Sterile neutrinos from low energy to the GUT scale

Outline

- General aspects and phenomenology
 - What is a sterile neutrino?
 - What is its mass?
 - 3 (4) well motivated scales and some phenomenology
 - * eV
 - * keV
 - * (TeV)
 - * heavy
- Models for light sterile neutrinos: 3 ways to make them light

What is a sterile neutrino?

SM contains 3 active neutrinos with isospin $\frac{1}{2}$

$$\left(egin{array}{c}
u_e \ e^- \end{array}
ight)_L, \left(egin{array}{c}
u_\mu \ \mu^- \end{array}
ight)_L, \left(egin{array}{c}
u_ au \ au^- \end{array}
ight)_L, \left(egin{array}{c}
u_ au \ au^- \end{array}
ight)_L \end{array}$$

their *CP*-partners are also active:

$$\left(\begin{array}{c} e^+ \\ \bar{\nu}_e \end{array}\right)_R, \quad \left(\begin{array}{c} \mu^+ \\ \bar{\nu}_\mu \end{array}\right)_R, \quad \left(\begin{array}{c} \tau^+ \\ \bar{\nu}_\tau \end{array}\right)_R$$

the $(\nu_{e,\mu,\tau})_L$ and $(\bar{\nu}_{e,\mu,\tau})_R$ take part in weak interactions = couple to W, Z

What is a sterile neutrino?

- add a fourth state to the game, but don't give it isospin! \Rightarrow a sterile neutrino ν_s
- a sterile neutrino ν_s does NOT take part in weak interactions = does NOT couple to W, Z
- can mix with active neutrinos
- can couple to Higgs
- can couple to BSM physics

Fogli, Lisi *et al.*, June 2012

Lessons

- consistent picture emerging
- there are 3 generation effects!
- about 2σ hint for $\theta_{23} < \pi/4$
- about 1σ hint for $\delta \neq 0$
- no hint for hierarchy
- future program of LBL experiments to pin down, make more precise
- all is well...?

Light Sterile Neutrinos

 \leftrightarrow is there an additional **sterile** state at $\Delta m^2 \sim eV^2$ and mixing $\mathcal{O}(0.1)$?

- LSND $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \ 3.8\sigma$
- MiniBooNE $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \text{ and } \nu_{\mu} \rightarrow \nu_{e}) \ 3.8\sigma$
- Gallium anomaly $(\nu_e \rightarrow \nu_e) \ 2.9\sigma$
- reactor anomaly $(\overline{
 u}_e
 ightarrow \overline{
 u}_e) \ 2.8\sigma$
- cosmology and astroparticle physics

Sterile Neutrinos: Disappearance vs. Appearance

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

$$P(\nu_{\mu} \to \nu_{e}) = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \frac{\Delta m_{41}^{2}}{4E} L$$
$$P(\nu_{e} \to \nu_{e}) = 1 - 4 |U_{e4}|^{2} (1 - |U_{e4}|^{2}) \sin^{2} \frac{\Delta m_{41}^{2}}{4E} L$$
$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4 |U_{\mu4}|^{2} (1 - |U_{\mu4}|^{2}) \sin^{2} \frac{\Delta m_{41}^{2}}{4E} L$$

 \Rightarrow if $\nu_{\mu} \rightarrow \nu_{e}$, then there should be $\nu_{e} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$ \Leftrightarrow tension between appearance and disappearance data...

Sterile Neutrinos: Disappearance vs. Appearance

some overlap at 99 % CL, consistency has p-value $\simeq 10^{-4}$... Kopp, Machado, Maltoni, Schwetz, 1303.3031

Sterile Neutrinos: more than one?

- does not help much for tension between appearance and disappearance
- mass ordering? 3+2 or 1+3+1 $\stackrel{m^2}{\uparrow}$ $\stackrel{m^2}{\uparrow}$ $\stackrel{m^2}{\uparrow}$

Sterile Neutrinos: Typical Values								
	Δm^2_{41}	$ U_{e4} $	$ U_{\mu4} $	Δm_{51}^2	$ U_{e5} $	$ U_{\mu 5} $	$\gamma_{\mu e}$	p(app./dis.)
3+1	0.93	0.15	0.17					1.2×10^{-4}
3+2	0.47	0.13	0.15	0.87	0.14	0.13	-0.15π	3.4×10^{-5}
1 + 3 + 1	-0.87	0.15	0.13	0.47	0.13	0.17	0.06π	2.1×10^{-3}

Kopp, Machado, Maltoni, Schwetz, 1303.3031

 $P_{\nu_{\alpha} \to \nu_{\beta}}^{\text{SBL}} = 4 |U_{\alpha 4}|^2 |U_{\beta 4}|^2 \sin^2 \phi_{41} + 4 |U_{\alpha 5}|^2 |U_{\beta 5}|^2 \sin^2 \phi_{51} + 8 |U_{\alpha 4} U_{\beta 4} U_{\alpha 5} U_{\beta 5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \gamma_{\alpha \beta})$

$$\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}, \qquad \gamma_{\alpha\beta} \equiv \arg\left(I_{\alpha\beta54}\right), \qquad I_{\alpha\beta ij} \equiv U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*$$

experimental tests: talk by Karsten Heeger...

Experiments...

Important: New Sterile Experiments & Plans

Experiment Type	Appearance / Disappearance	Oscillation Channel	Projects			
Reactor	Disappearance	$\bar{v_e} \rightarrow \bar{v_e}$	Nucifer, Stéréo, Scraam, Neutrino-4, DANSS, Poséidon, MARS,			
Radioactive Source	Disappearance	$ \begin{array}{c} \bar{v_e} \rightarrow \ \bar{v_e} \\ v_e \rightarrow v_e \end{array} $	CeLAND, SOX (Cr & Ce), Sage2, SNO+, LENS-s			
Cyclotron	Disappearance	$\bar{\nu}_e \rightarrow \bar{\nu_e}$	IsoDAR			
Pion / Kaon Decay- at-Rest	Apparition & Disappearance	$ \begin{array}{c} \bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}} \\ \nu_{e} \rightarrow \nu_{e} \end{array} $	OscSNS, CLEAR, DAEδALUS, KDAR			
Pion Decay- in-Flight (Beam)	Appearance & Disappearance	$\begin{array}{c} v_{\mu} \rightarrow v_{e} \\ \overline{v_{\mu}} \rightarrow \overline{v_{e}} \\ v_{\mu} \rightarrow v_{\mu} \\ v_{e} \rightarrow v_{e} \end{array}$	MINOS+, MicroBooNE, LAr1kton+MicroBooNE, Icarus/Nessie@CERN			
Low-E Neutrino Factory	Appearance & Disappearance	$\begin{array}{c} v_{\underline{e}} \rightarrow v_{\underline{\mu}} \\ \bar{v}_{\underline{e}} \rightarrow v_{\mu} \\ v_{\mu} \rightarrow v_{\underline{\mu}} \\ \bar{v}_{\underline{e}} \rightarrow v_{\underline{e}} \end{array}$	vSTORM@Fermilab			
Potential $\leftarrow \rightarrow$ hints, speed, cost $\leftarrow \rightarrow$ funding, challenges,						
. Lindner, MPIK FLASY13, Niigata						

See also Light Sterile Neutrinos: A White Paper, 1204.5379

Motivation for Sterile Neutrinos: Cosmology

- CMB and power matter spectrum prefer $N_{\rm eff}>3$
- BBN prefers $N_{\rm eff} > 3$
- Planck: $N_{\rm eff} = 3.5 \pm 0.5$

Giunti, Hannestad *et al.*, 1302.6720, talk by Steen Hannestad model-dependent, inconsistent data sets? can be avoided by asymmetries, new interactions,... Phenomenology of eV steriles: β -decays with non-zero U_{e4} and m_4 :

• Kurie-plot experiments:

 $m_{\beta}^{2} = |U_{e1}|^{2} m_{1}^{2} + |U_{e2}|^{2} m_{2}^{2} + |U_{e3}|^{2} m_{3}^{2} + |U_{e4}|^{2} m_{4}^{2} \le (2.2 \,\mathrm{eV})^{2}$

• neutrinoless double beta decay experiments:

$$|m_{ee}| = \left| U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3 + U_{e4}^2 m_4 \right| \le 0.3 \,\mathrm{eV}$$

Neutrinoless double beta decay: $nn \rightarrow pp \, e^- e^-$

Amplitude proportional to

$$p_i$$
 for light neutrinos $q^2 \gg m_i^2$ for heavy neutrinos $q^2 \ll m_i^2$

The usual plot for double beta decay...

Sterile Neutrinos and $0\nu\beta\beta$

• recall $|m_{ee}|_{
m NH}^{
m act}$ can vanish and $|m_{ee}|_{
m IH}^{
m act}$ cannot vanish

•
$$|m_{ee}| = |\underbrace{|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}^2| m_3 e^{2i\beta}}_{m_{ee}^{act}} + \underbrace{|U_{e4}|^2 m_4 e^{2i\Phi_1}}_{m_{ee}^{st}}$$

• sterile contribution to $0\nu\beta\beta$:

$$|m_{ee}|^{\rm st} \simeq \sqrt{\Delta m_{\rm st}^2} |U_{e4}|^2 \begin{cases} \gg |m_{ee}|_{\rm NH}^{\rm act} \\ \simeq |m_{ee}|_{\rm IH}^{\rm act} \end{cases}$$

• $\Rightarrow |m_{ee}|_{\rm NH}$ cannot vanish and $|m_{ee}|_{\rm IH}$ can vanish! Barry, W.R., Zhang, JHEP 1107; Giunti *et al.*, PRD **87**; Girardi, Meroni, Petcov, 1308.5802

The usual plot for double beta decay... ... gets completely turned around!

Other Sterile Neutrinos

- very light \ll eV (\leftrightarrow missing upturn of P_{ee}^{\odot})
- keV (↔ Warm Dark Matter)
- $10^{10} \dots 10^{15}$ GeV (\leftrightarrow GUTs, leptogenesis)
- [TeV (\leftrightarrow LHC)]

What is a sterile neutrino?

• add a fourth state to the game, but don't give it isospin!

```
\Rightarrow a sterile neutrino \nu_s
```

- a sterile neutrino ν_s does NOT take part in weak interactions = does NOT couple to W, Z
- can mix with active neutrinos
- can couple to Higgs
- can couple to BSM physics

we discuss N_R , the <u>right-handed neutrino of the seesaw mechanism</u>, and assume that it is Majorana, and assume that no other New Physics is there

Seesaw: Formalism

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

$$6 \times 6 \text{ mass matrix diagonalized by}$$

$$\mathcal{U}_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \text{ with } B = m_D M_R^{-1}$$

light neutrino mass matrix:

$$m_{\nu} = -m_D M_R^{-1} m_D^T = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

heavy neutrino mass matrix:

 $M_R = V_R \operatorname{diag}(M_1, M_2, M_3) V_R^T$

 N_R is a sterile neutrino

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

• SM singlet, not protected by v, hence GUT-scale, or B - L breaking scale, or Planck-scale \Rightarrow naturally large

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

- SM singlet, not protected by v, hence GUT-scale, or B L breaking scale, or Planck-scale \Rightarrow naturally large
- if M_R is zero, symmetry of the Lagrangian is enlarged \Rightarrow naturally small

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

- SM singlet, not protected by v, hence GUT-scale, or B L breaking scale, or Planck-scale \Rightarrow naturally large
- if M_R is zero, symmetry of the Lagrangian is enlarged \Rightarrow naturally small

so, what now?

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

special cases:

- $m_D = 0$; pure Majorana case
- $M_R = 0$; pure Dirac case
- $M_R \gg m_D$; seesaw case
- $m_D \gg M_R$; pseudo-Dirac case
- $M_D \sim M_R$; ugly case

The seesaw limit $M_R \gg m_D$

$$m_{\nu} = \frac{m_D^2}{M_R}$$

does this fix everything?

No, multiply m_D with x and M_R with x^2 : leaves m_{ν} invariant

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Formalism

 6×6 mass matrix diagonalized by

$$\mathcal{U}_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix}$$

3 active neutrinos mix with each other through

$$N \equiv U\left(1 - \frac{1}{2}BB^{\dagger}\right)$$
 with $B = m_D M_R^{-1}$

3 active neutrinos mix with sterile neutrinos via

$$\theta_{\alpha i} = (m_D M_R^{-1} V_R)_{\alpha i} = \frac{[m_D V_R^*]_{\alpha i}}{M_i} = \mathcal{O}(\sqrt{m_\nu / M_R})$$

Consequences

• unitarity violation of PMNS matrix of order $(m_D/M_R)^2$

$$\epsilon_{\alpha} \equiv \sum_{i \ge 4} |(\mathcal{U}_{\nu})_{\alpha i}|^2 \Rightarrow \begin{cases} \epsilon_e - \epsilon_{\mu} = 0.0022 \pm 0.0025 \\ \epsilon_{\mu} - \epsilon_{\tau} = 0.0017 \pm 0.0038 \\ \epsilon_e - \epsilon_{\tau} = 0.0039 \pm 0.0040 \end{cases}$$

Loinaz *et al.*, PRD **70**

• Lepton flavor violation

 $\operatorname{BR}(\mu \to e\gamma) \propto \left| N_{\mu i}^* N_{ei} f(m_i/m_W) + \theta_{\mu i}^* \theta_{ei} g(M_i/m_W) \right|^2 \lesssim 1.1 \times 10^{-8}$

• neutrinoless double beta decay

$$\sum N_{ei}^2 m_i \lesssim 0.3 \text{ eV}$$
 and $\sum \frac{\theta_{ei}^2}{M_i} \lesssim 2 \times 10^{-8} \text{ GeV}^{-1}$

Sterile Neutrinos, Seesaw and $0\nu\beta\beta$

• if the eV-steriles are from seesaw: individual cancellations in flavor symmetry models, e.g.:

$$U_{e2}^2 m_2 + U_{e4}^2 m_4 = 0$$

Barry, W.R., Zhang, JCAP 1201

• if seesaw scale is below 100 MeV: No double beta decay!

$$\sum_{i=1}^{6} U_{ei}^2 m_i = \mathbf{0} \text{ since } \mathcal{M} = \begin{pmatrix} \mathbf{0} & m_D \\ m_D^T & M_R \end{pmatrix} = U \begin{pmatrix} m_{\nu}^{\text{diag}} & \mathbf{0} \\ \mathbf{0} & M_R^{\text{diag}} \end{pmatrix} U^T$$

de Gouvea, Jenkins, Vasudevan, PRD 75

keV steriles as Warm Dark Matter

 \rightarrow WDM has same large scale structure formation as CDM, but suppresses small scale formations

 \Rightarrow predicts less cuspy (=smoother) DM profiles, and less dwarf satellites <u>keV sterile is excellent candidate</u>

parameters: mass M_1 and mixing θ

- X-ray searches $\Gamma \sim G_F^2 M_1^5 \, \theta^2$
- Ly- α : structure formation at low scales \sim MPc
- Tremaine-Gunn
- $\tau \sim \tau_{\rm U}$
- etc.

 $m_{
u} = \theta^2 M \Rightarrow$ one massless active neutrino! (unless strong cancellations)

talk by Viollier

TeV seesaw

naively, $m_{\nu} = m_D^2/M_R$ and mixing m_D/M_R \Rightarrow TeV neutrinos have mixing of order 10^{-7} But, matrices are involved...e.g. (Kersten, Smirnov) $m_D = v \begin{pmatrix} h_1 & h_2 & h_3 \\ \omega h_1 & \omega h_2 & \omega h_3 \\ \omega^2 h_1 & \omega^2 h_2 & \omega^2 h_3 \end{pmatrix} = \mathcal{O}(v)$ and $M_R = M_0 \mathbb{1} = \mathcal{O}(\text{TeV})$

gives $m_{\nu} = 0$, add (very) small corrections

first pointed out: Korner, Pilaftsis, Schilcher (1993) works with $Y_{\nu} = \mathcal{O}(1)$, mixing $m_D/M_R = \mathcal{O}(0.1)$ and $M_0 \lesssim$ TeV!

TeV scale seesaw with sizable mixing can saturate LFV and LNV

Ibarra, Molinaro, Petcov

0.05

 $|\langle m \rangle|$ (eV)

0.02

0.10

0.20

0.50

10

	lev scale seesaw with sizable mixing									
	$m_D = n$	$n \begin{pmatrix} f \epsilon^2 \\ 0 \\ 0 \end{pmatrix}$	2 0 $g\epsilon$ 0	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	and	$M_R^{-1} =$	M^{-1}	$egin{array}{c} b & c \ b & c \ k & d\epsilon \end{array}$	$\left. egin{array}{c} k \\ d\epsilon \\ e\epsilon^2 \end{array} ight)$	
$M/{\sf GeV}$	$m/{\sf MeV}$	ϵ	a	k	b	с	d	e	f	g
5.00	0.935	0.02	1.00	1.35	0.90	1.4576	0.7942	0.2898	0.0948	0.485

gives successful m_{ν} and for double beta decay:

$$\frac{T_{1/2}(\text{light})}{T_{1/2}(\text{heavy})} \simeq 10^4$$

Mitra, Senjanovic, Vissani

New motivation for TeV neutrinos? $\Gamma_{\text{inv}} = \frac{1}{3} \Gamma_{\text{inv}}^{\text{SM}} \sum (1 - \epsilon_{\alpha})^{2}$ $\sigma(\nu_{\alpha}q)_{\text{CC}} = \sigma(\nu_{\alpha}q)_{\text{CC}}^{\text{SM}} (1 - \epsilon_{\alpha})$ $\sigma(\nu_{\alpha}q)_{\text{NC}} = \sigma(\nu_{\alpha}q)_{\text{NC}}^{\text{SM}} (1 - \epsilon_{\alpha})^{2}$

Fit to EWPO: TeV-scale neutrinos with $\epsilon \lesssim 10^{-3}$

Akhmedov, Kartavtsev, Michaels, Lindner, Smirnov, 1302.1872

Seesaw with not too diverse mass scales if m_D/M_R is sizable, NLO corrections to seesaw become relevant:

$$\tilde{m}_{\nu} = -m_D^T M_R^{-1} m_D + \frac{1}{2} m_D^T M_R^{-1} X M_R^{-1} m_D$$
$$\tilde{M}_R = M_R + \frac{1}{2} X$$

with
$$X = A + A^T$$
 where $A = m_D m_D^{\dagger} (M_R^*)^{-1}$

Grimus, Lavoura, JHEP 0011; Hettmansperger, Lindner, W.R., JHEP 1104 Examples:

- no correction to $U_{e3} = 0$ and $\theta_{23} = \pi/4$ for μ - τ symmetry
- no correction to $U_{\alpha i}$ if one light neutrino m_i massless
- relevant for inverse, linear, double seesaw

Phenomenology of heavy singlets

recall: for small quartic Higgs coupling $\lambda = m_h/(v\sqrt{2})$ is driven to negative values by top Yukawa:

$$\beta_{\lambda} \propto -24 \operatorname{Tr} \left(Y_u^{\dagger} Y_u \right)^2 \Rightarrow m_h \ge f(\Lambda)$$

vacuum stability bound

currently unclear situation:

- could be $\lambda(M_{\rm Pl}) = 0$
- vacuum could be stable
- vacuum could be unstable
- vacuum could be metastable

(Holthausen, Lim, Lindner; Bezrukov *et al.*; Strumia *et al.*; Masina) strong dependence on top mass, threshold corrections, α_s

Phenomenology of heavy singlets often overlooked: Dirac Yukawa $\bar{\nu}_L Y_{\nu} N_R$ contribution to λ : $\Delta \beta_{\lambda} = -8 \operatorname{Tr} (Y_{\nu}^{\dagger} Y_{\nu})^2$

Casas et al.; Strumia et al.; W.R., Zhang

makes vacuum stability condition worse!

naively, if M_R goes down, Y_{ν} goes down and effect is negligible

Higgs physics and sterile neutrinos

if neutrinos are made accessible at colliders, Dirac Yukawa is large even for TeV neutrinos \Rightarrow influences vacuum stability bound

$10^9 \dots 10^{15}$ GeV: The case of very heavy $M_R \dots$

 \ldots gives correct neutrino masses for $m_D \simeq v$

... gives successful thermal leptogenesis

... is a generic GUT prediction

this is the scale where one would expect M_R

$10^9 \dots 10^{15}$ GeV: The case of very heavy $M_R \dots$

 \ldots gives correct neutrino masses for $m_D \simeq v$

... gives successful thermal leptogenesis (lecture by Ibarra)

... is a generic GUT prediction

this is the scale where one would expect M_R

Recall: theorists also expected small neutrino mixing...

Predictions of $SO(10)$ theories									
		M_3	M_2	M_2	χ^2				
Model	Fit	[GeV]	[GeV]	[GeV]					
$10_H + \overline{126}_H$	NH	$3.6 imes 10^{12}$	$2.0 imes 10^{11}$	1.2×10^{11}	23.0				
$10_H + \overline{126}_H + SS$	NH	1.1×10^{12}	$5.7 imes 10^{10}$	1.5×10^{10}	3.29				
$10_H + \overline{126}_H + 120_H$	NH	9.9×10^{14}	7.3×10^{13}	1.2×10^{13}	11.2				
$10_H + \overline{126}_H + 120_H + SS$	NH	4.2×10^{13}	$4.9 imes 10^{11}$	$4.9 imes 10^{11}$	6.9×10^{-6}				
$10_H + \overline{126}_H + 120_H$	IH	1.1×10^{13}	$3.5 imes 10^{12}$	$5.5 imes 10^{11}$	13.3				
$10_H + \overline{126}_H + 120_H + SS$	IH	1.2×10^{13}	$3.1 imes 10^{11}$	2.0×10^{03}	0.6				

Fit to SO(10) models including θ_{13} , Higgs, seesaw RG, etc.

Dueck, W.R., 1306.4468

Phenomenology of (high scale) Leptogenesis little

(would expect leptonic CP violation and neutrinoless double beta decay)

But note:

- bread and butter leptogenesis requires $M_1\gtrsim 10^9~{
 m GeV}$
- *resonant* leptogenesis works even at weak scale
- *flavor oscillation* of sterile neutrinos with mass around few GeV

3 well motivated scales

there are three well-motivated mass values of M_R :

- eV
- keV
- $\gtrsim 10^9 {
 m GeV}$

what if all three are there? BAU eV-anomalies DM N_3 N_1 N_2 eV GUT GUT \checkmark \checkmark GUT eV keV \checkmark \checkmark GUT GUT keV \checkmark \checkmark or GeV or GeV (last row is called ν MSM, Shaposhnikov *et al.*)

Models for light sterile neutrinos

how to bring one (or all) of the singlet neutrinos down to (k)eV ?

- extra dimensions (Kusenko, Takahashi, Yanagida)
- zero mass plus corrections (Mohapatra; Shaposhnikov; Lindner, Merle, Niro; Araki, Li)
- Froggatt-Nielsen (Merle, Niro; Barry, W.R., Zhang)

"Split seesaw"

Kusenko, Takahashi, Yanagida

Light sterile neutrinos from slightly broken flavor symmetry introduce flavor symmetry leading to one massless neutrino, e.g.

$$M_{R}^{L_{e}-L_{\mu}-L_{\tau}} = \begin{pmatrix} 0 & a & b \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{pmatrix} \Rightarrow M_{1} = 0 , \quad M_{2,3} = \pm \sqrt{a^{2} + b^{2}}$$

$$M_3 \approx M_2$$

$$M_2 \approx M_2 = M_3 \approx \text{GeV}$$

$$M_2 \approx \text{GeV}$$

$$L_e - L_\mu - L_\tau$$

$$\frac{M_1 \sim \text{keV}}{M_1 \equiv 0}$$

small breaking to lift M_1

Mohapatra; Shaposhnikov; Lindner, Merle, Niro; Araki, Li

Light sterile neutrinos from Froggatt-Nielsen introduce new U(1) and field Θ with charge -1 N_R has charge m and ν_L has charge n:

$$m_D \,\bar{\nu}_L \,N_R \,\left(\frac{\Theta}{\Lambda}\right)^{n+m} + M_R \,\bar{N}_R^c \,N_R \,\left(\frac{\Theta}{\Lambda}\right)^{2m} , \qquad \frac{\Theta}{\Lambda} \simeq \lambda$$

 \Rightarrow FN charge of N_R drops out in m_D^2/M_R

Merle, Niro; Barry, W.R., Zhang

Flavor Symmetries

add ν_s to bread and butter A_4 model and use FN to control mass:

	l	e^{c}	μ^{c}	$ au^c$	$ u^c$	$h_{u,d}$	$ u_s$
A_4	3	1	1"	1'	3	1	1
Z_3	ω	ω^2	ω^2	ω^2	ω^2	1	1
U(1)	0	4	2	0	0	0	6 (8)

active neutrino terms of order $llhh(\xi, \varphi')/\Lambda^2$ active-sterile terms of order $l\xi\varphi'h\nu_s\lambda^6/\Lambda^2$ sterile-sterile terms of order $\varphi^2\nu_s\nu_s\lambda^{12}/\Lambda$ generate tri-bimaximal mixing and mixing of order 0.1 with eV-steriles (or 10^{-4} with keV)

Barry, W.R., Zhang, JHEP 1107

Flavor Symmetries

$$M_{\nu}^{4\times4} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e \\ \cdot & \cdot & \frac{2d}{3} & e \\ \cdot & \cdot & m_s \end{pmatrix} \qquad a, d \simeq 10^{-2} \,\mathrm{eV}$$

with $e/m_s \simeq 0.1 \quad (10^{-4})$
 $m_s \simeq \mathrm{eV} \quad (\mathrm{keV})$
diagonalized by
$$U \simeq \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0 \\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0 \\ 0 & 0 & 0 & -\frac{3e^2}{2m_s^2} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & -\frac{\sqrt{3}e^2}{2m_s^2} & 0 & 0 \\ 0 & 0 & 0 & -\frac{3e^2}{2m_s^2} \end{pmatrix}$$

 \mathbf{U}

A_4 Seesaw Model with light steriles (Barry, W.R., Zhang, JCAP 1201)

Field	L	e^{c}	μ^{c}	$ au^c$	$h_{u,d}$	arphi	φ'	$arphi^{\prime\prime}$	ξ	ξ'	$\xi^{\prime\prime}$	Θ	ν_1^c	ν_2^c	ν_3^c
$SU(2)_L$	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1
A_4	<u>3</u>	<u>1</u>	<u>1</u> ''	<u>1</u> ′	<u>1</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>1</u>	<u>1</u> ′	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> ′	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω^2	ω^2	ω	1	1	ω^2	ω	1
U(1)	-	3	1	0	-	-	-	-	-	-	-	-1	F_1	F_2	F_3

various possibilities for the FN-charges:

1, <i>г</i> 2, <i>г</i> 3	Mass spectrum	$ U_{\alpha}4 $				
		, ar	$ \circ \alpha_5 $	NO	10	Phenomenolog
9, 10, 10	$M_{2,3} = \mathcal{O}(eV)$	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$	0	0	3+2 mixing
9, 10, 0	$M_2 = \mathcal{O}(\mathrm{eV})$	$\mathcal{O}(0.1)$	$O(10^{-11})$	0	$2\sqrt{\Delta m_{ m A}^2}$	
	$M_3=\mathcal{O}(10^{11}{\rm GeV})$	· · · ·	- (-)		3	$3 \perp 1$ mixing
9, 0, 10	$M_2 = \mathcal{O}(10^{11}{\rm GeV})$	$O(10^{-11})$	$\mathcal{O}(0.1)$	$\sqrt{\Delta m_{igodot}^2}$	$\sqrt{\Delta m_{ m A}^2}$	
	$M_3 = \mathcal{O}(\mathrm{eV})$	- (-)	· · · ·	3	3	
9, 5, 5	$M_{2,3}=\mathcal{O}(10{\rm GeV})$	$O(10^{-6})$	$O(10^{-6})$	$rac{\sqrt{\Delta m_{\bigodot}^2}}{3}$	$\sqrt{\Delta m_{ m A}^2}$	Leptogenesis
	9, 10, 10 9, 10, 0 9, 0, 10 9, 5, 5	$M_{2,3} = \mathcal{O}(eV)$ $M_{2,3} = \mathcal{O}(eV)$ $M_{2} = \mathcal{O}(eV)$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV})$ $M_{2} = \mathcal{O}(10^{11} \text{ GeV})$ $M_{3} = \mathcal{O}(eV)$ $M_{3} = \mathcal{O}(eV)$ $M_{2,3} = \mathcal{O}(10 \text{ GeV})$	$M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1)$ $M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1)$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV}) \qquad \mathcal{O}(0.1)$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV}) \qquad \mathcal{O}(10^{-11})$ $M_{3} = \mathcal{O}(eV) \qquad \mathcal{O}(10^{-6})$ 9, 5, 5 $M_{2,3} = \mathcal{O}(10 \text{ GeV}) \qquad \mathcal{O}(10^{-6})$	$M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1)$ $M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1)$ $M_{2} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(10^{-11})$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV}) \qquad \mathcal{O}(10^{-11}) \qquad \mathcal{O}(0.1)$ $M_{3} = \mathcal{O}(eV) \qquad \mathcal{O}(10^{-11}) \qquad \mathcal{O}(0.1)$ $M_{3} = \mathcal{O}(eV) \qquad \mathcal{O}(10^{-6}) \qquad \mathcal{O}(10^{-6})$	$M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1) \qquad 0$ $M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1) \qquad 0$ $M_{2} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(10^{-11}) \qquad 0$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV}) \qquad \mathcal{O}(10^{-11}) \qquad \mathcal{O}(0.1) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3}$ $M_{3} = \mathcal{O}(eV) \qquad \mathcal{O}(10^{-6}) \qquad \mathcal{O}(10^{-6}) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3}$ $9, 5, 5 \qquad M_{2,3} = \mathcal{O}(10 \text{ GeV}) \qquad \mathcal{O}(10^{-6}) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3}$	$M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1) \qquad 0 \qquad 0$ $M_{2,3} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(0.1) \qquad 0 \qquad 0$ $M_{2} = \mathcal{O}(eV) \qquad \mathcal{O}(0.1) \qquad \mathcal{O}(10^{-11}) \qquad 0 \qquad \frac{2\sqrt{\Delta m_{A}^{2}}}{3}$ $M_{3} = \mathcal{O}(10^{11} \text{ GeV}) \qquad \mathcal{O}(10^{-11}) \qquad \mathcal{O}(0.1) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3} \qquad \frac{\sqrt{\Delta m_{A}^{2}}}{3}$ $M_{3} = \mathcal{O}(eV) \qquad \mathcal{O}(10^{-6}) \qquad \mathcal{O}(10^{-6}) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3} \qquad \sqrt{\Delta m_{A}^{2}}$ $9, 5, 5 \qquad M_{2,3} = \mathcal{O}(10 \text{ GeV}) \qquad \mathcal{O}(10^{-6}) \qquad \mathcal{O}(10^{-6}) \qquad \frac{\sqrt{\Delta m_{\odot}^{2}}}{3} \qquad \sqrt{\Delta m_{A}^{2}}$

Final Remarks

Steriles have a number of consequences:

- oscillations
- astrophysics
- cosmology
- beta decays, neutrinoless double beta decay
- Higgs physics
- Lepton flavor violation
- . . .

would be extraordinary discovery!

- Are there sterile neutrinos?
- •
- •
- •

- Are there sterile neutrinos? Maybe!
- •
- •
- •

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light?
- •
- ullet

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- •
- ullet

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- experimental input necessary
- ullet

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- experimental input necessary
- if (light) steriles necessary, we know what to do

EXTRA SLIDES FROM HERE ON

Predictions of SO(10) theories Yukawa structure of SO(10) models depends on Higgs representations $10_H \ (\leftrightarrow H), \ \overline{126}_H \ (\leftrightarrow F), \ 120_H \ (\leftrightarrow G)$ Gives relation for mass matrices: $m_{\rm up} \propto r(H + sF + it_u G)$

 $m_{
m down} \propto H + F + iG$ $m_D \propto r(H - 3sF + it_D G)$ $m_\ell \propto H - 3F + it_l G$

$$M_R \propto r_R^{-1} F$$

Numerical fit including RG, Higgs, θ_{13} Dueck, W.R., 1306.4468

Froggatt-Nielsen mechanism

effective theory

introduce new scalar field θ with charge -1 under new U(1); acquires VEV $\langle \theta \rangle$

 L_e and Φ have charge 0, e_R has charge 4, thus the term

$$\overline{L_e} \Phi e_R \frac{\theta^4}{\Lambda^4} \rightarrow \overline{L_e} \Phi e_R \frac{\langle \theta \rangle^4}{\Lambda^4}$$

is allowed
tau mass can go as $\overline{L_\tau} \Phi \tau_R$
With $\langle \theta \rangle / \Lambda \simeq \lambda$: $m_e \simeq \lambda^4 m_{\tau}$

νMSM

- no new scale beyond v and Planck scale
- no new particles except 3 right-handed neutrinos
 - one is keV and is Warm Dark Matter
 - two are few GeV, almost degenerate, and do leptogenesis via oscillations

Shaposhnikov *et al.*; Shaposhnikov *et al.*;

νMSM

- $N_{2,3}$ produced thermally at $T \gtrsim T_{\rm EW}$
- oscillate and generate lepton asymmetry
- $\mu \simeq 10^{-10}$ at $T = T_{\rm EW}$
- $N_{2,3}$ freeze out, decay at $T\lesssim$ GeV and generate lepton asymmetry $\mu\simeq 10^{-7}$ at $T\simeq 100~{\rm MeV}$
- resonant WDM production at $T\simeq 100~{\rm MeV}$

Higgs physics and sterile neutrinos (W.R., Zhang) $m_{\nu} = v^2 Y_{\nu}^T M_R^{-1} Y_{\nu} \text{ with } Y_{\nu} = \frac{1}{v} \sqrt{M_R^{\text{diag}}} R \sqrt{m_{\nu}^{\text{diag}}} U^{\dagger}$

useful parametrization:

$$R = Oe^{\mathrm{i}A}$$
 with $A = egin{pmatrix} 0 & a & b \ -a & 0 & c \ -b & -c & 0 \end{pmatrix}$

degenerate heavy and light neutrinos:

$$\operatorname{tr}\left(Y_{\nu}^{\dagger}Y_{\nu}\right) \simeq \frac{M_{0}m_{0}}{v^{2}}\left(1+2\cosh r\right) \quad \text{with} \quad r = 2\sqrt{a^{2}+b^{2}+c^{2}}$$
for instance, $M_{0} = 1 \text{ TeV}, \ m_{0} = 0.1 \text{ eV}, \ r = 25 \text{ gives } \operatorname{tr}\left(Y_{\nu}^{\dagger}Y_{\nu}\right) = \mathcal{O}(0.1)$
(compare to naive estimate $Y_{\nu} \simeq m_{0}M_{0}/v^{2} \sim 10^{-11}$)

Seesaw parameters and sterile neutrinos: eV scale

- 3+2 scenario: m_ν is 5 × 5 matrix, with a total of 5 masses, 9 mixing angles,
 6 Dirac and 4 Majorana phases, 24 parameters
- seesaw with 2 singlet neutrinos has 11 parameters

But: no problem, seesaw fits work as well Donini *et al.*; Blennow, Fernandez-Martinez; Fan, Langacker

Motivation for Sterile Neutrinos: Gallium Anomaly

• overestimate of detection process $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow e^- + {}^{71}\text{Ge})$?

- small contributions of excited states confirmed by $^{71}Ga(^{3}\mathrm{He},t)^{71}\mathrm{Ge}$ measurements

Motivation for Sterile Neutrinos: Reactor Anomaly

- 200 MeV energy per fission, 6 neutrinos generated in β -decay chain $\Rightarrow 2 \times 10^{20} \nu$ /s per GW thermal power
- U and Pu chains have $\mathcal{O}(10^2)$ nuclei, with $\mathcal{O}(10)$ branches each
- high energy part (shortest lifetime, i.e. least known) most important
- \Leftrightarrow measurement of e^- spectrum at ILL
- sophisticated translation into $\overline{\nu}_e$ spectra, taking into account
 - new neutron lifetime ($\sigma_{\mathrm{fission}} \propto 1/ au_n$)
 - corrections to Fermi theory
 - * nuclear charge distribution ($\leftrightarrow \text{QED corrections}$)
 - * weak magnetism (\leftrightarrow magn. moment and axial current interference)
 - * off-equilibrium effects (\leftrightarrow evolution of reactor)
 - * radiative corrections
 - * more branches
$$S_{\beta}(Z, A, E_c) = \underbrace{K}_{\text{Norm.}} \times \underbrace{\mathcal{F}(Z, A, E_c)}_{\text{Fermi function}} \times \underbrace{p_e E_e(E_c - E_0)^2}_{\text{Phase space}} \times \underbrace{\left(1 + \delta(Z, A, E_c)\right)}_{\text{Correction}}$$

Origin of m_{ν}

$\mathcal{L}_M = \frac{1}{2} \overline{\nu_L} m_{\nu} \nu_L^c$ or $\mathcal{L}_D = \overline{\nu_L} m_{\nu} \nu_R$ are necessarily BSM

Ansatz	content	${\cal L}$	$m_{ u}$	scale
"SM"	cinglet			$a = O(10^{-12})$
(Dirac mass)	Singlet	g_{LIINR}	ġ0	$y = \mathcal{O}(10)$
"effective"	new scale	$\frac{1}{T}HH^{T}L^{c}$	v^2	$\Lambda = (0.1 \text{ eV}) 10^{14}$ CeV
(dim 5 operator)	+ LNF	$\frac{1}{\Lambda}$ DITIT	$\overline{\Lambda}$	$m = \left(\frac{m_{\nu}}{m_{\nu}}\right) = 0 \text{dev}$
"direct"	Higgs triplet	$u\overline{L} \wedge L^{c} \perp \mu H H \wedge$	212) -	$\Lambda = -1 M^2$
(Type II See-Saw)	+ LNV		$g_{U'I'}$	$M = y\mu^{M}\Delta$
"indirect 1"	Singlet	$u\overline{L}HN_{\rm P}\pm \overline{N^{\rm C}}M_{\rm P}N_{\rm P}$	$(yv)^2$	$\Lambda = \frac{1}{2} M_{\rm P}$
(Type I see-saw)	+ LNV	$g_{DII} \otimes_{R} + \otimes_{R} \otimes_{R} \otimes_{R}$	M_R	$M = \overline{y} M R$
"indirect 2"	Fermion triplet	$u\overline{L}\Sigma H \perp Tr\overline{\Sigma}M_{T}\Sigma$	$\overline{\left(yv ight)^2}$	$\Lambda = \frac{1}{2} M_{\rm P}$
(Type III see-saw)	+ LNV	$g_D \Sigma_{II} + 11 \Sigma_{WI} \Sigma_{Z}$	M_{Σ}	$M = \overline{y} M \Sigma$

focus here on type I see-saw mechanism

