Quark ensembles with infinite correlation length

S. V. Molodtsov and G. M. Zinovjev

JINR, ITEP, BITP

Erice, Sicily 23.09.2014

《曰》 《聞》 《臣》 《臣》 三臣

• Four-fermion interaction

۲

- Thermodynamics of the quark ensemble. Fermi liquid.
 - Transition layer of gas and liquid Quark droplets
- Infinite correlation length. Integrability (Thirring, Luttinger)

Four-fermion interaction

$$\begin{aligned} \mathcal{H} &= -\bar{q} \left(i\gamma \boldsymbol{\nabla} + m \right) q - j_{\mu}^{a} \int d\boldsymbol{y} \, j_{\nu}^{\prime b} \left\langle A_{\mu}^{a} A_{\nu}^{\prime b} \right\rangle \\ j_{\mu}^{a} &= \bar{q} \, t^{a} \gamma_{\mu} \, q \\ \left\langle A_{\mu}^{a} A_{\nu}^{\prime b} \right\rangle &= G \, \delta(t - t^{\prime}) \, \delta^{ab} \, \delta_{\mu\nu} \, F(\boldsymbol{x} - \boldsymbol{y}) \quad \text{white noice} \\ F(\boldsymbol{x}) &= \delta(\boldsymbol{x}) \quad (\text{NJL}), \quad F(\boldsymbol{p}) = \delta(\boldsymbol{p}) \quad (\text{Keldysh model}) \, L \sim \Lambda_{\text{QCD}}^{-1} \end{aligned}$$

Bogolyubov transf. $|\sigma\rangle = T|0\rangle$, $T = \prod_{p,s} \exp \left[\varphi_p(a^+_{p,s}b^+_{-p,s} + a_{p,s}b_{-p,s})\right]$

$$a |0
angle = 0, \quad b |0
angle = 0$$

 $A = T \ a \ T^{\dagger}, \quad \text{preferenced ref. fr.} \quad \text{fix. chiral phase}$
 $E = \min_{\varphi_p} \langle \sigma | H | \sigma \rangle$

S. V. Molodtsov and G. M. Zinovjev (Jl Quark ensembles with infinite correlation Erice, Sicily 23.09.2014 2 / 21

Four-fermion interaction

The most stable equilibrium angles $\theta = 2\varphi$ (in degrees) as function of momentum p in MeV. The solid line for NJL model, dashed one corresponds to the Keldysh model. Tuning $M_{\text{Keld}}(0) = M_{\text{NJL}}$

Three branches of solutions for dynamical quark mass (in MeV) for the Keld. model as a function of momentum (MeV). The imaginary parts of the solutions are shown by dots. Keld. model advantageintegrability

Correlations and bound states

Keldysh model. $F(\mathbf{p}) = \delta(\mathbf{p})$ quark–anti-quark ch.

 $\varepsilon_{\pi,\sigma}^2 = (E_p + E_q)^2 - \frac{2G}{N_c} \frac{E_p + E_q}{E_p E_q} (E_p E_q \mp M_p M_q - \mathbf{pq})$

Correlations and bound states

Energy of meson observables in Keldysh model NJL-reasonable descr. of 4 meson nonets Lorentz invar.

Thermodynamics of the quark ensemble

The ensemble press. $P (MeV/fm^3)$ is shown as a funct. of charge density Q_0 at temp. T = 0 MeV, ..., T = 50 MeV with spacing T = 10 MeV. The lowest curve corresponds to zero temp. The dashed curve shows the boundary of phase transition liquid-gas.

The fragments of the isotherms. The chemical potential μ (MeV) is plotted as a function of pressure *P* MeV/fm³. The top curve corresponds to the zero isotherm and following down with spacing 10 MeV till the isotherm 50 MeV (the lowest curve). Landau theory of Fermi-liquid

Transition layer of gas and liquid (T=0) $\mathcal{Q}_0 \rightarrow \rho$

can two paheses coexist transition layer micr. grounds mean field M = 335 MeV $\rho_g \sim 0$ $\stackrel{*}{M} \approx 70 \text{ MeV}$ $\rho_I = 3 \times 0.16 \text{ ch/fm}^3$

$$\begin{split} \mathcal{L} &= -\bar{q} \left(\hat{\partial} + M \right) q - \frac{1}{2} \left(\partial_{\mu} \sigma \right)^2 - U(\sigma) - \frac{1}{4} F_{\mu\nu} F_{\mu\nu} - \frac{m_{\nu}^2}{2} V_{\mu} V_{\mu} - \\ &- g_{\sigma} \bar{q} q \sigma + i g_{\nu} \bar{q} \gamma_{\mu} q V_{\mu} \dots, \end{split}$$

$$F_{\mu\nu} &= \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} , \quad U(\sigma) = m_{\sigma}^2 \sigma^2 / 2 + b \sigma^3 / 3 + c \sigma^4 / 4 + \dots$$

 Can param. of Lagr. be properly tuned (g_σ , g_ν , m_σ , m_ν , b , c), obtaining solutions approximating between two phases.

S. V. Molodtsov and G. M. Zinovjev (JlQuark ensembles with infinite correlation Erice, Sicily 23.09.2014 7 / 21

Transition layer of gas and liquid (T=0)

$$\begin{split} \Delta \ \sigma - m_{\sigma}^2 \ \sigma &= b \ \sigma^2 + c \ \sigma^3 + g_{\sigma} \ \rho_s \ , \\ \Delta \ V - m_v^2 \ V &= -g_v \ \rho \ , \\ (\hat{\nabla} + \stackrel{*}{M}) \ q &= (E - g_v \ V) \ q \ , \\ \stackrel{*}{M} &= M + g_{\sigma} \sigma, \quad E = \left(\mathbf{p}^2 + \stackrel{*}{M}^2\right)^{1/2} \ . \end{split}$$

$$\xi(x) = \int^{P_F} d\widetilde{\mathbf{p}} \ q_{\mathbf{p}}(x) \bar{q}_{\mathbf{p}}(x)$$

$$\rho_s(x) = Tr \left\{ \xi(x), 1 \right\}, \quad \rho(x) = Tr \left\{ \xi(x), \gamma_4 \right\}$$

Thomas-Fermi approximation, $P_F(x)$:

$$\rho = \gamma \int^{P_F} d\widetilde{\mathbf{p}} = \gamma P_F^3 / 6\pi^2 , \quad \rho_s = \gamma \int^{P_F} d\widetilde{\mathbf{p}} \stackrel{*}{\underset{M}{\longrightarrow}} / E$$

S. V. Molodtsov and G. M. Zinovjev (Jl Quark ensembles with infinite correlation Erice, Sicily 23.09.2014 8 / 21

Transition layer of gas and liquid (T=0)

The surface tens. coef. u_s in MeV. $t \sim 1-2$ fm.

The quark density distributions ρ (ch/fm³) as function of distance r (fm). Walecka model.

Density distr. found for various nuclei Chiral soliton

Fig. 1. The σ and π fields in units of F_{π} . Solid lines are for the present calculation, dashed lines for that of ref. [5]. Curves 1 and 2 show σ , 3 and 4 show π , 5 and 6 show $\sigma^2 + \pi^2$.

R.Hofstadter; Thomas–Fermi appr. W. Broniowski and M. K. Banerjee, Phys.Lett.**B158**(1978)335. Apparently, the phase transition of chiral symm. (partial) restoration has already realized as the mixed phase of physical vacuum and baryonic matter. $m_{\sigma} \sim 1 \ GeV$. BCS–4 meson non. + baryon

• 1 + 1 dimensions (Thirring (1958))

$$\begin{aligned} \mathcal{H} &= q_1^+ i \partial_x \ q_1 - q_2^+ i \partial_x \ q_2 + m \left(q_1^+ q_2 + q_2^+ q_1 \right) + \\ &+ g \left(q_1^+ q_1 \ q_2^{\prime +} q_2^{\prime} + q_2^+ q_2 \ q_1^{\prime +} q_1^{\prime} \right) \end{aligned}$$

 $L \sim \Lambda_{\sf QCD}^{-1}$ const Peiod bound cond $\widetilde{p} = n/L$ $t^a
ightarrow 1$

Reference vacuum state
$$|0\rangle$$
, $q_{1x}|0\rangle = q_{2x}|0\rangle = 0$
(Dried Dirac sea)

$$a_{ik} = \int dx \ e^{-ikx} \ q_{ix} \ , \quad q_{ix} = \int d\widetilde{k} \ e^{ikx} \ a_{ik} , \quad \widetilde{k} = k/(2\pi)$$

(m = 0)

$$\mathcal{H}_{0} = \sum_{-\infty < k < \infty} k \, a_{1k}^{+} a_{1k} - \sum_{-\infty < k < \infty} k \, a_{2k}^{+} a_{2k}$$
$$\mathcal{V} = 2g \sum_{k,p} a_{1k+p}^{+} a_{1k} \sum_{l} a_{2l}^{+} a_{2l-p}$$

 $\begin{array}{l} H = \int dx \ \mathcal{H}, \ H = H_0 + V, \ H \ |0) = 0, \ H_0 \ |0) = 0, \ V \ |0) = 0 \\ \text{System "Charge"} \ Q = \int dx \ \left(q_1^+ q_1 + q_2^+ q_2\right) = \sum_k \left(a_{1k}^+ a_{1k} + a_{2k}^+ a_{2k}\right) \\ \text{commutes with the Hamiltonian} \ [H, Q] = 0. \end{array}$

$$|0\rangle = \prod_{k \ge -\Lambda}^{-P} a_{1k}^{+} \prod_{l \ge P}^{\Lambda} a_{2l}^{+} |0\rangle$$
$$\mathcal{H}_{0} |0\rangle = \left(\sum_{-\Lambda}^{-P} k - \sum_{P}^{\Lambda} k\right) |0\rangle , \quad \mathcal{V} |0\rangle = 2gL (\Lambda - P)^{2} |0\rangle$$

$$\mathcal{E}_{\mathrm{D}} = -\Lambda(\Lambda + \widetilde{1}) + P(P + \widetilde{1}) + 2gL(\Lambda - P)^2$$
, $\widetilde{1} = 2\pi/L$, $2gL > 1$

$$\Lambda - P_{\min} = \frac{1}{2} \frac{2\Lambda + \widetilde{1}}{2gL + \widetilde{1}} \text{ (Dirac sea width), } \mathcal{E}_{\min} = -\frac{1}{4} \frac{2\Lambda + \widetilde{1}}{2gL + \widetilde{1}} \left(2\Lambda + \widetilde{1}\right)$$

Degeneracy of the vacuum state. Vacuum excitation. Add. remov. part. with mom. ~ Λ/2 gives small increase of energy ~ dE/dP|_{P=}P₌, ≥ ~ ? ... S. V. Molodtsov and G. M. Zinovjev (JlQuark ensembles with infinite correlation Erice, Sicily 23.09.2014 12 / 21

Comp. Thirring model with point like form of interact. $F(x) = \delta(x)$. Hamilt. can be diagon. Bethe (1931)

$$|k_1, \dots, k_N\rangle = \int \prod_{i=1}^{N_1} dx_i e^{ik_i x_i} \int \prod_{j=1}^{N_2} dy_j e^{ik_{N_1+j} y_j} \times$$

 $\times \prod_{i,j} [1 + \lambda_{ij} \epsilon(x_i - y_j)] \prod_{i=1}^{N_1} q_1^+(x_i) \prod_{j=1}^{N_2} q_2^+(y_j) |0\rangle$

 $\epsilon(x)$ —step-like funct. $\epsilon(x) = -1$, at x < 1, $\epsilon(x) = 1$, at x > 1, k_i —momentum *i*-th part., phase factor $\lambda_{ij} = -g/2S_{ij}$, $S_{ij} = (k_iE_j - k_jE_i)/(k_ik_j - E_iE_j - \varepsilon^2)$, ε —inf. small infrared. reg., E_i —paricle energy, (m=0, $E_i = |k_i|$).

$$H|k_1,\ldots,k_N\rangle = \sum_{i=1}^N E_i |k_1,\ldots,k_N\rangle , \quad N = N_1 + N_2$$

S. V. Molodtsov and G. M. Zinovjev (Jl Quark ensembles with infinite correlation Erice, Sicily 23.09.2014 13 / 21

Period. bound. cond. lead to particle momenta

$$k_i = \frac{2\pi n_i}{L} + \frac{2}{L} \sum_{j \neq i}^{N} \arctan(gS_{ij}/2), \ n_i = 0, \pm 1, \dots, \pm N_0, \ N_0 = (N-1)/2$$

"Symm." vac. state $k_0 = 0$, $(n_0 = 0)$ (T. Fujita)

$$\begin{aligned} k_i &= \frac{2\pi n_i}{L} + \frac{2N_0}{L} \arctan(g/2) , \quad (n_i = 1, 2, \dots, N_0), \\ k_i &= \frac{2\pi n_i}{L} - \frac{2N_0}{L} \arctan(g/2) , \quad (n_i = -1, -2, \dots, -N_0). \end{aligned}$$

$$E_0^{sym} = -\Lambda \left[N_0 + 1 - \frac{2N_0}{\pi} \arctan(g/2) \right] , \quad N_0 = \frac{L}{2\pi} \Lambda$$

"non symm." states comparision NJL and Keldysh, $m \neq 0$, M.W. th. V. Mastropietro and D. C. Mattis, "Luttinger model. The First 50 Years and Some New Directions", Ser. on Direct. in Cond. Mat. Phys. V. 20, 2014

3 + 1 (D + 1)

$$V = g \mathbf{v}, \quad \mathbf{v} = \int d\mathbf{x} d\mathbf{y} \; j^{a}_{\mu}(\mathbf{x}) \; j^{a}_{\mu}(\mathbf{y}) \;, \quad j^{a}_{\mu}(\mathbf{x}) = \bar{q}_{\mathbf{x}} \; \gamma_{\mu} t^{a} \; q_{\mathbf{x}}$$
$$Q = \int d\mathbf{x} \; \bar{q}_{\mathbf{x}} \gamma_{0} \; q_{\mathbf{x}} \;, \quad [H, Q] = 0 \;, \quad q_{\mathbf{x}}|0) = 0$$
$$|N) = \int d\mathbf{z}_{1} \dots \int d\mathbf{z}_{N} \; \bar{q}_{\mathbf{z}_{1}} \bar{q}_{\mathbf{z}_{2}} \dots \bar{q}_{\mathbf{z}_{N}} \; \chi_{\mathbf{z}_{1}\mathbf{z}_{2}\dots\mathbf{z}_{N}}|0)$$

$$\begin{split} [\nu, \bar{q}_1 \bar{q}_2 \dots \bar{q}_N] \chi &= 2N \ \bar{q}_1 \bar{q}_2 \dots \bar{q}_N \ \gamma_\mu t^a \gamma^0 \ j \ \chi + \\ + N(N-1) \bar{q}_1 \dots \bar{q}_{N-1} \gamma_\mu t^a \gamma^0 \bar{q}_N \gamma_\mu t^a \gamma^0 \chi + N \bar{q}_1 \dots \bar{q}_N \gamma_\mu t^a \gamma^0 \gamma_\mu t^a \gamma^0 \chi \end{split}$$

$$\begin{split} \lambda \otimes \lambda &= \frac{4}{3} \Lambda_s - \frac{8}{3} \Lambda_a , \quad \Lambda_s + \Lambda_a = E_{\Lambda} \\ \gamma \gamma^0 &= \left\| \begin{array}{cc} \sigma & 0 \\ 0 & -\sigma \end{array} \right\|, \quad \gamma \gamma^0 = \left\| \begin{array}{cc} 0 & \sigma \\ \sigma & 0 \end{array} \right\| \\ \sigma \otimes \sigma &= \Sigma_s - 3\Sigma_a , \quad \Sigma_s + \Sigma_a = E_{\Sigma} \\ \gamma_{\mu} \gamma^0 \otimes \gamma^{\mu} \gamma^0 &= \Sigma_s + \Sigma_a - (\Sigma_s - 3\Sigma_a) = 4 \Sigma_a \\ \lambda \otimes \lambda \quad \gamma \gamma^0 \otimes \gamma \gamma^0 = \frac{16}{3} \Lambda_s \Sigma_a \\ \lambda \otimes \lambda \quad \gamma \gamma^0 \otimes \gamma \gamma^0 = \frac{16}{3} \Lambda_s \Sigma_a \end{split}$$
$$v, \quad \bar{q}_1 \dots \bar{q}_N \right] \chi \mid 0) = \frac{4}{3} N \left[\Lambda_s \Sigma_a (N-3) - 2\Lambda_a \Sigma_s \right] \mid N), \quad (\Lambda_s \Sigma_a \approx \Lambda_a \Sigma_s) \end{split}$$

æ

$$\mathcal{E}_{0} = -2N_{c} \ 4\pi \int_{P}^{\Lambda} \frac{k^{2} dk \ k}{(2\pi)^{3}} = -\frac{2N_{c}}{2\pi^{2}} \ \frac{1}{4} \ (\Lambda^{4} - P^{4})$$
$$N = \mathcal{N} \ L^{3} \ , \quad \mathcal{N} = 2N_{c} \ 4\pi \int_{P}^{\Lambda} \frac{k^{2} dk}{(2\pi)^{3}} = \frac{2N_{c}}{2\pi^{2}} \ \frac{1}{3} \ (\Lambda^{3} - P^{3})$$

$$\mathcal{E}_{D} = \mathcal{E}_{0} + g \ \frac{4}{3} \mathcal{N} \ (N-1) - g \ \frac{16}{3} \mathcal{N}$$

param. of interact. $a = g \ L^{3} \ (a = g \ L^{D})$ $1 + 1 \ 2gL > 1$

æ

Dirac sea energy as func. of Λ , at a=1.025 for some bound moment. $P=1,\ldots 10$.

$$\begin{split} \Lambda_1 &= P \ , \quad \Lambda_2 = P + \Delta_{\Lambda} \\ \Delta_{\Lambda} &\approx \frac{(D+1) \ P}{D[aDP^{D-1} - (D+1)/2]} \approx \frac{D+1}{aD^2} P^{2-D} \ (\text{Dirac sea width}) \\ \mathcal{E}_{D}(\Lambda') &= -\frac{(D+1)^2 P^{D+1}}{4D \left[aDP^{D-1} - \frac{D+1}{2}\right]} \approx -\frac{(D+1)^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4D \left[aDP^{D-1} - \frac{D+1}{2}\right]} &\approx -\frac{(D+1)^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^{D-1}}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4aD^2} P^2, \ \Lambda' &\approx (\Lambda_1 + \Lambda_2)/2 \\ &= -\frac{(D+1)^2 P^2}{4a$$

S. V. Molodtsov and G. M. Zinovjev (Jl Quark ensembles with infinite correlation Erice, Sicily 23.09.2014 18 / 21

- Dirac sea width squeezing
- $\Lambda_c \approx 2N_c/(2gL) \ 2\pi/L$ (3+1)
- $L \sim \Lambda_{\rm QCD}^{-1}$, $g \sim 300$ MeV
- Λ_c is not large
- ullet Huge degeneracy \sim surface area
- Jahn-Teller theorem. Pairing mechanism

•
$$E_{BCS} \sim -\Lambda^{D+1}$$
 in $D+1$
 $E_D \sim -\Lambda^2$

Droplets of quark liquid (T=0)

$$\rho_F(r) = rac{\widetilde{
ho}_0}{1 + e^{(R_0 - r)/b}}, \quad \widetilde{
ho}_0, R_0, b, t = 4\ln(3)b \quad R_0 = r_0 N_q^{1/3}$$

N _q	$\widetilde{ ho}_0$ (ch/fm 3)	R_0 (fm)	<i>t</i> (fm)	<i>r</i> ₀ (fm)	$m_{\sigma}~({ m MeV})$	η
15	0.34	1.84	2.24	0.74	351	0.65
43	0.43	2.19	2.28	0.75	384	0.73
159	0.46	4.19	2.29	0.77	409	0.78
303	0.47	5.23	2.29	0.78	417	0.795
529	0.47	6.37	2.27	0.79	423	0.805
742	0.47	7.15	2.27	0.79	426	0.81

돈 돈

Four fermion interaction

$$\begin{aligned} \mathcal{H} &= -\bar{q} \left(i\gamma \boldsymbol{\nabla} + im \right) q - \bar{q} t^{a} \gamma_{\mu} q \int d\boldsymbol{y} \bar{q}' t^{b} \gamma_{\nu} q' \left\langle A^{a}_{\mu} A^{\prime b}_{\nu} \right\rangle \\ \left\langle A^{a}_{\mu} A^{\prime b}_{\nu} \right\rangle &= G \delta^{ab} \delta_{\mu\nu} F(\boldsymbol{x} - \boldsymbol{y}) \\ F(\boldsymbol{x}) &= \delta(\boldsymbol{x}) \quad (\text{NJL}), \qquad F(\boldsymbol{p}) = \delta(\boldsymbol{p}) \quad (\text{Keldysh}) \end{aligned}$$

- Bogolyubov transformation
- (One-particle approximation) Mean field approximation
- Alternative? Complementarity? (applicability of one-particle approximation for the ensemble, force-correlations)
- Phase transitions. Algebra (dominating) correlators. Renormgroup. Universality
- Exact integrability, 1 + 1 dimensions (Thirring, Lattinger, Lieb-Mattis . . .)