The Need for an Early Anti-neutrino Run in NO $\nu \mathrm{A}$

Ushak Rahaman

Department of Physics
Indian Institute of Technology Bombay
Mumbai, India

September 16-23, 2013, Erice, Italy
(Prakash, UR, Sankar, arXiv:1306.4125)

"ONE HUNDRED MILLION NEUTRINOS ARE PASSING THROUGH OUR BODIES EVERY SECOND, AND WERE WORRED ABOUT THE PRICE OF COFFEE."
[http://www.sciencecartoonsplus.com/gallery/physics/galphys2h.php]

The Neutrino Mixing Parameters

- $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are flavor states / interaction states

The Neutrino Mixing Parameters

- $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are flavor states / interaction states
- $\left|\nu_{i}\right\rangle \mathrm{s}$ are the mass eigen states / propagation states, where $\mathrm{i}=1,2,3$

The Neutrino Mixing Parameters

- $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are flavor states / interaction states
- $\left|\nu_{i}\right\rangle \mathrm{s}$ are the mass eigen states / propagation states, where $\mathrm{i}=1,2,3$
- $\left|\nu_{\alpha}\right\rangle=U\left|\nu_{i}\right\rangle$ Oscillation probabilities depend on 3 mixing angles, two independent
mass-squared differences $\Delta_{21}=m_{2}^{2}-m_{1}^{2}, \Delta_{31}=m_{3}^{2}-m_{1}^{2}$ and one CP violating phase

The Neutrino Mixing Parameters

- $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are flavor states / interaction states
- $\left|\nu_{i}\right\rangle \mathrm{s}$ are the mass eigen states / propagation states, where $\mathrm{i}=1,2,3$
- $\left|\nu_{\alpha}\right\rangle=U\left|\nu_{i}\right\rangle$
$-U=\left[\begin{array}{ccc}c_{13} c_{12} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\ s_{12} s_{23}-s_{13} c_{12} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{13} c_{23} s_{12} e^{i \delta} & c_{23} c_{13}\end{array}\right]$
mass-squared differences Δ
violating phase

The Neutrino Mixing Parameters

- $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$ are flavor states / interaction states
- $\left|\nu_{i}\right\rangle \mathrm{s}$ are the mass eigen states / propagation states, where $\mathrm{i}=1,2,3$
- $\left|\nu_{\alpha}\right\rangle=U\left|\nu_{i}\right\rangle$
- $U=\left[\begin{array}{ccc}c_{13} c_{12} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\ s_{12} s_{23}-s_{13} c_{12} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{13} c_{23} s_{12} e^{i \delta} & c_{23} c_{13}\end{array}\right]$
- Oscillation probabilities depend on 3 mixing angles, two independent mass-squared differences $\Delta_{21}=m_{2}^{2}-m_{1}^{2}, \Delta_{31}=m_{3}^{2}-m_{1}^{2}$ and one CP violating phase δ.

The Parameter Space Before Reactor Neutrino Results $(b f p \pm 1 \sigma)$

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$

The Parameter Space Before Reactor Neutrino Results $(b f p \pm 1 \sigma)$

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$

The Parameter Space Before Reactor Neutrino Results $(b f p \pm 1 \sigma)$

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$
- $\Delta_{21}=(7.50 \pm 0.185) \times 10^{-5} \mathrm{eV}^{2}$

The Parameter Space Before Reactor Neutrino Results $(b f p \pm 1 \sigma)$

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$
- $\Delta_{21}=(7.50 \pm 0.185) \times 10^{-5} \mathrm{eV}^{2}$
- $\left|\Delta_{31}\right|=\left(2.47_{-0.067}^{+0.069}\right) \times 10^{-3} e^{2}$

The Parameter Space Before Reactor Neutrino Results (bfp $\pm 1 \sigma$)

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$
- $\Delta_{21}=(7.50 \pm 0.185) \times 10^{-5} \mathrm{eV}^{2}$
- $\left|\Delta_{31}\right|=\left(2.47_{-0.067}^{+0.069}\right) \times 10^{-3} e^{2}$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]

The Parameter Space Before Reactor Neutrino Results (bfp $\pm 1 \sigma$)

- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$
- $\Delta_{21}=(7.50 \pm 0.185) \times 10^{-5} \mathrm{eV}^{2}$
- $\left|\Delta_{31}\right|=\left(2.47_{-0.067}^{+0.069}\right) \times 10^{-3} e^{2}$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]
- $\alpha=\frac{\Delta_{21}}{\Delta_{31}}$ and θ_{13} very small

The Parameter Space Before Reactor Neutrino Results

 $(b f p \pm 1 \sigma)$- $\sin ^{2} \theta_{12}=0.30 \pm 0.013$
- $\sin ^{2} \theta_{23}=0.41_{-0.025}^{+0.037} \bigoplus 0.59_{-0.022}^{+0.021}$
- $\Delta_{21}=(7.50 \pm 0.185) \times 10^{-5} \mathrm{eV}^{2}$
- $\left|\Delta_{31}\right|=\left(2.47_{-0.067}^{+0.069}\right) \times 10^{-3} \mathrm{eV}^{2}$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]
- $\alpha=\frac{\Delta_{21}}{\Delta_{31}}$ and θ_{13} very small
- $P_{e e}$ and $P_{\mu \mu}$ generally can be written in effective two-flavor form.
$P_{\bar{e} \bar{e}}=1-\sin ^{2} 2 \theta_{12} \sin ^{2} \frac{\Delta_{21} L}{4 E}$ (KamLAND)
$P_{\mu \mu}=1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{\Delta_{31} L}{4 E}$ (MINOS)
$P_{\bar{e} \bar{e}}=1-\sin ^{2} 2 \theta_{13} \sin ^{2} \frac{\Delta_{31} L}{4 E}$ (Daya Bay, Double Chooz, RENO)
$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \\
+\quad & \alpha^{2} \sin ^{2} 2 \theta_{12} \cos ^{2} \theta_{13} \cos ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta} \hat{A}}{\hat{A}^{2}} \tag{0.1}
\end{align*}
$$

[Cervera et al., arXiv: hep-ph/0002108]
dependence and hence can create matter effect.
$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments

$$
\begin{align*}
& P_{\mu e}=\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
&+\quad \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A} \sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \\
&+\quad \alpha^{2} \sin ^{2} 2 \theta_{12} \cos ^{2} \theta_{13} \cos ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta} \hat{A}}{\hat{A}^{2}} \tag{0.1}
\end{align*}
$$

[Cervera et al., arXiv: hep-ph/0002108]

- $\hat{\Delta}=\Delta_{31} L / 4 E, \hat{A}=A / \Delta_{31}, \alpha=\Delta_{21} / \Delta_{31}, A=0.000076 \rho E$ has energy dependence and hence can create matter effect.

$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments

- $\Delta_{31}+$ ve for NH and -ve for IH

$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments

- $\Delta_{31}+\mathrm{ve}$ for NH and -ve for IH
- A +ve for ν and -ve for $\bar{\nu}$

$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments
- $\Delta_{31}+$ ve for NH and -ve for IH
- A +ve for ν and $-v e$ for $\bar{\nu}$
- For $\nu, \hat{A}+$ ve for NH and -ve for IH
$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments
- $\Delta_{31}+$ ve for NH and -ve for IH
- A +ve for ν and -ve for $\bar{\nu}$
- For $\nu, \hat{A}+\mathrm{ve}$ for NH and -ve for IH
- For $\bar{\nu}, \hat{A}$-ve for NH and +ve for IH
$\left|\nu_{\mu}\right\rangle \longrightarrow\left|\nu_{e}\right\rangle$ Oscillation with Matter Effect in Long Baseline Experiments
- $\Delta_{31}+$ ve for NH and -ve for IH
- A +ve for ν and $-v e$ for $\bar{\nu}$
- For $\nu, \hat{A}+\mathrm{ve}$ for NH and -ve for IH
- For $\bar{\nu}, \hat{A}$-ve for NH and +ve for IH
- $P_{\mu e}$ SENSITIVE to hierarchy
- $\Delta_{31}+$ ve for NH and -ve for IH
- A +ve for ν and $-v e$ for $\bar{\nu}$
- For $\nu, \hat{A}+\mathrm{ve}$ for NH and -ve for IH
- For $\bar{\nu}, \hat{A}$-ve for NH and +ve for IH
- $P_{\mu e}$ SENSITIVE to hierarchy
- $P_{\mu e}$ dependent of θ_{13}, hierarchy, octant of $\theta_{23}, \delta_{C P} \longrightarrow$ EIGHT-FOLD DEGENERACY

Eight -fold Degeneracy

[Barger et al., arXiv: hep-ph/0112119]

Eight -fold Degeneracy

[Barger et al., arXiv: hep-ph/0112119]

- The (hierarchy- $\delta_{C P}$) degeneracy: $P_{\mu e}\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)=$ $P_{\mu e}\left(\theta_{13}, \mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$

Eight -fold Degeneracy

[Barger et al., arXiv: hep-ph/0112119]

- The (hierarchy- $\delta_{C P}$) degeneracy: $P_{\mu e}\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)=$ $P_{\mu e}\left(\theta_{13}, \mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$
- The (hierarchy- θ_{13}) degeneracy: $P_{\mu e}\left(\mathrm{NH}, \theta_{13}, \delta_{C P}\right)=P_{\mu e}\left(\mathrm{IH}, \theta_{13}{ }^{\prime}, \delta_{C P}\right)$

Eight -fold Degeneracy

[Barger et al., arXiv: hep-ph/0112119]

- The (hierarchy- $\delta_{C P}$) degeneracy: $P_{\mu e}\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)\left(\theta_{13}, \mathrm{NH}, \delta_{C P}\right)=$ $P_{\mu e}\left(\theta_{13}, \mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$
- The (hierarchy- θ_{13}) degeneracy: $P_{\mu e}\left(\mathrm{NH}, \theta_{13}, \delta_{C P}\right)=P_{\mu e}\left(\mathrm{IH}, \theta_{13}{ }^{\prime}, \delta_{C P}\right)$
- The (hierarchy-octant) degeneracy: $P_{\mu e}\left(\mathrm{NH}, \theta_{23}, \theta_{13}, \delta_{C P}\right)=P_{\mu e}(\mathrm{IH}$, $\left.90^{\circ}-\theta_{23}, \theta_{13}, \delta_{C P}{ }^{\prime}\right)$

Recent Reactor Neutrino Experiments

- $\sin ^{2} 2 \theta_{13}=0.089$
[An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]

[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]- Dava Ray will reduce the error in $\sin ^{2} 2 A_{13}$ from 10% to 5% at the end a its running. [Dwyer (Daya Bay collaboration), talk given at the Neutrino 2012 conference, June 3-9 2012 Kvoto janan htm•//nem? 012 kek in]

Recent Reactor Neutrino Experiments

- $\sin ^{2} 2 \theta_{13}=0.089$
[An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]
- $\sin ^{2} \theta_{13}=0.023 \pm 0.0023$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]

Recent Reactor Neutrino Experiments

- $\sin ^{2} 2 \theta_{13}=0.089$
[An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]
- $\sin ^{2} \theta_{13}=0.023 \pm 0.0023$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]
- Daya Bay will reduce the error in $\sin ^{2} 2 \theta_{13}$ from 10% to 5% at the end of its running.
[Dwyer (Daya Bay collaboration), talk given at the Neutrino 2012 conference, June 3-9, 2012, Kyoto, japan, http://neu2012.kek.jp]

Recent Reactor Neutrino Experiments

- $\sin ^{2} 2 \theta_{13}=0.089$
[An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]
- $\sin ^{2} \theta_{13}=0.023 \pm 0.0023$
[Table 1 of Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023]
- Daya Bay will reduce the error in $\sin ^{2} 2 \theta_{13}$ from 10% to 5% at the end of its running.
[Dwyer (Daya Bay collaboration), talk given at the Neutrino 2012 conference, June 3-9, 2012, Kyoto, japan, http://neu2012.kek.jp]
- $\sin 2 \theta_{13} \simeq 0.3,10$ times to $\alpha=0.03$, neglect α^{2}

Recent Reactor Neutrino Experiments

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A} \sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}}
\end{align*}
$$

The Unknown Ones

- $\delta_{C P}$, Sign of Δ_{31}, octant of θ_{23}
- Reactor experiments result on θ_{13} allows mass hierarchy to be determined by current experiment
[An et al., arXiv: 1203.1669; Ahn et al., arXiv: $1204.0626 ;$ Abe et al., arXiv: 1207.6632]
- It makes discovery of CP violation in leptonic sector much easier [Filip Jedińy ($\mathrm{NO} \nu$ A collaboration), talk given in 35 th School of Nuclear physics, Ettore Majorana Foundation and Centre for Scientific Culture, September 16-23, 2013]

The Unknown Ones

- $\delta_{C P}$, Sign of Δ_{31}, octant of θ_{23}
- Reactor experiments result on θ_{13} allows mass hierarchy to be determined by current experiment [An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]

The Unknown Ones

- $\delta_{C P}$, Sign of Δ_{31}, octant of θ_{23}
- Reactor experiments result on θ_{13} allows mass hierarchy to be determined by current experiment [An et al., arXiv: 1203.1669; Ahn et al., arXiv: 1204.0626; Abe et al., arXiv: 1207.6632]
- It makes discovery of CP violation in leptonic sector much easier [Filip Jedińy ($\mathrm{NO} \nu$ A collaboration), talk given in 35th School of Nuclear physics, Ettore Majorana Foundation and Centre for Scientific Culture, September 16-23, 2013]

The Hierarchy- $\delta_{C P}$ Degeneracy

[Barger et al., arXiv: hep-ph/0112119; Mena, Parke, arXiv: hep-ph/040870]

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \tag{0.3}
\end{align*}
$$

The Hierarchy- $\delta_{C P}$ Degeneracy

[Barger et al., arXiv: hep-ph/0112119; Mena, Parke, arXiv: hep-ph/040870]

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \tag{0.3}
\end{align*}
$$

- $P_{\mu e}(\mathrm{NH})>P_{\mu e}(\mathrm{IH})$, for ν : consequences of \hat{A} dependence

The Hierarchy $-\delta_{C P}$ Degeneracy

[Barger et al., arXiv: hep-ph/0112119; Mena, Parke, arXiv: hep-ph/040870]

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \tag{0.3}
\end{align*}
$$

- $P_{\mu e}(\mathrm{NH})>P_{\mu e}(\mathrm{IH})$, for ν : consequences of \hat{A} dependence
- At oscillation maxima $\hat{\Delta} \simeq 90^{\circ}$

The Hierarchy $-\delta_{C P}$ Degeneracy

[Barger et al., arXiv: hep-ph/0112119; Mena, Parke, arXiv: hep-ph/040870]

$$
\begin{align*}
P_{\mu e} & =\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \frac{\sin ^{2} \hat{\Delta}(1-\hat{A})}{(1-\hat{A})^{2}} \\
+\quad & \alpha \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23} \cos \left(\hat{\Delta}+\delta_{C P}\right) \\
& \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta}(1-\hat{A})}{1-\hat{A}} \tag{0.3}
\end{align*}
$$

- $P_{\mu e}(\mathrm{NH})>P_{\mu e}(\mathrm{IH})$, for ν : consequences of \hat{A} dependence
- At oscillation maxima $\hat{\Delta} \simeq 90^{\circ}$
- $\cos \left(\hat{\Delta}+\delta_{C P}\right)$ is 1 for $\delta_{C P}=-90^{\circ}$ and -1 for $\delta_{C P}=90^{\circ}$

The Hierarchy- $\delta_{C P}$ Degeneracy in NO $\nu \mathrm{A}$

Figure: $P_{\mu e}$ (top panel) and $P_{\overline{\mu \bar{e}}}$ (bottom panel) vs. energy for $\mathrm{NO} \nu \mathrm{A}$. Variation of $\delta_{C P}$ leads to the blue (red) bands for $\mathrm{NH}(\mathrm{IH})$. The plots are drawn for maximal θ_{23} and other neutrino parameters given as the central value in slide 3 .
[Prakash, Raut, Sankar, arXiv: 1201.6485v3]

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(N H,-180^{\circ}<\delta_{C P}<0\right)<P_{\bar{\mu} \bar{e}}\left(I H\right.$, any $\left.\delta_{C P}\right)$

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(N H,-180^{\circ}<\delta_{C P}<0\right)<P_{\bar{\mu} \bar{e}}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\mu e}\left(I H, 0<\delta_{C P}<180^{\circ}\right)<P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(N H,-180^{\circ}<\delta_{C P}<0\right)<P_{\bar{\mu} \bar{e}}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\mu e}\left(I H, 0<\delta_{C P}<180^{\circ}\right)<P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(I H, 0<\delta_{C P}<180^{\circ}\right)>P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(N H,-180^{\circ}<\delta_{C P}<0\right)<P_{\bar{\mu} \bar{e}}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\mu e}\left(I H, 0<\delta_{C P}<180^{\circ}\right)<P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(I H, 0<\delta_{C P}<180^{\circ}\right)>P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$
- For these two cases $\mathrm{NO} \nu \mathrm{A}$ can determine hierarchy if statistics is large enough.
for each measurement, no hierarchy determination

Favorable and Unfavorable Combinations

- $P_{\mu e}\left(N H,-180^{\circ}<\delta_{C P}<0\right)>P_{\mu e}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(N H,-180^{\circ}<\delta_{C P}<0\right)<P_{\bar{\mu} \bar{e}}\left(I H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\mu e}\left(I H, 0<\delta_{C P}<180^{\circ}\right)<P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$
- $P_{\bar{\mu} \bar{e}}\left(I H, 0<\delta_{C P}<180^{\circ}\right)>P_{\mu e}\left(N H\right.$, any $\left.\delta_{C P}\right)$
- For these two cases $\mathrm{NO} \nu \mathrm{A}$ can determine hierarchy if statistics is large enough.
- $P_{\mu e}\left(N H, 0<\delta_{C P}<180^{\circ}\right) \simeq P_{\mu e}\left(I H,-180^{\circ}<\delta_{C P}{ }^{\prime}<0\right)$ $P_{\bar{\mu} \bar{e}}\left(N H, 0<\delta_{C P}<180^{\circ}\right) \simeq P_{\bar{\mu} \bar{e}}\left(I H,-180^{\circ}<\delta_{C P}{ }^{\prime}<0\right) \longrightarrow$ DEGENERATE solutions- (true hierarchy, $\delta_{C P}$) and (wrong hierarchy, $\delta_{C P}{ }^{\prime}$) for each measurement, no hierarchy determination

Favorable and Unfavorable Combinations

- (NH, $\delta_{C P}$ in LHP) and (IH, $\delta_{C P}$ in UHP) are favorable combinations for hierarchy determination in $\mathrm{NO} \nu \mathrm{A}$.

Favorable and Unfavorable Combinations

- (NH, $\delta_{C P}$ in LHP) and (IH, $\delta_{C P}$ in UHP) are favorable combinations for hierarchy determination in $\mathrm{NO} \nu \mathrm{A}$.
- (NH, $\delta_{C P}$ in UHP) and (IH, $\delta_{C P}$ in LHP) are unfavorable combinations for hierarchy determination in $\mathrm{NO} \nu \mathrm{A}$.

Favorable and Unfavorable Combinations

- (NH, $\delta_{C P}$ in LHP) and (IH, $\delta_{C P}$ in UHP) are favorable combinations for hierarchy determination in $\mathrm{NO} \nu \mathrm{A}$.
- (NH, $\delta_{C P}$ in UHP) and (IH, $\delta_{C P}$ in LHP) are unfavorable combinations for hierarchy determination in $\mathrm{NO} \nu \mathrm{A}$.
- We have confined ourselves in the favorable combinations in this work [Prakash, Raut, Sankar, arXiv: 1201.6485v3]

Potential for $\mathrm{NO} \nu \mathrm{A}$

Figure: Hierarchy sensitivity for $\mathrm{NO} \nu \mathrm{A}$ after complete run. In the left (right) panel, the true hierarchy is taken to be $\mathrm{NH}(\mathrm{IH})$.
[Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644v2]

Aim of the Work

What can we learn in first 3 years of $\mathrm{NO} \nu \mathrm{A}$, if we have favorable hierarchy- $\delta_{C P}$ combinations as true combinations? Consider two possibilities.

Aim of the Work

What can we learn in first 3 years of $\mathrm{NO} \nu \mathrm{A}$, if we have favorable hierarchy- $\delta_{C P}$ combinations as true combinations? Consider two possibilities.

- 3 year of ν run

Aim of the Work

What can we learn in first 3 years of $\mathrm{NO} \nu \mathrm{A}$, if we have favorable hierarchy- $\delta_{C P}$ combinations as true combinations? Consider two possibilities.

- 3 year of ν run
- 1.5 year ν run +1.5 year $\bar{\nu}$ run

Aim of the Work

What can we learn in first 3 years of $\mathrm{NO} \nu \mathrm{A}$, if we have favorable hierarchy- $\delta_{C P}$ combinations as true combinations? Consider two possibilities.

- 3 year of ν run
- 1.5 year ν run +1.5 year $\bar{\nu}$ run

WHY?

Originally first 3 year ν run was considered to discover non-zero θ_{13}, in case it was small. But now $\theta_{13} \simeq 8^{\circ}$, other possibilities can be considered.

Aim of the Work

What can we learn in first 3 years of $\mathrm{NO} \nu \mathrm{A}$, if we have favorable hierarchy- $\delta_{C P}$ combinations as true combinations?
Consider two possibilities.

- 3 year of ν run
- 1.5 year ν run +1.5 year $\bar{\nu}$ run

WHY?

Originally first 3 year ν run was considered to discover non-zero θ_{13}, in case it was small. But now $\theta_{13} \simeq 8^{\circ}$, other possibilities can be considered.
[Prakash, UR, Sankar, arXiv:1306.4125]

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab - Detector locaton: 0.8° off axis from the NuMI beam

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam - v flux peaks sharply at 2 GeV , oscillation maximum energy

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam
- v flux peaks sharply at 2 GeV , oscillation maximum energy

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam
- ν flux peaks sharply at 2 GeV , oscillation maximum energy 1.5 GeV
, NuMI beam power 700 kW , corresponding to 6×10^{20} protons on target

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam
- ν flux peaks sharply at 2 GeV , oscillation maximum energy 1.5 GeV
- Equal ν and $\bar{\nu}$ run of 3 years each
- NuMI beam power 700 kW , corresponding to 6×10^{20} protons on target

Simulations

$\mathrm{NO} \nu \mathrm{A}$ Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam
- ν flux peaks sharply at 2 GeV , oscillation maximum energy 1.5 GeV
- Equal ν and $\bar{\nu}$ run of 3 years each
- NuMI beam power 700 kW , corresponding to 6×10^{20} protons on target per year
We have used retuned signal acceptance and backg
[Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644]

Simulations

$\mathrm{NO} \nu$ A Experiment

[Ayres et al., NO ν A, Tech. Rep. (2007), Fermilab-Design-2007-01]

- 14 kiloton TASD
- 810 km away from Fermilab
- Detector locaton: 0.8° off axis from the NuMI beam
- ν flux peaks sharply at 2 GeV , oscillation maximum energy 1.5 GeV
- Equal ν and $\bar{\nu}$ run of 3 years each
- NuMI beam power 700 kW , corresponding to 6×10^{20} protons on target per year
- We have used retuned signal acceptance and background factor [Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644]

Simulations

Numerical Simulations

- $\sin ^{2} \theta_{12}=0.30, \Delta_{21}=7.5 \times 10^{-5} \mathrm{eV}^{2} \longrightarrow$ kept fixed later calculations, marginalization done over 2σ range.

Simulations

Numerical Simulations

- $\sin ^{2} \theta_{12}=0.30, \Delta_{21}=7.5 \times 10^{-5} \mathrm{eV}^{2} \longrightarrow$ kept fixed
- $\sin ^{2} 2 \theta_{13}=0.089, \sigma\left(\sin ^{2} 2 \theta_{13}\right)=10 \%$, in preliminary calculations, 5% in later calculations, marginalization done over 2σ range.

Simulations

Numerical Simulations

- $\sin ^{2} \theta_{12}=0.30, \Delta_{21}=7.5 \times 10^{-5} \mathrm{eV}^{2} \longrightarrow$ kept fixed
- $\sin ^{2} 2 \theta_{13}=0.089, \sigma\left(\sin ^{2} 2 \theta_{13}\right)=10 \%$, in preliminary calculations, 5% in later calculations, marginalization done over 2σ range.
- $\Delta m_{e f f}^{2}= \pm 2.4 \times 10^{-3} \mathrm{eV}^{2}$, positive (negative) for NH (IH)

Simulations

Numerical Simulations

- $\sin ^{2} \theta_{12}=0.30, \Delta_{21}=7.5 \times 10^{-5} \mathrm{eV}^{2} \longrightarrow$ kept fixed
- $\sin ^{2} 2 \theta_{13}=0.089, \sigma\left(\sin ^{2} 2 \theta_{13}\right)=10 \%$, in preliminary calculations, 5% in later calculations, marginalization done over 2σ range.
- $\Delta m_{e f f}^{2}= \pm 2.4 \times 10^{-3} \mathrm{eV}^{2}$, positive (negative) for $\mathrm{NH}(\mathrm{IH})$
- $\Delta m_{e f f}^{2}=\sin ^{2} \theta_{12} \Delta_{31}+\cos ^{2} \theta_{12} \Delta_{32}-\cos \delta_{C P} \sin \theta_{13} \sin 2 \theta_{12} \cot \theta_{23} \Delta_{21}$, $\Delta_{31} \simeq \Delta_{32}$
[Nunokawa et al., arXiv: hep-ph/0503283]

Simulations

Numerical Simulations

- $\sin ^{2} \theta_{12}=0.30, \Delta_{21}=7.5 \times 10^{-5} \mathrm{eV}^{2} \longrightarrow$ kept fixed
- $\sin ^{2} 2 \theta_{13}=0.089, \sigma\left(\sin ^{2} 2 \theta_{13}\right)=10 \%$, in preliminary calculations, 5% in later calculations, marginalization done over 2σ range.
- $\Delta m_{e f f}^{2}= \pm 2.4 \times 10^{-3} \mathrm{eV}^{2}$, positive (negative) for NH (IH)
- $\Delta m_{e f f}^{2}=\sin ^{2} \theta_{12} \Delta_{31}+\cos ^{2} \theta_{12} \Delta_{32}-\cos \delta_{C P} \sin \theta_{13} \sin 2 \theta_{12} \cot \theta_{23} \Delta_{21}$, $\Delta_{31} \simeq \Delta_{32}$
[Nunokawa et al., arXiv: hep-ph/0503283]
- $\sigma\left(\Delta m_{e f f}^{2}\right)=3 \%$
[Itow et al., arXiv: hep-ex/0106019]
, marginalization over 2σ range

Simulations

- For maximal mixing, $\sin ^{2} \theta_{23}=0.5$
- For non-maximal mixing, $\sin ^{2} \theta_{23}=0.41$ for θ_{23} in lower octant and $\sin ^{2} \theta_{23}=0.59$ for θ_{23} in higher octant

Simulations

- For maximal mixing, $\sin ^{2} \theta_{23}=0.5$
- For non-maximal mixing, $\sin ^{2} \theta_{23}=0.41$ for θ_{23} in lower octant and $\sin ^{2} \theta_{23}=0.59$ for θ_{23} in higher octant

Simulations

- For maximal mixing, $\sin ^{2} \theta_{23}=0.5$
- For non-maximal mixing, $\sin ^{2} \theta_{23}=0.41$ for θ_{23} in lower octant and $\sin ^{2} \theta_{23}=0.59$ for θ_{23} in higher octant
- Marginalization range of $\sin ^{2} \theta_{23}$ is [0.35, 0.65]- 3σ range of global fit

Simulations

- For maximal mixing, $\sin ^{2} \theta_{23}=0.5$
- For non-maximal mixing, $\sin ^{2} \theta_{23}=0.41$ for θ_{23} in lower octant and $\sin ^{2} \theta_{23}=0.59$ for θ_{23} in higher octant
- Marginalization range of $\sin ^{2} \theta_{23}$ is [0.35, 0.65]- 3σ range of global fit
- Marginalization of $\delta_{C P}$ is full range- $\left[-180^{\circ}, 180^{\circ}\right]$

Simulations

Event number simulations and the $\Delta \chi^{2}$ calculations are done by using GLoBES
[Huber et al., arXiv: hep-ph/0407333, Huber et al., arXiv: hep-ph/0701187] Minimum $\Delta \chi^{2}$ is calculated by doing a marginalization over the above mentioned parameters.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

Figure: Hierarchy sensitivity assuming 10% uncertainty in $\sin ^{2} 2 \theta_{13}$ and maximal θ_{23}. In the left (right) panel, the true hierarchy is taken to be NH (IH).

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

WHY?

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

WHY?

- The lower sensitivity of 3ν run is due to hierarchy- $\sin ^{2} 2 \theta_{13}$ degeneracy.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

WHY?

- The lower sensitivity of 3ν run is due to hierarchy- $\sin ^{2} 2 \theta_{13}$ degeneracy.
- If the value of $\sin ^{2} 2 \theta_{13}$ is not precisely known it is possible to fake the probability value with a wrong hierarchy and with a wrong $\sin ^{2} 2 \theta_{13}$.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

WHY?

- The lower sensitivity of 3ν run is due to hierarchy- $\sin ^{2} 2 \theta_{13}$ degeneracy.
- If the value of $\sin ^{2} 2 \theta_{13}$ is not precisely known it is possible to fake the probability value with a wrong hierarchy and with a wrong $\sin ^{2} 2 \theta_{13}$.
- This wrong value of $\sin ^{2} 2 \theta_{13}$ is different for ν and $\bar{\nu}$.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

10% uncertainty in $\sin ^{2} 2 \theta_{13}$

- 2σ hierarchy determination is possible in 1.5 year ν run +1.5 year $\bar{\nu}$ for about 50% of the favorable half plane.
- 2σ hierarchy determination is possible over a very small range (no $\delta_{C P}$) if NH,LHP (IH,UHP) is true in 3ν run

WHY?

- The lower sensitivity of 3ν run is due to hierarchy- $\sin ^{2} 2 \theta_{13}$ degeneracy.
- If the value of $\sin ^{2} 2 \theta_{13}$ is not precisely known it is possible to fake the probability value with a wrong hierarchy and with a wrong $\sin ^{2} 2 \theta_{13}$.
- This wrong value of $\sin ^{2} 2 \theta_{13}$ is different for ν and $\bar{\nu}$.
- Because hierarchy affects ν and $\bar{\nu}$ in different ways but changing $\sin ^{2} 2 \theta_{13}$ in same way.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

- Pure ν is sensitive to this degeneracy but a combination of ν and $\bar{\nu}$ not.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

- Pure ν is sensitive to this degeneracy but a combination of ν and $\bar{\nu}$ not.
- $1.5 \nu+1.5 \bar{\nu}$ has better sensitivity than $3 \nu+0 \bar{\nu}$ run when precision in $\sin ^{2} 2 \theta_{13}$ is 10%.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

- Pure ν is sensitive to this degeneracy but a combination of ν and $\bar{\nu}$ not.
- $1.5 \nu+1.5 \bar{\nu}$ has better sensitivity than $3 \nu+0 \bar{\nu}$ run when precision in $\sin ^{2} 2 \theta_{13}$ is 10%.
- When this precision is 5%, extra statistics of $3+0$ wins over.

Effect of Precision of $\sin ^{2} 2 \theta_{13}$

If the uncertainty in $\sin ^{2} 2 \theta_{13}$ is reduced to 5%, the hierarchy reach for 3ν does improve and becomes equal to that of $1.5 \nu+1.5 \bar{\nu}$ run.

Figure: Hierarchy sensitivity assuming 5% uncertainty in $\sin ^{2} 2 \theta_{13}$ and maximal θ_{23}. In the left (right) panel, the true hierarchy is taken to be NH (IH).

Non-maximal θ_{23}

- Recent hint of non-maximal θ_{23}
[Nichol, talk given at the Neutrino 2012 conference, June 3-9, 2012, Kyoto, japan, http://neu2012.kek.jp]
Additional degeneracy- in particular hierarchy-octant [Agarwalla, Prakash, Sankar, arXiv: 1301.2574]

Non-maximal θ_{23}

- Recent hint of non-maximal θ_{23}
[Nichol, talk given at the Neutrino 2012 conference, June 3-9, 2012, Kyoto, japan, http://neu2012.kek.jp]
- Additional degeneracy- in particular hierarchy-octant
[Agarwalla, Prakash, Sankar, arXiv: 1301.2574]

Non-maximal θ_{23}

- Recent hint of non-maximal θ_{23}
[Nichol, talk given at the Neutrino 2012 conference, June 3-9, 2012, Kyoto, japan, http://neu2012.kek.jp]
- Additional degeneracy- in particular hierarchy-octant
[Agarwalla, Prakash, Sankar, arXiv: 1301.2574]
We have assumed $\sigma\left(\sin ^{2} 2 \theta_{13}\right)=5 \%$

Figure: Illustration of degenerate $P_{\mu e}$ and non-degenerate $P_{\bar{\mu} \bar{e}}$ for the following two cases. Left: $\left(\mathrm{LO}-\mathrm{NH}, \delta_{C P}=-45^{\circ}\right)$ and $\left(\mathrm{HO}-\mathrm{IH}, \delta_{C P}{ }^{\prime}=-45^{\circ}\right)$, Right: $(\mathrm{LO}-\mathrm{NH}$, $\left.\delta_{C P}=-90^{\circ}\right)$ and (HO-IH, $\delta_{C P}{ }^{\prime}=-45^{\circ}$).

Non-maximal θ_{23}

- Dominant term in $P_{\mu e}$ proportional to $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$ - Matter effect in NH makes it larger and HO makes it even larger. - $P_{\mu e}\left(\mathrm{HO}-\mathrm{NH}, \delta_{C P}\right.$ in LHP) $\gg P_{\mu e}(\mathrm{IH})$, for any values of neutrino parameters \Rightarrow statistics for HO-NH will be quite large.

Non-maximal θ_{23}

- Dominant term in $P_{\mu e}$ proportional to $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$
- Matter effect in NH makes it larger and HO makes it even larger. parameters \Rightarrow statistics for $\mathrm{HO}-\mathrm{NH}$ will be quite large.

Non-maximal θ_{23}

- Dominant term in $P_{\mu e}$ proportional to $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$
- Matter effect in NH makes it larger and HO makes it even larger.
- $P_{\mu e}\left(\mathrm{HO}-\mathrm{NH}, \delta_{C P}\right.$ in LHP) $\gg P_{\mu e}(\mathrm{IH})$, for any values of neutrino parameters \Rightarrow statistics for HO-NH will be quite large.

Non-maximal θ_{23}

- Dominant term in $P_{\mu e}$ proportional to $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$
- Matter effect in NH makes it larger and HO makes it even larger.
- $P_{\mu e}\left(\mathrm{HO}-\mathrm{NH}, \delta_{C P}\right.$ in LHP $) \gg P_{\mu e}(\mathrm{IH})$, for any values of neutrino parameters \Rightarrow statistics for $\mathrm{HO}-\mathrm{NH}$ will be quite large.
- Similarly, $P_{\mu e}\left(\mathrm{LO}-\mathrm{IH}, \delta_{C P}\right.$ in UHP) $\ll P_{\mu e}(\mathrm{NH})$

Non-maximal θ_{23}

- Dominant term in $P_{\mu e}$ proportional to $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$
- Matter effect in NH makes it larger and HO makes it even larger.
- $P_{\mu e}\left(\mathrm{HO}-\mathrm{NH}, \delta_{C P}\right.$ in LHP $) \gg P_{\mu e}(\mathrm{IH})$, for any values of neutrino parameters \Rightarrow statistics for $\mathrm{HO}-\mathrm{NH}$ will be quite large.
- Similarly, $P_{\mu e}\left(\mathrm{LO}-\mathrm{IH}, \delta_{C P}\right.$ in UHP) $\ll P_{\mu e}(\mathrm{NH})$
- NO degeneracy for HO-NH and LO-IH

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it. and $\delta_{C P}{ }^{\prime}$ may or may not be equal

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it.
- For HO-IH, HO increases $P_{\mu e}$, IH lowers it.
and $\delta_{C P}{ }^{\prime}$ may or may not be equal

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it.
- For HO-IH, HO increases $P_{\mu e}$, IH lowers it.
- Marginalization over θ_{23} an $\delta_{C P} \Rightarrow P_{\mu e}\left(\mathrm{LO}-\mathrm{NH}, \delta_{C P}\right) \simeq P_{\mu e}\left(\mathrm{HO}-\mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$, $\delta_{C P}$ and $\delta_{C P}{ }^{\prime}$ may or may not be equal

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it.
- For HO-IH, HO increases $P_{\mu e}$, IH lowers it.
- Marginalization over θ_{23} an $\delta_{C P} \Rightarrow P_{\mu e}\left(\mathrm{LO}-\mathrm{NH}, \delta_{C P}\right) \simeq P_{\mu e}\left(\mathrm{HO}-\mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$, $\delta_{C P}$ and $\delta_{C P}{ }^{\prime}$ may or may not be equal
- For $\bar{\nu}$, both LO and NH decreases $P_{\bar{\mu} \bar{e}}$

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it.
- For HO-IH, HO increases $P_{\mu e}$, IH lowers it.
- Marginalization over θ_{23} an $\delta_{C P} \Rightarrow P_{\mu e}\left(\mathrm{LO}-\mathrm{NH}, \delta_{C P}\right) \simeq P_{\mu e}\left(\mathrm{HO}-\mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$, $\delta_{C P}$ and $\delta_{C P}{ }^{\prime}$ may or may not be equal
- For $\bar{\nu}$, both LO and NH decreases $P_{\bar{\mu} \bar{e}}$
- Similarly, both HO and IH increases $P_{\bar{\mu} \bar{e}}$

Non-maximal θ_{23}

- For LO-NH, LO decreases $P_{\mu e}$, NH increases it.
- For HO-IH, HO increases $P_{\mu e}$, IH lowers it.
- Marginalization over θ_{23} an $\delta_{C P} \Rightarrow P_{\mu e}\left(\mathrm{LO}-\mathrm{NH}, \delta_{C P}\right) \simeq P_{\mu e}\left(\mathrm{HO}-\mathrm{IH}, \delta_{C P}{ }^{\prime}\right)$, $\delta_{C P}$ and $\delta_{C P}{ }^{\prime}$ may or may not be equal
- For $\bar{\nu}$, both LO and NH decreases $P_{\bar{\mu} \bar{e}}$
- Similarly, both HO and IH increases $P_{\bar{\mu} \bar{e}}$
- NO degeneracy in the case of $\bar{\nu}$

Non-maximal θ_{23}

ν and $\bar{\nu}$ data have different dependence on hierarchy-octant degeneracy $\Rightarrow \mathrm{a}$ combination of both will help to solve this degeneracy in case of LO-NH and HO-IH.

Non-maximal θ_{23}

Figure: Hierarchy sensitivity assuming 5% uncertainty in $\sin ^{2} 2 \theta_{13}$ for NH and LHP. In the left (right) panel, the true $\sin ^{2} \theta_{23}$ is taken to be $0.41(0.59)$.

Non-maximal θ_{23}

Figure: Hierarchy sensitivity assuming 5% uncertainty in $\sin ^{2} 2 \theta_{13}$ for IH and UHP. In the left (right) panel, the true $\sin ^{2} \theta_{23}$ is taken to be $0.41(0.59)$.

Non-maximal θ_{23}

- HO-NH combination has a 2σ hierarchy discrimination for $80 \%(70 \%)$ of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$

Non-maximal θ_{23}

- HO-NH combination has a 2σ hierarchy discrimination for 80% (70%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
- LO-IH combination has a 2σ hierarchy discrimination for 40% (20\%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
has a far better sensiivity to

Non-maximal θ_{23}

- HO-NH combination has a 2σ hierarchy discrimination for 80% (70%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
- LO-IH combination has a 2σ hierarchy discrimination for 40% (20%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
- For HO-NH and LO-IH1.5 $\nu+1.5 \bar{\nu}$ is slightly worse than 3ν.

Non-maximal θ_{23}

- HO-NH combination has a 2σ hierarchy discrimination for 80% (70%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
- LO-IH combination has a 2σ hierarchy discrimination for 40% (20%) of the favorable half plane for $3 \nu(1.5 \nu+1.5 \bar{\nu})$
- For HO-NH and LO-IH1.5 $\nu+1.5 \bar{\nu}$ is slightly worse than 3ν.
- For LO-NH and HO-IH, $1.5 \nu+1.5 \bar{\nu}$ has a far better sensiivity to hierarchy than 3ν

Conclusions

- $1.5 \nu+1.5 \bar{\nu}$ has far better hierarchy sensitivity than 3ν, if $\sigma\left(\sin ^{2} 2 \theta_{13}\right)=$ 10%, if $\delta_{C P}$ is in favorable half plane, 3ν run fails to give any hierarchy discrimanation.
hierarchy sensitivity in all possible hierarchy-octant combinations for a satisfying range of $\delta_{C P}$ in favorable half plane, where as 3ν has no sensitivity at all for LO-NH and HO-IH Addition of T2K data does not help much, because we are confined in favorable region.

Conclusions

- $1.5 \nu+1.5 \bar{\nu}$ has far better hierarchy sensitivity than 3ν, if $\sigma\left(\sin ^{2} 2 \theta_{13}\right)=$ 10%, if $\delta_{C P}$ is in favorable half plane, 3ν run fails to give any hierarchy discrimanation.
- After Daya Bay reduces $\sigma\left(\sin ^{2} 2 \theta_{13}\right)$ to $5 \%, 1.5 \nu+1.5 \bar{\nu}$ has 2σ hierarchy sensitivity in all possible hierarchy-octant combinations for a satisfying range of $\delta_{C P}$ in favorable half plane, where as 3ν has no sensitivity at all for LO-NH and HO-IH

Conclusions

- $1.5 \nu+1.5 \bar{\nu}$ has far better hierarchy sensitivity than 3ν, if $\sigma\left(\sin ^{2} 2 \theta_{13}\right)=$ 10%, if $\delta_{C P}$ is in favorable half plane, 3ν run fails to give any hierarchy discrimanation.
- After Daya Bay reduces $\sigma\left(\sin ^{2} 2 \theta_{13}\right)$ to $5 \%, 1.5 \nu+1.5 \bar{\nu}$ has 2σ hierarchy sensitivity in all possible hierarchy-octant combinations for a satisfying range of $\delta_{C P}$ in favorable half plane, where as 3ν has no sensitivity at all for LO-NH and HO-IH
- Addition of T2K data does not help much, because we are confined in favorable region.

Conclusions

- $1.5 \nu+1.5 \bar{\nu}$ has far better hierarchy sensitivity than 3ν, if $\sigma\left(\sin ^{2} 2 \theta_{13}\right)=$ 10%, if $\delta_{C P}$ is in favorable half plane, 3ν run fails to give any hierarchy discrimanation.
- After Daya Bay reduces $\sigma\left(\sin ^{2} 2 \theta_{13}\right)$ to $5 \%, 1.5 \nu+1.5 \bar{\nu}$ has 2σ hierarchy sensitivity in all possible hierarchy-octant combinations for a satisfying range of $\delta_{C P}$ in favorable half plane, where as 3ν has no sensitivity at all for LO-NH and HO-IH
- Addition of T2K data does not help much, because we are confined in favorable region.
- It is imperative for $\mathrm{NO} \nu \mathrm{A}$ to plan on early $\bar{\nu}$ run to get a quick hint of hierarchy.

"Quarks. Neutrinos. Mesons. All those damn particles you can't see. That's what drove me to drink.

But now I can see them!"
[http://www.sciencecartoonsplus.com/gallery/physics/galphys2b.php]
THANK YOU

Re-optimizing NO $\nu \mathrm{A}$

- Relaxed energy cut allowing more signal events \Rightarrow more backgrounds as well
- Signal efficiencies in new $\mathrm{NO} \nu \mathrm{A}(45 \%$ for both neutrino and anti-neutrino) is 2 times the old one (26% for neutrino and 40% for anti-neutrino) for neutrino
- NC background \Rightarrow about 7 times (2% vs 0.3%) for ν and 3 times (3% vs 0.9%) for $\bar{\nu}$ than the old one.
- Misidentified muons $\Rightarrow 6$ time (0.83% vs 0.13%) for ν and 2 times (0.22% vs 0.13%) than the old one
- Earlier the number of NC background events were moderate. For that case assuming a Gaussian energy resolution function to smear the background events was a good approximation. But at present the NC backgrounds are higher by a factor 5 . But their measured energy range in is much below the range of large flux. The NC spectrum shift to measured energies is implemented through migration matrices.
- We have considered the neutrino contamination in the anti-neutrino beam in both appearance and disappearance channels. While the anti- neutrino contamination in the neutrino beam can be ignored, the reverse is not true.
- The above optimization criteria was developed in the case of $\nu_{\mu} \longrightarrow \nu_{e}$ vacuum oscillation with $\delta_{c p}=0$ and maximizing signal events while keeping the background events relatively small.

