A liquid Argon scintillation veto for the GERDA experiment

Anne Wegmann for the GERDA collaboration

Max-Planck Institut für Kernphysik

Erice, 23 September 2013

Light instrumentation of GERDA

The GERDA experiment

The GERDA experiment

The GERDA experiment

sensitivity to the lower limit of the half life scale of 0 uetaeta decay

$$T_{1/2}\propto\epsilon a\sqrt{rac{Mt}{BI\cdot\Delta E}}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency,} \\ a: \mbox{ abundance of 76Ge} \\ Mt: \mbox{ exposure [kg yr],} \\ Bt: \mbox{ background index [cts/(keV kg yr]],} \\ \Delta(E): \mbox{ energy resolution in ROI at $Q_{\beta\beta}$} \end{array}$

Phase I:

- November 2011 May 2013
- mass of operational detectors: $M_{\text{coaxial, enr}} = 14.63 \text{ kg}$ $M_{\text{coaxial, nat}} = 2.96 \text{ kg}$ $M_{\text{BEGe}} = 3.00 \text{ kg}$
- energy resolution @ 2.6 MeV (FWHM): $\Delta E_{\rm coaxial} \approx 4.2 - 5.8 \, \rm keV$ $\Delta E_{\rm BEGe} \approx 2.6 - 4.0 \, \rm keV$
- BI $\approx 0.01 \, \mathrm{cts} / (\mathrm{keV \, kg \, yr})$ after PSD

Phase II

- additional 20 kg of enr Ge detectors (BEGe)
- cleaner and lighter detector holders, cables, ...

aspired BI $\leq 10^{-3} \operatorname{cts}/(\operatorname{keV kg yr})$

- ⇒ active background suppression methods are needed
 - detector anticoincidence
 - water cherenkov veto
 - pulse shape analysis
 - > LAr scintillation veto will be installed

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy at a single point in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

$\gamma~{\rm background}$

- two compton scatterings in one Ge detector: → multi site event, vetoed by PSD
- ② compton scattering in two different Ge detectors: → vetoed by detector anticoincidence
- in one Ge detector and in LAr:
 → can be vetoed by a LAr scintillation veto

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy at a single point in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

LAr instrumentation

- energy deposition in LAr creates scintillation light @ $\lambda = 128 \text{ nm}$
- can be used as anticoincidence veto

LAr scintillation veto for background suppression

How does an active LAr veto work?

signal

 $0\nu\beta\beta$ event deposits its energy at a single point in the Ge-crystal \rightarrow single site event

backgrounds

- γ background: mainly compton scattered events from natural decay chains (²²⁸ Th, ²²⁶ Ra)
- α and β decays near/on detector surface (²²⁶Ra, ⁴²K)

surface $\beta\text{, }\alpha\text{ background}$

- single site events but modified pulse shape due to energy deposition in dead layer → PSD
- ② part of energy deposition can be in LAr → LAr scintillation veto

LArGe - a test facility for GERDA

Experimental verification

suppression factors at $Q_{\beta\beta} \pm 35 \, {\rm keV}$: LAr \approx 1200; PSD \approx 2.4

LArGe - a test facility for GERDA

Monte Carlo validation & tuning of optical parameters

LArGe data

 1180 ± 250

 4.6 ± 0.2

 27 ± 2

 25 ± 1.2

 3.2 ± 0.2

internal

external

bg

208 TI

²¹⁴ Bi

⁶⁰ Co

208 TI

²¹⁴ Bi

- tuning of optical properties
 - material reflectivities (Ge, Cu, VM2000, ...)
 - absorption and emission spectra
 - LAr attenuation length, light yield and triplet lifetime
- good MC description after tuning

MC

 909 ± 235

 3.8 ± 0.1

 16.1 ± 1.3

 17.2 ± 1.6

 3.2 ± 0.4

Light instrumentation for GERDA

Phase I background

Phase I background contributions for enriched coaxial detectors

component	location	BI in $Q_{\beta\beta} \pm 5 \mathrm{keV}$ [10 ⁻³ cts/(keV kg yr)]	relative contribution			
total		18.5		_		
⁴² K	LAr homogenous	3.0	16.2 %			
⁶⁰ Co	det. assembly	1.4	7.6 %	backgr	ound in BEGe data	set
⁶⁰ Co	germanium	0.6	3.2 %		additional contrib	ution
²¹⁴ Bi	det. assembly	5.2	28.1 %	-	 from ⁴²K on n⁺ surface 50 % of total background 	
²¹⁴ Bi	p ⁺ surface	1.4	7.6 %			
²²⁸ Th	det. assembly	4.5	24.3 %	-		
$lpha \mathrm{model}$	p ⁺ surface	2.4	13.0 %	_		
Anne Wegmann (MPIK)		LAr veto for	GERDA	Erice, 23	September 2013	7 / 17

Light instrumentation for GERDA

"Hybrid" LAr veto design

- result of MC simulation optimization campaign
- uses combination of PMTs and scintillation fibers to read-out the scintillation light

requirements on light instrumentation

- big instrumented volume
- low instrumentation-induced background
 - photomultiplier
 - wavelength shifting fibers
 - wavelength shifting and reflective foil
- applicable without LAr drainage

"Hybrid" LAr veto design

photomultiplier

- type: 3 " R 11065-10/-20
- 9* top, 7* bottom

scintillating fibers

- build the middle shroud
- type: BCF-91A coated with TPB
- light readout at upper end by SiPMs

copper shroud + reflective foil

- Tetratex coated with TPB
- installed on inner side of copper shrouds

Photomultiplier - Hardware

screening	results ²²⁸ Th	$[{ m mBq/pc}]_{^{226}Ra}$
PMT *	< 1.94	< 1.7
VD	< 0.5	< 1.14

* calculated from component screening currently screening of 6 R11065-10 PMTs

teststand

R11065-20 has higher QE than R11065-10

peak-to-valley:

• test of up to 10 PMTs in LAr

- light yield measurements
- gain measurements

Fibers - Hardware

scintillating fibers coated with TPB

• screening results 228 Th: 0.058 Bq/kg

 $^{226}\textit{Ra}:$ 0.042 $\rm Bq/kg$

9 fibers per SiPM

- readout on one end
- \Rightarrow dirtiest parts far from detector
- reflective surface on other end

Anne Wegmann (MPIK)

SiPMs

- work at LN temperature
- good QE, negligible dark rate
- candidates: Ketek and Hamamatsu SiPMs

teststand @ TUM

- first tests have been done
- scintillation light seen

LAr veto for GERDA

Erice, 23 September 2013 11 / 17

"Hybrid" LAr veto design - MC simulations

- veto efficiencies for different background sources are estimated by MC simulations (Geant4)
- photon propagation in LAr if energy deposition in Ge crystal is in ROI

suppression factors

$$SF = \frac{\text{total events in ROI}}{\text{unvetoed events in ROI}}$$

ROI: $Q_{\beta\beta} \pm 100 \,\mathrm{keV}$

LAr veto for GERDA

"Hybrid" LAr veto design - MC simulations

suppression factors

	holders	surface	homogenous	external	detector
²¹⁴ Bi ²⁰⁸ Tl	$\begin{array}{c} 10.3\pm0.3\\ 320\pm34 \end{array}$	3.5 ± 0.1	54.8 ± 7.9 -	- 112.1 ± 38.8	-
⁶⁰ Co ⁴² K	-	- 1*	$^-$ 5.3 \pm 0.6	-	10* _

* suppression factors calculated for older designs (approximate values)

Anne Wegmann (MPIK)

12 / 17

"Hybrid" LAr veto design - MC simulations

systematics studies

 changed attenuation for XUV light and metal reflectivities dramatically

	baseline	attenuation * 0.2	reflectivity $*$ 0.1	
²¹⁴ Bi in holders	10.3 ± 0.3	8.9 ± 0.3	9.4 ± 0.3	

⇒ LAr veto gives still good suppression factors but p.e. yield drops

"Hybrid" LAr veto design

Instrumentation induced BI $[{\rm cts}/({\rm keV\,kg\,yr})]$

background source		activity	BI w/o LAr veto	BI with LAr veto *
PMTs + VD	²²⁸ Th ²²⁶ Ra	$<2.44\mathrm{mBq/PMT} \\<2.84\mathrm{mBq/PMT}$	$< 3.1(1) * 10^{-4} < 5.5(2) * 10^{-5}$	$< 3.1(5) * 10^{-6} < 2.7(5) * 10^{-6}$
cable	²²⁸ Th ²²⁶ Ra	$<$ 14.4 $\mu \mathrm{Bq/m}$ $<$ 11.2 $\mu \mathrm{Bq/m}$	$< 2.4(1) * 10^{-4} < 3.9(1) * 10^{-5}$	$< 7.0(2) * 10^{-6} < 5.5(2) * 10^{-6}$
top & bottom shroud (Tetratex & copper)	²²⁸ Th ²²⁶ Ra	$< 103\mu{\rm Bq/m^2} \\ < 282\mu{\rm Bq/m^2}$	$< 2.7(1) * 10^{-5} < 1.2(1) * 10^{-5}$	$< 9.9(5) * 10^{-7} < 1.5(1) * 10^{-6}$
sum	²²⁸ Th ²²⁶ Ra total		$< 5.8(1) * 10^{-4} \ < 1.1(1) * 10^{-4} \ < 6.8(1) * 10^{-4}$	$< 1.1(1) * 10^{-5}$ $< 9.8(6) * 10^{-6}$ $< 2.1(1) * 10^{-5}$

* determined with older geometry, will improve a bit

^{42}K mitigation: Mini-shroud and LAr instrumentation

 ^{42}Ar activity in proposal: $<41\,\mu{\rm Bq/kg}$ at 90% C.L. [Barabash et al., 2002]

measured in GERDA: $< 93.0 \pm 6.4 \,\mu Bq/kg$ [preliminary result]

⁴²K mitigation in GERDA

- electric field
- mini-shroud
- LAr veto
- pulse shape discrimination

Phase I

- background enhanced by collection of ⁴²K ions via E-Field
- \Rightarrow E-field & convection free configuration in 'mini-shroud'

⇒ copper 'mini-shroud' cannot be used together with baseline hybrid LAr instrumentation

e.g. SF (Bi214 on holders): 10.3 \pm 0.3 \rightarrow 2.4 \pm 0.1

Anne Wegmann (MPIK)

LAr veto for GERDA

Erice, 23 September 2013 15 / 17

^{42}K mitigation: Mini-shroud and LAr instrumentation

 ^{42}Ar activity in proposal: $<41\,\mu{\rm Bq/kg}$ at 90% C.L. [Barabash et al., 2002]

[preliminary result]

measured in GERDA: $< 93.0 \pm 6.4 \,\mu \mathrm{Bq/kg}$

Phase II

- different options under investigation:
 - > AC readout
 - SiPMs/APDs inside the copper mini-shroud

nylon mini-shroud

copper mesh mini-shroud

- currently tests of the different options ongoing in LArGe
- MC simulations performed

Anne Wegmann (MPIK)

LAr veto for GERDA

Summary

- installation of LAr scintillation veto is planned for Phasell of GERDA
- hybrid design using scintillating fibers and PMTs is the baseline option
 - hardware tests are ongoing
 - construction has started
- extensive MC simulation campaign performed
 - used LArGe for validation and tuning
 - provided optimizations to the hardware design
- LAr veto suppression factors look promising:
 - ightarrow $> 10^2$ for $^{228} Th~(pprox$ 300 close by, pprox 100 far from detectors)
 - $\succ~pprox$ 10 for nearby $^{
 m ^{226}}Ra$ background source
- instrumentation-induced BI within the budget
- ⁴²K most critical known background in Phase II
- work on ${}^{42}K$ mitigation is ongoing (different mini-shroud options)

Thanks for your attention !

Veto efficiencies for different background sources are estimated by Monte Carlo simulations

- MaGe (Geant4) based simulation of nuclear decays
- If event passes cuts on energy deposition in the Ge crystals, optical photons created in the LAr are propagated. Otherwise event is discarded
 - > photons are tracked inside the wls fiber
 - green shifted photons in the fiber can reach the PMTs
- reflectivity and surface roughness of the surrounding materials are implemented