet 85 d with 4-HPGe setup @ LNGS
- $\bullet~\mu\text{-flux}$ reduced by factor 10^6
- Higher efficiency
- True coincidence analysis will reduce the background significantly
- Further measurement planed with Pd plates in thin layer around n-type HPGe: Detection of EC X-rays

	Detectors					
	ge178	ge179	ge180	ge188		
Volume (cm ³)	225.2	225.0	225.0	220.7		
Endcap and holder material	Electrolytical copper					
Energy resolution (FWHM) at 1332 keV	2.1	2.0	2.0	2.0		

Conclusions

- World first experimental limits for DBD into
 excited states in ¹¹⁰Pd and ¹⁰²Pd
- Measurements in three state of the art underground gamma spectrometers
- Two measurements finished and published
- Third analysis is ongoing
- Challenge: 3 orders of magnitude improvement if theory is right

U_1^+ state		E28,	Experiment	12	Theory	Theory
And in the second	Nuclei	keV	$T_{1/2}, y$		[18, 19]	[23]
	¹⁵⁰ Nd	2627.1	$= 1.4^{+0.5}_{-0.4} \times 10^{20}$ [8]		-	-
	⁹⁶ Zr	2202.5	$> 6.8 \times 10^{19}$ [22]	(2.4 - 2.7)	$) \times 10^{21}$	3.8×10^{21}
	¹⁰⁰ Mo	1903.7	$= 6.2^{+0.9}_{-0.7} \times 10^{20}$	1.6×10^{-10}	0^{21} [29]	2.1×10^{21}
No. of Concession, Name	⁸² Se	1507.5	$> 3.0 \times 10^{21}$ [24]	(1.5 - 3.3)	$) \times 10^{21}$	-
	⁴⁸ Ca	1274.8	$> 1.5 \times 10^{20}$ [20]		-	-
	¹¹⁶ Cd	1048.2	$> 2.0 \times 10^{21}$ [26]	1.1	$\times 10^{22}$	1.1×10^{21}
	⁷⁶ Ge	916.7	$> 6.2 \times 10^{21}$ [30]	(7.5 - 310)	$) \times 10^{21}$	4.5×10^{21}
	¹³⁰ Te	735.3	$> 2.3 \times 10^{21}$ [31]	(5.1 - 14)	< 10 ^{22*)}	
	$^{110}\mathrm{Pd}$	544.8	$> 2.0 \ge 10^{20}$	(4.2 - 9.1)	$)x10^{23}$	-
						TELET BY GALL
フ	a^+ state					arXiv:0710.2194
		Ε _{2β} ,	Experiment	Theory		Theory
-	Nuclei	keV	$T_{1/2}, y$	[17]		[18, 19]
	⁴⁸ Ca	3288.5	$> 1.8 \times 10^{20}$ [20]	$1.7 imes 10^{24}$		17
	¹⁵⁰ Nd	3033.6	$> 9.1 \times 10^{19}$ [21]	-		-
	⁹⁶ Zr	2572.2	$> 7.9 \times 10^{19}$ [22]	2.3×10^{25}	(3.8	$(-4.8) \times 10^{21}$
	¹⁰⁰ Mo	2494.5	$> 1.6 \times 10^{21}$ [4]	1.2×10^{25}	3	4×10^{22} [23]
	⁸² Se	2218.5	$> 1.4 \times 10^{21}$ [24]	-	2.8×10	0^{23} -3.3 × 10 ²⁶
	¹³⁰ Te	1992.7	$> 2.8 \times 10^{21}$ [25]	6.9×10^{26}	(3.0	$(0-27) \times 10^{22}$
	¹¹⁶ Cd	1511.5	$> 2.3 \times 10^{21}$ [26]	3.4×10^{26}		1.1×10^{24}
	⁷⁶ Ge	1480	$> 1.1 \times 10^{21}$ [27]	5.8×10^{28}	(7.	$(8-10) \times 10^{25}$
	$^{110}\mathrm{Pd}$	1360.1	$>1.7 ext{ x } 10^{20}$		0.	$6-1.3 \times 10^{25}$

Angular Correlation

$$W(\theta) = \frac{5}{4} \left(1 - 3\cos^2\theta + 4\cos^4\theta \right).$$

cnt/s

