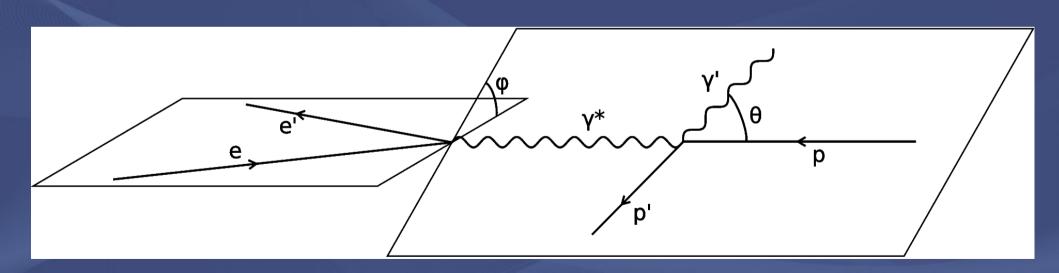
Measurement of Generalized Polarizabilities of the Proton by Virtual Compton Scattering

Jure Beričič JSI, Ljubljana, Slovenia

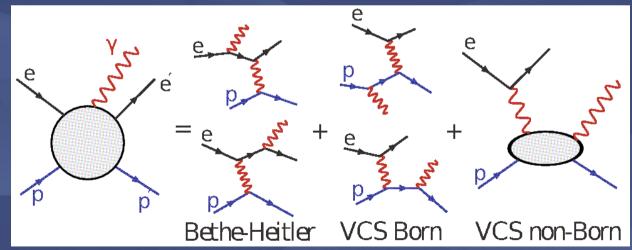
Advisor: assoc. prof. dr. Simon Širca JSI, Ljubljana, Slovenia U of Ljubljana, Ljubljana, Slovenia

Collaborators: dr. Helene Fonvieille Loup Correa Meriem Ben Ali IN2P3, Clermont-Ferrand, France


Erice, 18.9.2014

Electromagnetic interaction as a probe

- powerful tool for investigating the nucleon structure
 - relatively weak
 - can be calculated very accurately in quantum electrodynamics
- elastic electron scattering
 - form factors
- deep inelastic scattering
 - structure functions
- real Compton scattering
 - static electric and magnetic polarizabilities
- Virtual Compton Scattering (VCS)
 - generalized polarizabilities


Virtual Compton Scattering on a proton

- VCS is the process: $y^* + p \rightarrow y + p'$
- experimentally accessible via photon electroproduction reaction $e+p\rightarrow e'+p'+\gamma$
- kinematics defined by 5 independent variables
 - e.g.: $(k_{lab}, k'_{lab}, \theta'_{e}, \theta_{\gamma\gamma cm}, \varphi_{cm})$
 - or: $(q_{cm}, q'_{cm}, \epsilon, \theta_{\gamma\gamma cm}, \varphi_{cm})$

Photon electroproduction - contributions

- amplitude is a coherent sum of the Bethe-Heitler, Born and non-Born contributions
- Bethe-Heitler and Born
 - known
 - depend only on elastic form factors $G_{\scriptscriptstyle E}$ and $G_{\scriptscriptstyle M}$
- non-Born
 - unknown
 - at low energies parametrized by generalized polarizabilities GPs

Low-Energy expansion or LEX

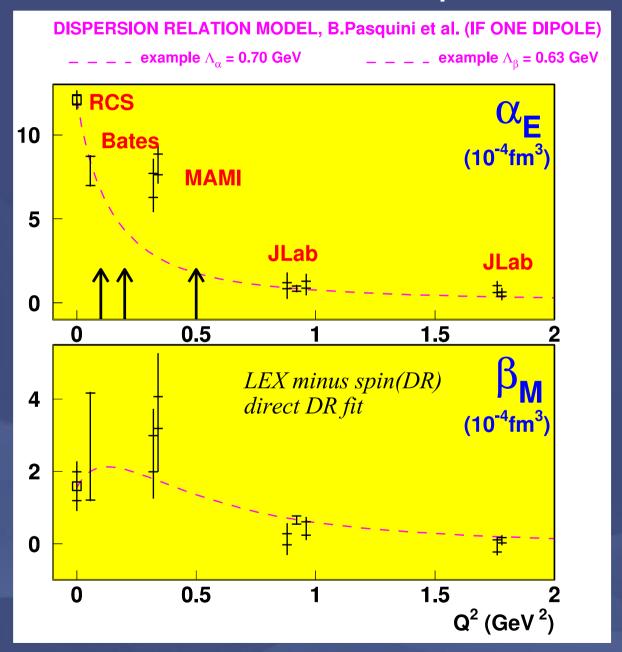
- expansion in powers of q'_{cm} (low-energy expansion)
- for unpolarized scattering:

$$d^{5}\sigma(ep\gamma) = d^{5}\sigma_{BH+B} + (\Phi q_{cm}) \cdot \left[v_{LL} \cdot (P_{LL} - P_{TT}/\epsilon) + v_{LT} \cdot (P_{LT}) \right] + O(q_{cm}^{-2})$$
P.A.M.Guichon et al., NPA 591 (1995) 606.

• 2 structure functions

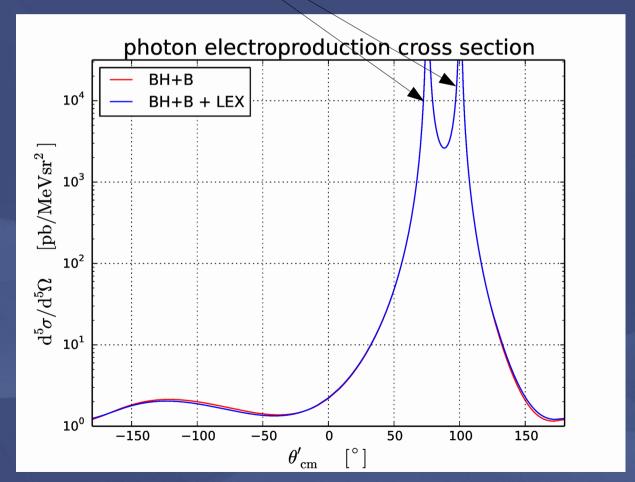
•
$$P_{LL} - P_{TT} / \epsilon = \frac{4 m_p}{\alpha} G_e^p(Q^2) \cdot \alpha_E(Q^2) + [\text{spin-flip GPs}]$$

•
$$P_{LT} = -\frac{2m_p}{\alpha} \sqrt{\frac{q_{cm}^2}{Q^2} G_e^p(Q^2) \cdot \beta_M(Q^2)} + [\text{spin-flip GPs}]$$

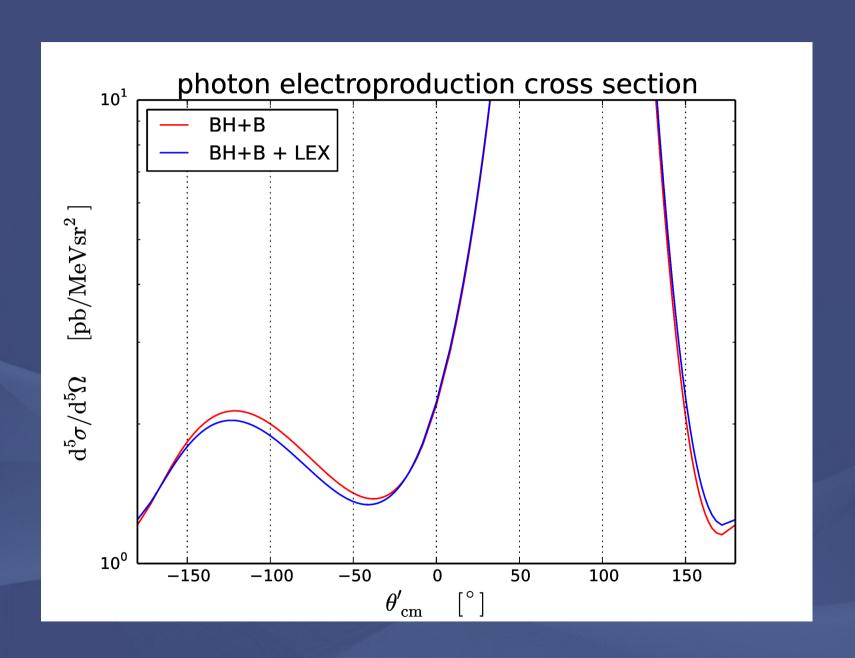

- for extraction of the scalar GPs, spin-flip GPs need to be fixed using some theoretical model
- not valid over whole phase space
 - only below pion production threshold

Dispersion Relations or DR

B.Pasquini et al., EPJA 11 (2001) 185.


- VCS amplitude is calculated through dispersion integrals
 - calculations use MAID model for pion and photo electroproduction amplitudes
- GPs are directly parametrized by 2 free parameters
- spin-flip GPs are described within the model
- model is valid over whole phase space
- calculations are slow compared to LEX

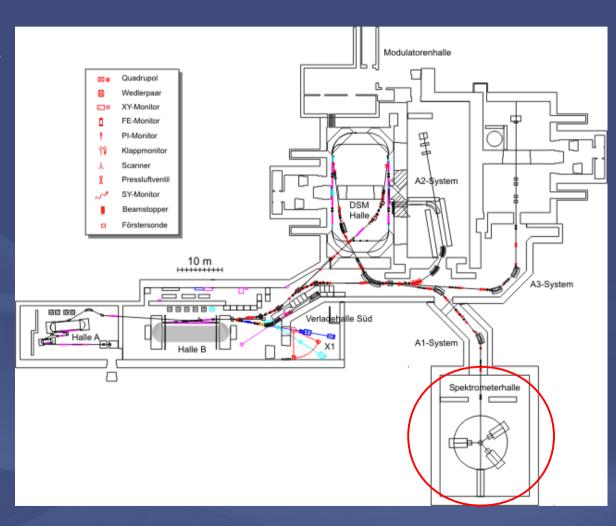
World data on VCS (unpolarized)



Typical cross section

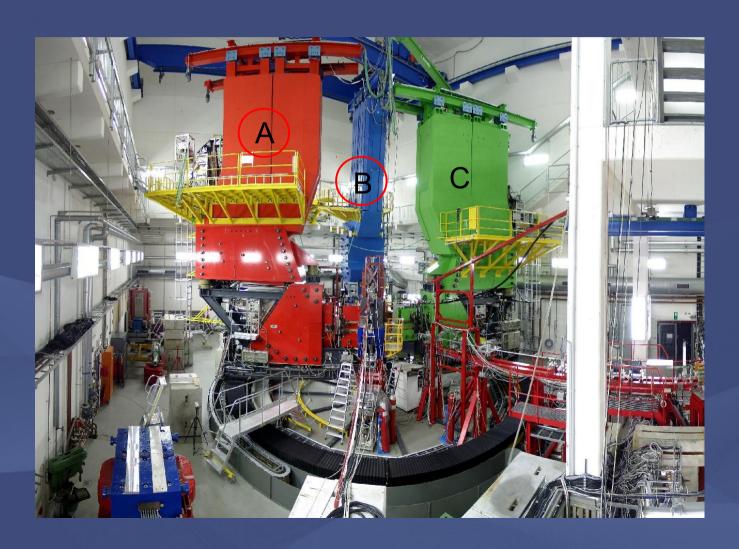
- Bethe-Heitler + Born cross section (+ 1st order LEX)
- characteristic Bethe-Heitler peaks
 - appear when outgoing photon has the direction of one of the electrons (in cms)

Typical cross section - zoom

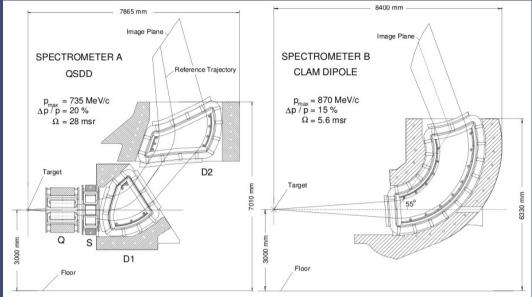

Proposed settings: Proposal MAMI-A1-1-09

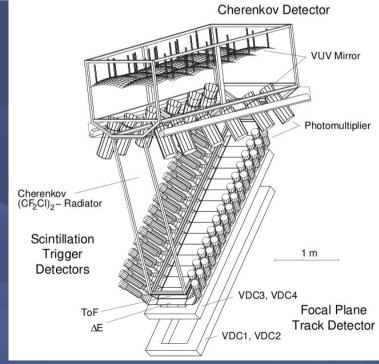
- careful selection of kinematics
- blue my setting: $Q^2 = 0.1 \, GeV^2$ data
- red possible remeasure

	setting name	particle	E _{beam}	P _B	θ _B [°]	P _A	θ _A [°]
		in spec.	[MeV]	[MeV/c]		[MeV/c]	
	q2-0.1-oop *	e in B	871.7	693	21.9	343	52.6
	q2-0.1-inp	e in B	871.7	700	22.9	425	53.1
	q2-0.1-low	e in B	871.7	745	22.4	365	58.0
	q2-0.2-oop *	e in B	1002.4	766	29.2	486	51.0
	q2-0.2-inp	e in B	1002.4	766	30.4	580	51.5
ř	q2-0.2-low	e in B	904.9	<i>7</i> 23	32.5	462	52.2
É	q2-0.2-low-bis	e in B	904.9	715	32.5	442	52.2
	q2-0.5-oop	e in A	1034.1	750	39.2	647	51.0
É	q2-0.5-inp	e in A	1034.1	634	32.7	650	51.2
	q2-0.5-low	e in A	937.7	71 3	40.5	645	52.3


Experimental facility

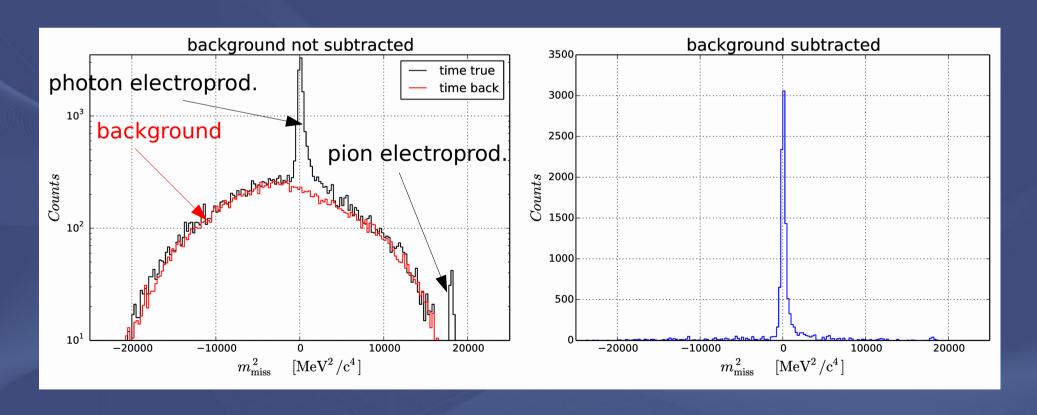
- Mainz Microtron MAMI
 - Institute f
 ür Kernphysik at Johannes Gutenberg Universit
 ät
- electron accelerator
 - polarized electron source
 - linac
 - 4 microtrons
 - $E_{max} = 1.6 \, GeV$
 - $I_{max} = 100 \,\mu A (20 \,\mu A)$
- 4 experimental halls
 - A1: electron scattering
 - A2: tagged photons
 - A3: parity violation
 - X1: X-rays


Hall A1

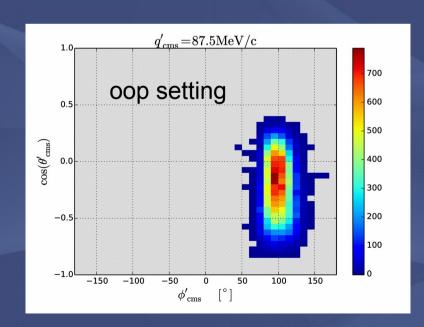

- three spectrometer setup
- we used spectrometers A and B

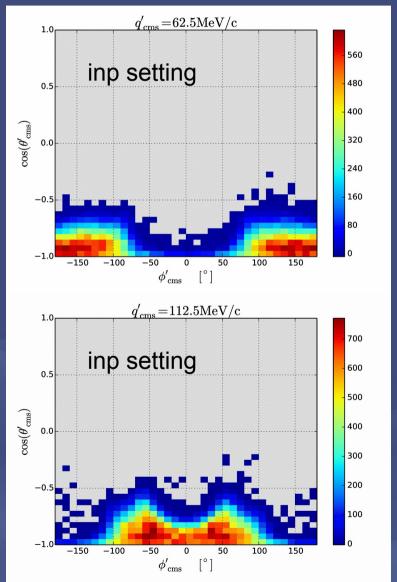
Spectrometers and target

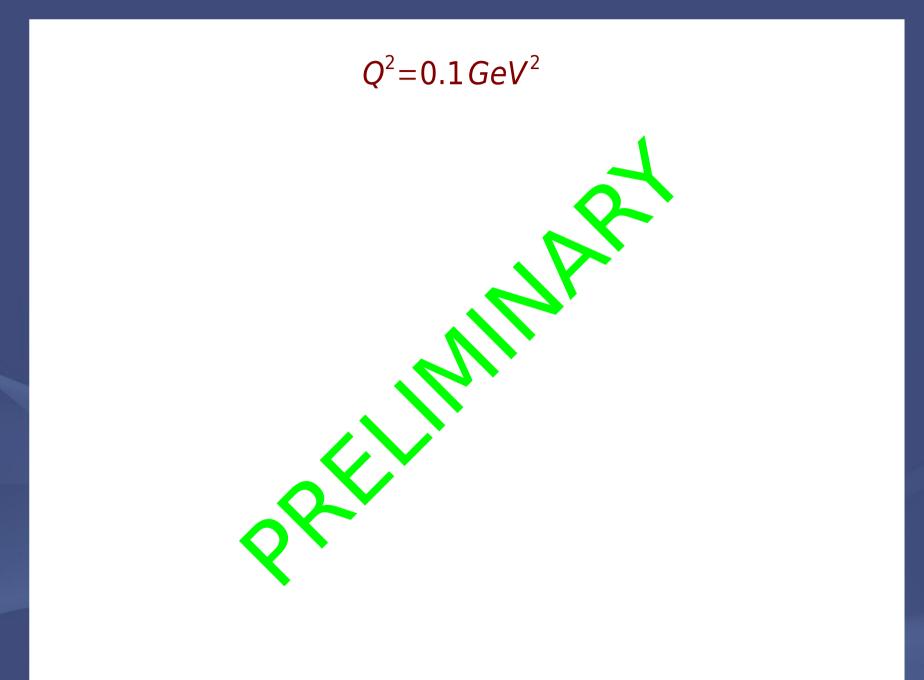
- spectrometers A and B
 - A: QSDD
 - B: D
 - mom. res.: $\leq 10^{-4}$
 - ang. res.: ≤3 mrad
 - pos. res.: 3–5 mm, ≤1 mm
 - electron and proton coincidence
 - very well known acceptance
 - out-of-plane capability
- spectrometers A and B
 - 4 VDC planes
 - 2 scintillator planes
 - threshold Čerenkov detector
- cryo target filled with liquid hydrogen



Physics variable: m_{miss}^2


•
$$m_{miss}^2 = [(k+p) - (k'+p')]^2$$


- a test of how well background is controlled
- used for diagnostics
- useful in PID


Measured events across the phase space

- kinematics defined by $(q_{cm}, q'_{cm}, \epsilon, \theta_{\gamma\gamma cm}, \varphi_{cm})$
- q_{cm} and ∈ are fixed by kinematics
- make bins in other three
 - 5 bins in q'_{cm}
 - 36 bins in φ'_{cm}
 - 40 bins in $\cos(\theta'_{yycm})$

Comparison of cross sections - low setting

Fit of Ψ_0 - LEX

•
$$\Delta M = \frac{d^5 \sigma - d^5 \sigma_{BH+B}}{\Phi q'} + O(q')$$

 $Q^2 = 0.2 \, GeV^2$

$$\Psi_0 = \Delta M(q \rightarrow 0)$$

$$\Psi_0 = V_{LL} \cdot (P_{LL} - P_{TT} / \epsilon) + V_{LT} \cdot P_{LT}$$

Figure courtesy of L.Correa

Fit of structure functions – LEX

•
$$\frac{\Psi_0}{V_{LT}} = (P_{LL} - P_{TT} / \epsilon) \frac{V_{LL}}{V_{LT}} + P_{LT}$$

 $Q^2=0.1 GeV^2$

Generalized polarizabilities fit - DR

- calculate cross section for each bin using DR
- compare calculated and measured cross sections by calculating χ^2
- change α_F and β_M and repeat
- find minimum and contours at
 - χ^2_{min} + 1
 - χ^2_{min} + 2.41

Figure courtesy of H.Fonvieille and M.BenAli

Summary

- electromagnetic interaction is a powerful probe to nucleon structure
- virtual Compton scattering gives us access to generalized polarizabilities
- measure photon electroproduction reaction
 - Bethe-Heitler + Born + non-Born contributions
- analysis via low energy expansion and dispersion relations
- 3 new kinematical points measured in Mainz

$$Q^2=0.1; 0.2; 0.5 GeV^2$$

- TODO
 - possible remeasure of 2 settings
 - finish last pass analysis
 - finalize LEX fix
 - do DR fit

The end

- Thank you for your attention.
- Any questions?