

neutrinoless double beta decay in ⁷⁶Ge with GERDA

on behalf of the GERDA collaboration

Peter Grabmayr

Kepler Center für Astro- und Teilchenphysik

Eberhard Karls Universität Tübingen

Erice 18. September 2013

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

summed electron energy spectrum

outline:

- introduction
- GERDA experiment
- GERDA results
- (future Phase II)

neutrinos

neutrinos

neutrinos and photons are the most abundant particles Standard Model of Particle Physics: very successful masses, Higgs, DM, SUSY

photons

 10^{3}

102

search for properties of v !

absolute mass scale, hierarchy

most interesting: is v of Majorana type? $v \equiv \overline{v}$

> lepton number violation extension to Standard Model

> > $0\nu\beta\beta$ decay

spectral shapes

sum energy spectrum of both electrons

$2\nu\beta\beta$: spectrum

New phase space calculations J.Kotila, F.Iachello

spectral shapes

sum energy spectrum of both electrons

$0\nu\beta\beta$: peak at Q-value of nuclear transition

half life estimate for $0\nu\beta\beta$

signal sensitivity \approx stat. precision of background N_{obs} = $\sqrt{N_{BG}}$

background ~ detector mass

$$S_{1/2} \propto a \cdot \epsilon [(M \cdot t) / (\Delta E \cdot b)]^{1/2}$$

B

- a : isotopical abundance
- $\boldsymbol{\varepsilon}$: detection efficiency
- M : mass
- t : measuring time
- ΔE : energy resolution
 - b : background cts/(keV kg yr) $Q \Delta E Q Q$

Region Of Interest

 $N_{\beta\beta} \sim [\Delta E \bullet b)/(M \bullet t)]^{1/2}$

+∆E

F

resolution

²²⁸Th spectrum

candidates

experiments NEMO/SuperNEMO	¹⁰⁰ Mo	DC tracking
cuoricino/cuore	¹³⁰ Te	bolometer
Majorana/GERDA	⁷⁶ Ge	ionisation
EXO/NEXT Kamland-Zen	¹³⁶ Xe ¹³⁶ Xe	TPC (szint.+ ion.) szintillation
Candles SNOW++ MOON COBRA LUCIFER	⁴⁸ Ca ¹⁵⁰ Nd ¹⁰⁰ Mo CdZnTe CdWO ₄	szintillation szintillation MWPC+PLfibres ionisation+track? bolometer

⁷⁶Ge experiments

previous experiments: HDM (5 det) and IGEX (3 det)

Klapdor-Kleingrothaus et al. Phys Lett B586 (2004) 198

71.7 kg·yr

T_{1/2}> 1,9 ·10 ²⁵ yr (90%CL)

Aalseth et al. Phys Rev D65 (2002) 092007 **8.9 kg·yr**

T_{1/2}> 1,6 ·10 ²⁵ yr (90%CL)

GERDA – the novel idea

G. Heusser, Ann. Rev. Nucl. Part Sci. 45 (1995) 543

"...low Z material around detector...""...mount the Ge diodes directly in cryo-liquid"

reduced radioactivity of environment less muon-induced background

Ge diodes – enriched to 86% selected material for holder and FE liquid argon stainless steel cryostat water to moderate neutrons and as muon veto (Cherenkov) underground LNGS 3400 m w.e.

analysis: anti-coincidence, PSD

Phase I: aim at FWHM < 5 keV & BI ~ 10⁻² cts/(keV·kg·yr)

 \rightarrow HdM, Majorana: closed compact shielding

GERDA @ LNGS

P. Grabmayr

GERDA : design and construction

15

proposal 2004

March 2008

May 2008

March 2009

Clean room, lock

cryogenic infra structure

Multiplicity of 66 Cherenkov PMT

3 failed in 3 yr

muon rejection efficiency $\epsilon > 97 \%$

Path of new 37.5 kg of enrGe (86% enrichment in 76Ge): from isotope separation to final Phase II detectors

To minimize activation by cosmic ray:

- Transportation by truck or ship in shielded containers
- deep underground storage

P. Grabmayr

mounting diodes

⁴²**Ar**

GERDA proposal: ⁴²Ar/^{nat}Ar < 3 10⁻²¹ Barabash et al (2002)

inserted of 1 & 3 string arm: total of 8 enriched + 3 natural diodes in October

2 enriched detectors had problems from the very beginning, removed from physics analysis:

6 enriched detectors with 14.6 kg total mass 3 natural detectors with 7.6 kg total mass

add 5 BEGe detectors

3 data sets: golden silver BEGe

analysis: blinding & publications

blinding of data within $Q_{\beta\beta} \pm 20 \text{ keV}$

[raw data copied to backup; but not converted to analysis standard MGDO]

Background analysis window

EPJC 73 (2013) 2330	tł
JPG 40 (2013) 035110	Т

EPJC accepted

EPJC accepted

he GERDA experiment (setup)

 $\Gamma_{1/2}^{2\nu} = 1.84 \ (^{+14}/_{-10}) \times 10^{21} \text{ yr}$

the background & models arXiv:1306.5084 PSD: pulse shape for coax & BEGe arXiv:1307.2610

unblinding after fixing the parameters/procedures (@ Dubna meeting June 2013) spectra with/without PSD uncovered @ Dubna

limit for $T_{1/2}^{0v} > 2.1 \cdot 10^{25}$ yr (90% C.L. frequentist)

Sep 18 2013, Erice

PRL 111 (2013)

calibration & data processing

processing: diode \rightarrow amplifier \rightarrow FADC \rightarrow filter \rightarrow energy, rise time, PSD

anti-coincidence muon / 2nd Ge (~20% rejected, @ $Q_{\beta\beta}$), selection: quality cuts (~9% reject), pulse shape discrimination (~50% reject)

calibration: ²²⁸Th (bi)weekly & pulser every 20 seconds for short term drifts

summed electron energy spectra

P. Grabmayr

backgrounds $\alpha \& \gamma$

isotope	energy [keV]	enrGe (6.10 kg yr)		HDM (71.7 kg yr)	
		tot/bck [cts]	rate [cts/(kg yr)]	rate [cts/(kg yr)]	
⁴⁰ K	1460.8	125/42	$13.5^{+2.2}_{-2.1}$	181 ± 2	
⁶⁰ Co	1173.2	182/152	$4.8^{+2.8}_{-2.8}$	55 ± 1	
	1332.3	93/101	<3.1	51 ± 1	
¹³⁷ Cs	661.6	335/348	<5.9	282 ± 2	
²²⁸ Ac	910.8	294/303	<5.8	29.8 ± 1.6	
	968.9	247/230	$2.7^{+2.8}_{-2.5}$	17.6 ± 1.1	
²⁰⁸ Tl	583.2	333/327	<7.6	36 ± 3	
	2614.5	10/0	$1.5^{+0.6}_{-0.5}$	16.5 ± 0.5	
²¹⁴ Pb	352	1770/1688	$12.5^{+9.5}_{-7.7}$	138.7 ± 4.8	
²¹⁴ Bi	609.3	351/311	$6.8^{+3.7}_{-4.1}$	105 ± 1	
	1120.3	194/186	<6.1	26.9 ± 1.2	
	1764.5	24/1	$3.6_{-0.8}^{+0.9}$	30.7 ± 0.7	
	2204.2	6/3	$0.4^{+0.4}_{-0.4}$	8.1 ± 0.5	

P. Grabmayr

Physikalisches Institut, Kepler Center for Astro and Particle Physics

background model @ $Q_{\beta\beta}$

"minimal fit" (all known contributions)

blinded window (grey+red)

No line expected in blinding region

background flat between 1930-2190 keV (without 2104±5 keV, without 2119±5 keV),

expect << 1 event in other weak ²¹⁴Bi lines (e.g. 2017, 2053 keV)

partial unblinding (grey window) after fixing of calibration & bkg model, no line in grey interval, expected 8.6-10.3 evts in grey part & see 13 events

findings

total exposure of 21.6 kg yr between Nov. 2011 and May 2013

3 data sets: golden, silver, BEGe

weekly calibration runs with 228 Th source mean resolution at 2 MeV: coax 4.8 keV, BEGe 3.2 keV FWHM (50 cm diode-CC2) energy scale stable within ±1.3 keV

the strongest gamma line is 1525 keV from 42 K dominated by 214 Bi and 228 Th

nearby sources (det. holders etc.) and surface contaminations

far sources do not matter

background flat between 1930-2190 keV

pulse shape discrimination (PSD)

 $0\nu\beta\beta$ events: range of 1 MeV electrons in Ge is ~1 mm

 \rightarrow single drift of electrons & holes, single site event (SSE)

background from γ 's: range of MeV γ in Ge >10x larger \rightarrow often sum of several electron/hole drifts, multi site events (MSE)

surface events: only electrons or holes drift

charge and current signal for BEGe detectors (data events)

weighting potential $\boldsymbol{\Phi}$

PSD for BEGe

use double escape peak (DEP) of ^{228}Th spectrum as proxy (two 511 γ escape detector!) for $0\nu\beta\beta$

aim: develop the PSD method with 228 Th calibration data and then apply it to physics data

Method: A/E = max. of current pulse "A" / energy "E" is robust & simple & well understood accept events 0.965 < A/E < 1.07 (normalization A/E for DEP events = 1)

PSD for semi-coaxial: neural network (ANN)

Input: time when charge signal reaches 1%, 3%, ..., 99% of maximum

PSD for semi-coaxial

cross check ANN classification with 2 other methods:
1) projective likelihood trained with Compton edge evt
2) "current pulse asymmetry * A/E"

90% of ANN rejected events also rejected by both, 3% only rejected by ANN

 \rightarrow classification of background like events meaningful

Sep 18 2013, Erice

calibration & stability data sets defined background model PSD parameters fixed analysis methods defined

whole collaboration during 4 days unblinding of final $\pm 5 \text{ keV}$

evt cnt in ±5 keV	golden	silver	BEGe	total
expt. w/o PSD	3.3	0.8	1.0	5.1
obs. w/o PSD	5	1	1	7
expt. w/ PSD	2.0	0.4	0.1	2.5
obs w/ PSD	2	1	0	3

no peak in spectrum at $Q_{\beta\beta}$,

event count consistent with bkg, \rightarrow GERDA sets a limit

half life limit for 76 Ge $0\nu\beta\beta$

$$T_{1/2}^{0\nu} = \frac{\ln 2 \cdot N_A}{m_{\text{enr}} \cdot N^{0\nu}} M \cdot t \cdot f_{76} \cdot f_{\text{av}} \cdot \epsilon_{\text{fep}} \cdot \epsilon_{\text{psd}}$$

exposure averaged efficiencies

data set	M*t	f ₇₆	f _{av}	ε _{fep}	ε _{psd}
golden	17.9 kg yr	0.86	0.87	0.92	0.90
silver	1.3 kg yr	0.86	0.87	0.92	0.90
BEGe	2.4 kg yr	0.88	0.92	0.90	0.92

fit 3 data sets in 1930-2190 keV interval: constant (for bkg) + gauss (for signal),

4 parameters: 3x bkg level & $1/T^{0\nu}$ $1/T^{0\nu} > 0$ constrain

fix gaussian μ =(2039.06±0.2) keV, σ =(2.0±0.1)/(1.4±0.1) keV for coax/BEGe

systematic uncertainties on f, ϵ , μ , σ : Monte Carlo sampling & averaging

frequentist: profile likelihood fit
$$\rightarrow$$
 best fit N^{0v}=0, $T_{1/2}^{0v} > 2.1 \cdot 10^{25} \text{ yr} (90\% \text{ C.L.})$ (sensitivit

(sensitivity = $2.4 \ 10^{25} \text{ yr}$)

half life limit for ⁷⁶Ge $0\nu\beta\beta$

frequentist: profile likelihood fit \rightarrow best fit N⁰v=0, $T_{1/2}^{0\nu}$ >2.1·10²⁵ yr (90% C.L.) (sensitivity = 2.4 10²⁵ yr)

Bayes: flat 1/T prior 0 - 10⁻²⁴ yr \rightarrow best fit N⁰v=0, $T_{1/2}^{0\nu} > 1.9 \cdot 10^{25}$ yr (90% C.I.) (sensitivity = 2.0 10²⁵ yr)

adding HdM ^[1] & IGEX[2] spectra to profile likelihood fit $\rightarrow T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr} (90\% \text{ C.L.})$ for ⁷⁶Ge

Assuming the claimed signal [3] then GERDA should see 5.9±1.4 $0\nu\beta\beta$ events in ±2 σ interval above Bkg = 2.0±0.3,

- \rightarrow probability p(N0n=0 | H1=signal+bkg) = 1%, claim ruled out @ 99%
- \rightarrow Bayes factor H1(=signal+bkg) / H0(=bkg only) = 0.024

[1] Euro Phys J A12 (2001) 147. [2] Phys Rev D65 (2002) 092007. [3] T_{1/2}(⁷⁶Ge)=1.19x10²⁵ yr, Phys Lett B586 (2004) 198.

comparison

summary

new experiments on $0\nu\beta\beta$ Kamland-Zen,EXO, GERDA, Majorana ¹³⁶Xe, ⁷⁶Ge

GERDA for ⁷⁶Ge

new
$$T_{1/2}^{2\nu} = 1.84 \ (^{+14}/_{-10}) \cdot 10^{21} \ \text{yr}$$

new limit

 $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25}$ yr (90% C.L. frequentist)

in 2013 we still do not know if he is right

data taking Phase I stopped, new analysis with improved resolution GERDA Phase II with add. 20 kg BEGe and LAr instrumentation (A. Wegmann, 23.10.)