Nuclear Matrix Elements for Weak Decays

JINA & NSCL, MSU Dong-Liang Fang In collaboration with B.A. Brown

Motivation

 Neutrinoless double beta decay has key importance on understanding the nature of

neutrino

 Accurate calculations of nuclear matrix elements for these process are crucial

Methods

- Methods for NME calculations
 - Shell Model(Configuration-Interactions)
 - limited nuclei
 - QRPA
 - most nuclei but accuracy limited
 - PHBF, IBM, GCM etc.

- Controversy over the hypothesis of Single-State-Dominance (SSD) or Lowlying-State-Dominance (LSD) for 2νββ decay
- With the validation of SSD or LSD, the Configuration-Interaction may set the limit over the Matrix elements

Negative results for SSD or LSD

Negative results for SSD or LSD

Positive results for LSD or SSD

DLF, A. Faesler, V. Rodin, M. S. Yousef and F. Simkovic, PRC81,037303(2009)

- The normal procedure of choosing parameters (QRPA with realistic forces)
 - g_{ph} (the position of GTR)
 - g_{PP} (The $2\nu\beta\beta$ matrix element)
 - g_A (Experimental quenching if available)

• the decay scheme for intermediate states

- Combination of g_A and g_{PP} to connect matrix elements of β^-/EC and $\beta\beta$ when all are experimentally available
 - I. The same g_A and g_{PP} to reproduce the matrix element of β^{-}/EC and $\beta\beta$ A. Faessler *et al* JPG 35,075104(2008)
 - II. g_{PP} being the same for β^{-}/EC and $\beta\beta$, but different g_A
 - III. g_A the same for the β^-/EC and $\beta\beta$, but different g_{PP}

J. Suhonen et al PLB725,153(2013)

- Are these choices arbitrary?
 - We should be aware of the fact that QRPA is kind of approximation
 - Shell Model as exact soultion on the other hand with proper Hamiltonian could give us some hints
 - However, Shell Model is not available for most ββ isotopes currently except ⁴⁸Ca

• Running sum for ⁴⁸Ca

• Running sum for ⁴⁸Ca

• Running sum for ⁴⁸Ca

• Different quenching for β^{-} and EC indicated by Shell Model calculations

Has it anything to do with QRPA calculations?

- What have we learnt from Shell Model study
 - effective quenching arising from the fact that QRPA or TDA are approximations to Shell Model
 - experimental quenching which still is a puzzle should be accounted
 - these two quenching mechanisms should be distinguished
 - g_{PP} should be the same or very similar for the grandparent and granddaughter nuclei

Results Cd Isotopes

g_A=0.4, g_{PP}=0.8

Results concerning the matrix elements for
¹¹⁶Cd ββ process

Process	Res.	Ref.
(3He,t) B(GT ⁻)I	0.03	Akimune et al PLB394,23(1997)
(p,n) B(GT ⁻)2	0.26	Sasano <i>et al</i> NPA778,76c(2007)
logft (EC) B(GT ⁻)3	0.39	Bhattacharya et al PRC58,1247(1998)
logft (EC) B(GT ⁻)4	0.402	Wrede et al PRC87,031303(2013)
logft (β ⁻) B(GT ⁺)I	0.25	Blachot NDS92,455(2001)
Μ²νββ	0.128	Barabash PRC81,035501(2010)

• The SSD hypothesis tested from above data

(-,+)	M ² v (SSD)	M(SSD)/M(Exp)
١,١	0.046	0.36
2,1	0.136	I.06
3,1	0.167	I.30
4, I	0.170	I.33

• Running Sum for $2\nu\beta\beta$ decay of ¹¹⁶Cd

M. Horoi and B.A. Brown, PRL110,222502(2013)

• Running Sum for $2\nu\beta\beta$ decay of ¹¹⁶Cd

M. Horoi and B.A. Brown, PRL110,222502(2013)

Conclusion

- The origins of different g_A's in β⁻/EC and ββ are clarified with the help of Shell Model
- The running sum of ¹¹⁶Cd for $2\nu\beta\beta$ is calculated with SSD or LSD observed
- The running sum of $0\nu\beta\beta$ will be checked in the near future

Thanks!