

Monitoring of the KATRIN source composition by Raman spectroscopy

Sebastian Fischer International school of nuclear physics - Neutrino Physics, Erice Sicily

INSTITUTE OF TECHNICAL PHYSICS, TRITIUM LABORATORY KARLSRUHE

2

Windowless gaseous tritium source (WGTS)

 \times

Tritium out

 \times

3.6 T

30 K

е

p_{in}

Tritium injection

X

 \times

 \times

Tritium out

Continuous gas injection and removal

Steady-state gas column inside source tube

Windowless gaseous tritium source (WGTS)

Tritium throughput: 40 g / day

Control and monitoring of WGTS parameters

- Stability of WGTS is essential for m_v measurement
- Essential source parameters are stabilized to 0.1% level
- Dedicated control and monitoring systems developed

Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source M. Babutzka et al., NJP 14 (2012) 103046

Control and monitoring of WGTS parameters

- Stability of WGTS is essential for m_v measurement
- Essential source parameters are stabilized to 0.1% level
- Dedicated control and monitoring systems developed

Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source M. Babutzka et al., NJP 14 (2012) 103046

Gas composition inside WGTS

Gas composition inside WGTS

Molecular effects on β **spectrum**

- Doppler broadening
- Electron scattering with molecules
- Nuclear recoil of daughter molecules (e.g. ³HeT⁺)

Final state distribution

Molecular effects on β spectrum

- Doppler broadening
- Electron scattering with molecules
- Nuclear recoil of daughter molecules (e.g. ³HeT⁺)

Continuous measurement of gas composition needed. 0.1% precision < 10% accuracy

M. Schlösser et al., arXiv:1203.4099

2

650

675

Q₁ branch

The Raman Effect

Stokes Raman scattering

- Photon loses energy to molecule

 Excitation of molecule
 - \rightarrow Change of wavelength

Analysis

550

2000

1500

1000

500

• Line position \rightarrow Qualitative analysis

600

Wavelength (nm)

Simulated spectrum (laser line 532 nm)

575

• Line intensity \rightarrow Quantitative analysis

625

Experimental setup

Proof of principle

LARA setup, tritium loops and the appendix

LARA setup, tritium loops and the appendix

Tritium Laboratory

Karlsruhe

Long-term monitoring inside a test loop

Long-term monitoring inside a test loop

Formation of tritiated methane species (from carbon in stainless steel) Less prominent formation in inner loop expected (due to permeator)

S. F. et al, Fusion Sci Technol. 60 3, 925-930 (2011)

Everything done? Not yet

Extraction of peak intensities

- Accurate, automated data analysis
- Conversion of peak intensities into concentration → Calibration

Hardware

- Simplification of beam path
- Monitoring of system performance
- Tritium resistant optical coatings

Data analysis: Accurate, robust and automated

- Development of analysis chain
 - Fully documented and tested
 - T. M. James et al., Applied Spectroscopy 67 (8) 949 (2013)
 - LabVIEW code available on <u>http://spectools.sourceforge.net</u>
- Real time analysis implemented into data acquisition
- Validation
 - Analysis of ambient air. Extraction of natural abundance of ¹⁷O, ¹⁸O, ¹⁵N
 - Application in calibration of LARA system

26 22.09.2013 Sebastian Fischer | International School of Nuclear Physics | Erice

27 22.09.2013 Sebastian Fischer | International School of Nuclear Physics | Erice

Karlsruhe Institute of Technology

Coating degradation

- Anti-reflection coated windows (electron beam deposition)
- Degradation of coating on inner window surface after 3 months exposed to nominal tritium atmosphere (p = 200 mbar)

Damage not acceptable for long-term operation

(Potential) reasons for coating damage

Radiation damage

Other cells were successfully operated with pure tritium → Radiation damage is unlikely

Formation of hydrofluoric acid (TF)

Clark, Shanahan WSRC-STI-2006-00049 (2006)

(Potential) reasons for coating damage

Radiation damage

Other cells were successfully operated with pure tritium → Radiation damage is unlikely

Formation of hydrofluoric acid (TF)

Clark, Shanahan WSRC-STI-2006-00049 (2006)

Discoloration of PTFE sealing → Indication for TF formation

Approaching the problem

Long-term test without PTFE sealing valve

Severe damage not reproduced Small spots appeared on inner surface → No issue yet, but in future?

Test of commercially available coatings

- Sputtering vs. Electron beam deposition
- 4 manufacturing methods tested
- Sputtered coatings are likely more resistant than electron beam deposited ones

Spots on EBD coating Intrinsic weakness of EBD coating? No effects on sputtered coatings

(Probably) solving the problem

- Current interpretation
 - Severe damage was caused by HF formation
 - Spots observed in tests due to weakness of EBD coatings

(Probably) solving the problem

- Current interpretation
 - Severe damage was caused by HF formation
 - Spots observed in tests due to weakness of EBD coatings

Tritium Laboratory

Karlsruhe

Conclusion

- Control and monitoring of WGTS parameters on 0.1% scale is essential and well on track
- Monitoring of gas composition by Raman spectroscopy (LARA)
- LARA performance demonstrated (0.1% precision and < 6% accuracy, robust data analysis)</p>
- Coating issue understood, solution on the way

The LARA group

Coating manufacturing methods

- Electron beam depositing (EBM)
- Ion assisted beam depositing (IAM)
- Magnetron sputtering (MS)
- Ion beam sputtering (IBS)

Top Coating (SiO₂) Alternating metal oxides and SiO₂

Cell window

Intensity variations

- Isotope exchange reactions in gas
- Gas wall interactions

Stainless steel vessel wall with (H_2, D_2)

Permeation into stainless steel

Evacuation of vessel

Filling with T₂ gas

Exchange reaction with T₂ of next filling

Beam path simplification, system monitoring

ongoing

- Installation of faraday isolator → Simplification of beam alignment
- Training of personnel for maintenance and repair

Definition of control procedures and hardware status parameters

1.1 | 0.8 - 0.9 | 0.0 - 0.8

START acquisition

(0.9 - 1.1 | 0.8 - 0.9 | 0.0 - 0.8)

Tritium Laboratory Karlsruhe

8

Water Chille

Water Chil

Tank level low (Bool

Pump failure (Boo

0.00

Paramete

tain CCD Se

LARA SOFT