

Recent results on θ₁₃ from the Double Chooz experiment

Marianne Göger-Neff, TU München on behalf of the Double Chooz Collaboration

Neutrino Physics: Present and Future Erice, September 16-24, 2013

3 flavor neutrino mixing

s₁₃= sinq₁₃ c₁₃= cosq₁₃

mixing matrix U_{PMNS} parametrized with 3 mixing angles θ_{ij} , CP phase δ + 2 mass differences Δm^2_{atm} , Δm^2_{sol}

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

atmospheric n solar n + K2K, MINOS + KamLAND $\Delta m_{32}^2 = (2.32 \pm 0.12) \cdot 10^{-3} eV^2$ $\Delta m_{21}^2 = (7.50 \pm 0.20) \cdot 10^{-5} eV^2$ sin²2θ₂₃ >0.95 $\sin^2 2\theta_{12} = 0.857 \pm 0.025$ θ₂₃≈ 45° **θ**₁₂≈ 35° reactor n + LBL $\sin^2 2\theta_{13} = 0.095 \pm 0.01$ θ₁₃≈ 9° PDG 2013 $\delta = ?$

Survival probability for $\overline{\nu}_e$

OIBL

nuclear reactor: intense, isotropic source of electron-antineutrinos, 'for free'

- $E_{\nu} < 10 \text{ MeV} \Rightarrow \text{disappearance experiment}$
- look for rate deviation from 1/r² and spectral distortions in 1-2 km
- clean measurement of θ_{13} , independent of δ -CP & matter effects

$$\mathsf{P}(\overline{\nu_{e}} \rightarrow \overline{\nu_{e}}) \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4 E_{\overline{\nu}}}$$

nuclear reactor: intense, isotropic source of electron-antineutrinos, 'for free'

- $E_{\nu} < 10 \text{ MeV} \Rightarrow \text{disappearance experiment}$
- look for rate deviation from 1/r² and spectral distortions in 1-2 km
- clean measurement of θ_{13} , independent of δ -CP & matter effects
- reactor flux uncertainty ~2 % \Rightarrow monitor absolute flux with near detector

$$\mathsf{P}(\overline{v_{e}} \to \overline{v_{e}}) \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4 \mathsf{E}_{\overline{v}}}$$

The Double Chooz Experiment

Chooz B Reactors 2 x 4.27 GW_{th} ≈ 2 x 10 ²¹ v/s

Near Detector L = 400m 120m.w.e. ~ 300 ev/day Start: 2014

Far Detector L = 1050m 300m.w.e. ~ 50 ev/day running since 2011

The Double Chooz collaboration

Spokesperson: H. de Kerret (APC)

Antineutrino Detection

Inverse Beta Decay (IBD) in Gd-loaded scintillator:

Detector Design

Zm

- Calibration glove box
- Outer Veto: plastic scintillator strips
 - Neutrino Target:
 - 10.3 m³ Gd-loaded scintillator 0.1%
 - γ-Catcher:
 - 22.4 m³ unloaded scintillator

Buffer:

- 100 m³ non-scintillating mineral oil
- 390 10" PMTs
- Inner Veto:
- 90 m³ liquid scintillator
- 78 8" PMTs
- Steel Shielding (15 cm, 250 t)

View inside the detector

Detector Calibration

Energy calibration

- 1. PMT and electronics gain non-linearity
 - LED light injection system
- 2. Correction for position dependence & time stability
 - spallation neutron captures on H and Gd
- 3. Energy scale
 - radioactive sources (¹³⁷Cs, ⁶⁰Co, ⁶⁸Ge, ²⁵²Cf) deployed into ν-target and γ-catcher

Neutron detection efficiency

energy & time window, Gd fraction, spill in/out effects

- ^{252}Cf source deployed into $\nu\text{-target}$ and $\gamma\text{-catcher}$

Gd and H analysis

Two channels are used for the neutrino detection

"Standard" Gd analysis:

- high cross section for capture of thermal neutrons
- capture time τ ≈ 30 µs
- delayed energy: 8 MeV

H analysis: $n+p \rightarrow d + \gamma$ (2.2 MeV)

- Target + Gamma Catcher
 - => 3 x more volume (2 x statistics)
- capture time: τ ≈ 180 µs
- delayed energy: 2.2 MeV
 ⇒ background!
- different systematics

Neutrino Selection Cuts

Gd selection cuts

Energy:

- E_{prompt} [0.7; 12] MeV
- [6; 12] MeV E_{delayed}

Coincidence:

- time coincidence: Δt [2, 100] μs
- no spatial coincidence cut

Multiplicity:

no other trigger in [-100; 400] µs from prompt event

Muon veto:

- 1 ms after each muon
- no coincidence with Outer Veto
- 0.5 s after a E>600 MeV muon

PMT instrumental light emission:

- Q_{max}/Q_{tot} < 0.09 for prompt, < 0.06 for delayed
- RMS(T_{start}) < 40 ns

H selection cuts

- E_{prompt} [0.7; 12] MeV E_{delayed} [1.5; 3.0] MeV
- Δt [10, 600] µs
- ΔR < 90cm
- no other trigger in **[-600; 1000] μs** from prompt event

Neutrino candidates vs. time (Gd)

TIBLE

Neutrino candidates vs. time (H)

 ρ^2 (m²)

Accidental Background

rate can be calculated from single rates or measured by offtime-window: same cuts as for neutrino selection, but coincidence time window shifted by 1 s

Accidental rate (Gd):

 $(0.261 \pm 0.002) \text{ ev/day}$

factor 7 lower than proposal (low background of detector components: scintillator, PMTs...)

high accidental rate in nH-region \Rightarrow spatial cut ΔR <90 cm

Accidental rate (H):

 $(73.5 \pm 0.2) \text{ ev/day}$

Accidental Background

rate can be calculated from single rates or measured by offtime-window: same cuts as for neutrino selection, but coincidence time window shifted by 1 s

Accidental rate (Gd):

 $(0.261 \pm 0.002) \text{ ev/day}$

factor 7 lower than proposal (low background of detector components: scintillator, PMTs...)

high accidental rate in nH-region \Rightarrow spatial cut ΔR <90 cm

Accidental rate (H):

 $(73.5 \pm 0.2) \text{ ev/day}$

Fast neutrons and stopping muons

fast neutrons:

prompt event = proton recoil delayed = neutron capture on Gd τ = 30 µs

stopping muons:

prompt event = muon energy loss delayed = muon decay (Michel electron) $\tau = 2.2 \ \mu s$

Background rate estimated from IV and OV coincident events:

0.7±0.2 ev/day Gd

 2.5 ± 0.5 ev/day

Gu

H (only fast n)

Fast neutrons and stopping muons

fast neutrons.

prompt event = proton recoil delayed = neutron capture on Gd τ = 30 µs

stopping muons:

prompt event = muon energy loss delayed = muon decay (Michel electron) $\tau = 2.2 \ \mu s$

Background rate estimated from IV and OV coincident events:

0.7±0.2 ev/day Gd

2.5± 0.5 ev/day H (only fast n)

Correlated Background: ⁹Li

- ⁹Li created by spallation through cosmic muon
- decay via beta-neutron-cascade:
 ⁹Li→ ⁸Be + n + e⁻

 τ = 257 ms , too long for veto

- background estimated from time and spatial coincidence with muons
- veto of 0.5 s after HE muon with E_{ID}> 600 MeV (only for Gd)
- residual ⁹Li-rate:
 - $1.3 \pm 0.5 \text{ ev/day}$ Gd
 - 2.8 ± 1.3 ev/day H

Correlated Background: ⁹Li

- ⁹Li created by spallation through cosmic muon
- decay via beta-neutron-cascade:
 ⁹Li→ ⁸Be + n + e⁻

 τ = 257 ms , too long for veto

- background estimated from time and spatial coincidence with muons
- veto of 0.5 s after HE muon with E_{ID}> 600 MeV (only for Gd)
- residual ⁹Li-rate:
 - $1.3 \pm 0.5 \text{ ev/day}$ Gd
 - 2.8 ± 1.3 ev/day H

Predicted neutrino rate

Far detector-only analysis relies on $\overline{\nu_{e}}$ rate prediction:

$$N_{v}^{exp}(E,t) = \frac{\varepsilon N_{p}}{4\pi} \times \sum_{R=1,2} \frac{1}{L_{R}^{2}} \frac{P_{th,R}(t)}{\langle E_{f} \rangle_{R}} \times \langle \sigma_{f} \rangle_{R}$$

Neutrino cross section per fission:

k = fuel isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

Uncertainty on neutrino flux suppressed using Bugey4 measurement (at L=15m): $2.7\% \rightarrow 1.8\%$

Rate & Shape Analysis

Reactor Off measurement

- Unique capability of Double Chooz:
 background measurement with both reactors off
- Two reactor off-off periods so far:

Oct.2011, **0.84 days** (live time) Jun.2012, **6.00 days** (live time)

• for Gd selection:

Observed rate: $1.0 \pm 0.4 \text{ evt/d}$ Expected rate: $2.0 \pm 0.6 \text{ evt/d}$

• for H selection:

Observed rate: $11.3 \pm 3.4 \text{ evt/d}$ Expected rate: $5.8 \pm 1.3 \text{ evt/d}$

new constraint for oscillation fits

NEW: Combined Gd and H analysis

First combined Gd and H fit:

- data set from April 2011- March 2012
- include backgr. constraints by reactor off-off
- fit includes correlation of systematic errors

Correlation Coefficients

Accidental bg	0
Correlated bg	0
⁹ Li rate	0.003
⁹ Li shape	1
efficiency	0.09
Energy scale	0.4
Reactor flux	1

Gd result for comparison:

Rate+Shape fit:

Preliminary Result:

 $\sin^2 2\theta_{13} = 0.109 \pm 0.035 \quad \chi^2/dof = 61.2/50$

 $\sin^2 2\theta_{13} = 0.109 \pm 0.039$

Rate-only fit:

 $\sin^2 2\theta_{13} = 0.107 \pm 0.045$ $\chi^2/dof = 6.1/3$

NEW:

Gd data

H data

Combined Rate+Shape fit:

 $\sin^2 2\theta_{13} = 0.109 \pm 0.035$ $\chi^2/dof = 61.2/50$

12

10

Energy (MeV)

ysis Uto

Rate only analysis with independent background estimation

including off-off data

no background model assumed

 $R_{obs} = B + (1 - \sin^2 2\theta_{13} \alpha_{osc}) R_{exp}^{noosc}$

Combined Gd + H RRM analysis: $sin^2 2\theta_{13} = 0.097 \pm 0.035$

in agreement with rate+shape fit

 $B(nH) = 7.6 \pm 1.4 \text{ ev/day}$

 $B(nGd) = 0.9 \pm 0.4 \text{ ev/day}$

(accidentals subtracted)

The Future

Near detector

- construction ongoing
- expected to begin data taking spring 2014

Data analysis

• far detector only:

working on combined analysis with expanded data set (~ 490 live days) projected sensitivity: σ ~ 0.03

with two detectors:

reactor uncertainties nearly cancel projected final sensitivity $\sigma \sim 0.01$

 $\theta_{13} \neq 0$ already established by first results from DC, Daya Bay and RENO

New results from Double Chooz using 11 months of data (April '11 – March'12): Combined analysis of Gd and H data sets $sin^2(2\theta_{13}) = 0.109 \pm 0.035$

Reactor rate modulation analysis $sin^2(2\theta_{13}) = 0.097 \pm 0.035$

Future prospects towards a precise measurement of θ_{13} :

- working on improved far detector-analysis with ~ 2 x more statistics
- unique possibility of in-situ background determination during reactor-off-periods (1 week in 2012, more to come)
- first result with 2 detectors in 2014

Thank you for your attention!

Summary of Double Chooz results

