Constraints on non-standard interactions by V_{atm}

Osamu Yasuda Tokyo Metropolitan University

Sept. 18, @Erice 2013

In collaboration with Shinya Fukasawa

2. New Physics in propagation

3. Sensitivity of v_{atm} at SK&HK to NSI in propagation

4. Conclusions

1. Introduction

All 3 mixing angles have been measured (2012):

V _{solar} +KamLAND (rea	actor)	$\theta_{12} \cong \frac{\pi}{6}, \Delta m_{21}^2 \cong 8 \times 10^{-5} eV^2$
V _{atm} +K2K,MINOS(acc	elerators)	$\theta_{23} \cong \frac{\pi}{4}$, Δm_{32}^2 $\cong 2.5 \times 10^{-3} \text{eV}^2$
DCHOOZ+Daya Bay+Reno (reactors), T2K+MINOS, others		$\boldsymbol{\theta}_{13}\cong\pi$ / 20

Both hierarchy

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & \mu2 & \mu3 \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \cong \begin{pmatrix} C_{12} & S_{12} & \epsilon \\ -S_{12}/\sqrt{2} & C_{12}/\sqrt{2} & 1/\sqrt{2} \\ S_{12}/\sqrt{2} & -C_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Next task is to measure sign(Δm^2_{31}), π /4- θ_{23} and δ

 \rightarrow These quantities are expected to be determined in future experiments with huge detectors.

Both mass

Motivation for research on New Physics

High precision measurements of voscillation in future experiments can be used to probe physics beyond SM by looking at deviation from SM+m_v (like at B factories).

→ Research on New Physics is important.

Phenomenological scenarios of New Physics

Scenarios	Possible magnitude relative to standard value	
Light sterile neutrinos	O(10%)	
Non Standard Interactions in propagation	e-τ: Ο(100%) μ: Ο(1%)	
NSI at production / detection	O(1%)	
Violation of unitarity due to heavy particles	O(0.1%)	

While no concrete model is known, scenarios with Non Standard Interactions in propagation could exhibit the largest effect.

2. New Physics in propagation

Phenomenological New Physics considered in this talk: 4-fermi Non Standard Interactions:

$$\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \,\bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \,\bar{f} \gamma_{\mu} f'$$

 ν_{α} ν_{β} f f

> neutral current non-standard interaction

Modification of matter effect

• Constraints on $\epsilon_{\alpha\beta}$ for expts on Earth

Davidson et al., JHEP 0303:011,2003; Berezhiani, Rossi, PLB535 ('02) 207; Barranco et al., PRD73 ('06) 113001; Barranco et al., arXiv:0711.0698

Biggio et al., JHEP 0908, 090 (2009) w/o 1-loop arguments

Constraints are weak

$$\begin{pmatrix} |\epsilon_{ee}| \leq 4 \times 10^0 & |\epsilon_{e\mu}| \leq 3 \times 10^{-1} \\ |\epsilon_{\mu\mu}| \leq 7 \times 10^{-2} & |\epsilon_{e\tau}| \leq 3 \times 10^0 \\ |\epsilon_{\mu\tau}| \leq 3 \times 10^{-1} \\ |\epsilon_{\tau\tau}| \leq 2 \times 10^1 \end{pmatrix}$$

Constraints on NSI from high energybehavior of V_{atm} dataOki-Yasuda PRD82 ('10) 073009

• Standard case
with
$$N_{\nu}=2$$
 $1 - P(\nu_{\mu} \rightarrow \nu_{\mu}) = \sin^2 2\theta_{\rm atm} \sin^2 \left(\frac{\Delta m_{\rm atm}^2 L}{4E}\right) \propto \frac{1}{E^2}$

• Standard case with $N_v=3$

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \sim \left(\frac{\Delta m_{31}^2}{2AE}\right)^2 \left[\sin^2 2\theta_{23} \left(\frac{c_{13}^2 AL}{2}\right)^2 + s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{AL}{2}\right)\right] \propto \frac{1}{E^2}$$

• Deviation of 1-P($\nu_{\mu} \rightarrow \nu_{\mu}$) due to NSI contradicts with data

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \simeq \mathbf{C_0} + \frac{\mathbf{C_1}}{E} + \frac{c_{20}L^2 + c_{21}\sin^2(c_{22}L)}{E^2}$$

High energy v_{atm} data is well described by standard scheme \rightarrow constraints on NSI: $|c_0| \ll 1, |c_1| \ll 1$

•with NSI

$$1 - P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq \mathbf{c_{0}} + \frac{\mathbf{c_{1}}}{E} + \frac{c_{20}L^{2} + c_{21}\sin^{2}(c_{22}L)}{E^{2}}$$

$$|\mathbf{c_{0}}| \ll \mathbf{1} \rightarrow |\mathbf{\varepsilon}_{e\mu}| <<\mathbf{1}, |\mathbf{\varepsilon}_{\mu\mu}| <<\mathbf{1}, |\mathbf{\varepsilon}_{\mu\tau}| <<\mathbf{1}$$

$$|\mathbf{\varepsilon}_{\mu\tau}| <<\mathbf{1}: \text{ Already shown by Fornengo et al. PRD65, 013010, '02; Gonzalez-Garcia&Maltoni, PRD70, 033010, '04; Mitsuka@nufact08}$$

$$|\mathbf{\varepsilon}_{\mu\mu}| <<\mathbf{1}: \text{ Already shown from other expts. by Davidson et al. JHEP 0303:011, '03}$$

$$|\mathbf{\varepsilon}_{e\mu}| <<\mathbf{1}: \text{ New observation (analytical consideration only)}$$

$$|\mathbf{c_{1}}| \ll \mathbf{1} \rightarrow |\mathbf{\varepsilon}_{\tau\tau} - \frac{|\mathbf{\varepsilon}_{e\tau}|^{2}}{1 + \mathbf{\varepsilon}_{ee}}| <<\mathbf{1}$$
Already shown by Friedland-Lunardini, PRD72:053009,'05

• Summary of the constraints on $\mathcal{E}_{\alpha\beta}$

Allowed region in $(\varepsilon_{ee}, | \varepsilon_{e\tau} |)$

To a good approximation, we are left with 3 independent variables ε_{ee} , $| \varepsilon_{e\tau} |$, $\arg(\varepsilon_{e\tau})$:

$$A\begin{pmatrix} 1+\epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix} \longrightarrow A\begin{pmatrix} 1+\epsilon_{ee} & 0 & \epsilon_{e\tau} \\ 0 & 0 & 0 \\ \epsilon_{e\tau}^* & 0 & |\epsilon_{e\tau}|^2/(1+\epsilon_{ee}) \end{pmatrix}$$

Furthermore, v_{atm} data
implies
$$tan\beta = |\varepsilon_{e\tau}|/(1+\varepsilon_{ee}) < 1.5$$

@2.5\column CL
Friedland-Lunardini,
PRD72:053009,'05

0

-4

11

2

€_{ee}

3

3. Sensitivity of ν_{atm} at SK&HK to NSI in propagation

Deviation from the standard case is significant mainly for 10GeV < E < 100 GeV

Here we will discuss SK & HK because •SK & (particularly) HK has considerable events for 10GeV < E < 100 GeV; One of us (OY) worked on SK before.

Outline of our Analysis

$$A \equiv \sqrt{2}G_F n_e$$

$$i\frac{d}{dt}\begin{pmatrix} v_e\\ v_\mu\\ v_\tau \end{pmatrix} = \left\{ U^{-1}diag \left(\frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E}\right) U + A \begin{pmatrix} 1+\mathcal{E}_{ee} & 0 & \mathcal{E}_{e\tau}\\ 0 & 0 & 0\\ \mathcal{E}_{e\tau}^* & 0 & \frac{|\mathcal{E}_{e\tau}|^2}{1+\mathcal{E}_{ee}} \end{pmatrix} \right\} \begin{pmatrix} v_e\\ v_\mu\\ v_\tau \end{pmatrix}$$

$$\sum_{\chi^{2}(\varepsilon_{ee}, |\varepsilon_{e\tau}|) = \min_{\text{parameters}} \sum_{i} \frac{\left[N_{i}^{0}(\varepsilon_{ee}, \varepsilon_{e\tau}) - N_{i} \text{ (data)}\right]^{2}}{\sigma_{i}^{2}}$$

$$\frac{\mathsf{HK}}{\Delta \chi^{2}}(\varepsilon_{ee}, |\varepsilon_{e\tau}|) = \min_{\text{parameters}} \sum_{i} \frac{\left[N_{i}^{0}(\varepsilon_{ee}, \varepsilon_{e\tau}) - N_{i}(\mathsf{std})\right]^{2}}{\sigma_{i}^{2}}$$

- Hypothetical #(events) with standard 3-flavor scheme: θ₂₃=π/4, Δm²₃₁ =2.5x10⁻³eV²
- #(events)_{HK}= 20 x #(events)_{SK}

Parameters Fixed: θ_{12} , θ_{13} , Δm^2_{21} Marginalized: θ_{23} , Δm^2_{31} , δ , $arg(\varepsilon_{e\tau})$

Constraint by SK on ϵ_{ee} , | $\epsilon_{e\tau}$ |

Fukasawa-OY (Preliminary)

The standard case ($\varepsilon_{\alpha\beta}$ =0) is not best fit point (1.4σ) . This may be because we have been unable to reproduce SK MC results completely. The 2.5σ excluded region (tanβ<0.8) improves the old one (tan β <1.5) by Friedland-Lunardini in 2005.

Sensitivity of HK to ϵ_{ee} | $\epsilon_{e\tau}$ |

Fukasawa-OY (Preliminary)

#(events)_{HK} = 20 x #(events)_{SK}

• #(events) with standard scheme are assumed •The region | $\mathcal{E}_{e\tau}$ | >1 is excluded. The 2.5 σ excluded region is tan β <0.3.

17

4. Conclusions

•Under the assumptions $\mathcal{E}_{e\mu} = \mathcal{E}_{\mu\mu} = \mathcal{E}_{\mu\tau} = \mathbf{0} \ \mathbf{k}$ $\mathcal{E}_{\tau\tau} = |\mathcal{E}_{e\tau}|^2 / (1 + \mathcal{E}_{ee})$, we studied sensitivity to NSI in propagation of V_{atm} at SK & HK.

•While we have been unable to reproduce SK MC results completely, updated SK V_{atm} data (tan β <0.8@2.5 σ CL) improve the constraints previously obtained by Friedland-Lunardini in 2005 (tan β <1.5@2.5 σ CL).

• Future observations of V_{atm} at HK are expected to improve the constraint further (tan β <0.3@2.5 σ CL). Improvement of the constraint on \mathcal{E}_{ee} seems hard.