A description of neutron rich nuclei within the Deformed QRPA

Soongsil University, Seoul, Korea

Eun Ja Ha, Myung-Ki Cheoun
http://ssanp.ssu.ac.kr

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 36th Course
Nuclei in the Laboratory and in the Cosmos
Erice-Sicily: September 16-24, 2014

Collaborators 【/ \|ll soongsiluniversity

Eunja Ha, Y. S. Kwon, Kiseok Choi, T. Miyatsu, M. Kusakabe, Ying Zhang, Gil-Seok Yang \cdots (Soongsil University)
C. Ryu (Hanyang Univ.), K. S. Kim (Korea Aviation Univ.) W. So (Kangwon Univ.), C. Hyun (Daegu Univ.)...
K. Tsushima (NIT, Brazil and Adelaide Univ.), K. Saito (TSU)...
G. Mathews (Notre Dam), Baha Ballantekin (Wisconsin), Alex Brown (MSU)...
T. Kajino, Ko Nakamura (NAOJ,Tokyo Univ.)
T. Maruyama (Nihon Univ.), T. Hayakawa, S. Chiba (JAEA)...
F. Simkovic (Brastislava) ...

Contents

1. Motivation in the r - and nu- processes
2. DQRPA Formalism

- Deformed Woods-Saxon (MF)
- Deformed Bardeen Cooper Schrieffer (DBCS)
- Deformed quasi-particle random phase approximation (DQRPA)
- Physical Parameters

3. Results

- GT transition strength distributions ($\mathrm{Ge}, \mathrm{Se}, \mathrm{Zr} . .$.)
- Nuclear Beta decays (Kr and Mo...)

4. Discussions and Summary

Neutrino Oscillation and SN-Nucleosynthesis

-Two different mass models, FRDM(finite-range droplet mass) and ETFSI(extended Thomas Fermi Strutinsky integral), underestimate the abundances by an order of magnitude or more at A 110 region.

- The main effect of the newly measured β-decay half-lives is an enhancement in the calculated abundance of isotope with $A=110 \sim 120$, relative to abundances calculated using β-decay half-lives estimated with the FRDM+QRPA. [N. Nishimura et al., PRC. 85, 048801(2012)]
* β-decay half-lives for Kr to Tc isotopes
[S. Nishimura et al., PRL 106, 052502(2011)]

- FRDM+QRPA calculation underpredicts the $T_{1 / 2}$ of the $\mathrm{N}=65$ isotones for $\mathrm{Rb}, \mathrm{Sr}, \mathrm{Y}, \mathrm{Zr}$, and Nb. [P. Möller et al., At. Data Nucl. Data Tables 66, 131(1997)]
- The KTUY+GT2 model overestimates the $T_{1 / 2}$ for Mo and Tc below $N=70$.

Recipe to reproduce solar r-elements

Neutrino Oscillation and SN-Nucleosynthesis

Theoretical Calculation for v-Nucleus Cross Sections

New Shell Model cal. with NEW Hamiltonian: $v \mathbf{- ~}^{12} \mathrm{C},{ }^{4} \mathrm{H}$ Suzuki, Chiba, Yoshida, Kajino \& Otsuka, PR C74 (2006), 034307. Suzuki, Fujimoto \& Otsuka, PR C67, 044302 (2003)

${ }^{12} \mathrm{C}$: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei.

- μ-moments of p-shell nuclei
- GT strength for ${ }^{12} \mathrm{C} \rightarrow{ }^{12} \mathrm{~N},{ }^{14} \mathrm{C} \rightarrow{ }^{14} \mathrm{~N}$, etc. (GT)
- DAR ($\left.v, v^{\prime}\right),(v, e-)$ cross sections

QRPA cal.: v-180 Ta, ${ }^{138} \mathrm{La},{ }^{98} \mathrm{Tc},{ }^{92} \mathrm{Nb},{ }^{42} \mathrm{Ca},{ }^{12} \mathrm{C},{ }^{4} \mathrm{He} . .$. Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801

The Astrophysical Journal Letters, 779:L9 (5/n)
e 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

SUPERNOVA NEUTRINO NUCLEOSYNTHESIS OF THE RADIOACTIVE ${ }^{92} \mathrm{Nb}$ OBSERVED IN PRIMITIVE METEORITES
T. Hayakawa ${ }^{1,2}$, K. NaKamura ${ }^{2,3}$, T. Kajino ${ }^{2,4}$, S. Chiba ${ }^{1.5}$, N. Iwamoto ${ }^{1}$, M. K. Cheoun ${ }^{6}$, and G. J. Mathews ${ }^{7}$

Figure 1.2. Various shapes observed or expected in nuclei. Exotic orbitals that appear in regions far from the stability line may provide some new types of deformation. The superdeformation (top) and pear shape (bottom) have been observed experimentally; the oblate superdeformation has been predicted but not observed-less deformed oblate shapes are, however, quite common. The hyperdeformation (second from the top) has been seen in certain nuclei. The octupole banana-type deformation has not been observed in such extreme form, but vibrations of this kind are well known.

* Total Hamiltonian of a many body system

In deformed basis Hamiltonian can be written as

$$
\begin{aligned}
& H=H_{0}+H_{\text {int }}, \\
& H_{0}=\sum_{\left.\bigoplus^{(}\right)} \epsilon_{\alpha \rho_{\alpha} \alpha^{\prime}} c_{\alpha \rho_{\alpha} \alpha^{\prime}}^{\dagger} c_{\alpha \rho_{\alpha} \alpha^{\prime}} \quad\left(\alpha^{\prime}=p, n\right), \\
& H_{\mathrm{int}}=\sum_{\alpha \beta \gamma \delta \rho_{\alpha} \rho_{\beta} \rho_{\gamma} \rho_{\delta}, \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} V_{\alpha \rho_{\alpha} \alpha^{\prime} \beta \rho_{\beta} \beta^{\prime} \gamma \rho_{\gamma} \gamma^{\prime} \delta \rho_{\delta} \delta^{\prime}} c_{\alpha \rho_{\alpha} \alpha^{\prime}}^{\dagger} c_{\beta \rho_{\beta} \beta^{\prime}}^{\dagger} c_{\delta \rho_{\delta} \delta^{\prime}} c_{\gamma \rho_{\gamma} \gamma^{\prime}}, \\
& \text { where, } \alpha \quad: \text { single particle state. } \\
& \left.\rho_{\alpha} \pm 1\right) \text { : sign of the angular momentum projection. } \\
& \Omega_{\alpha} \text { : projection of the total angular momentum on the nuclear symmetry axis. } \\
& -\Omega_{\alpha} \text { : time reversal state. }
\end{aligned}
$$

*Single particle states (SPSs)

The SPSs are calculated from the eigen-equation of the total Hamiltonian in a deformed (Nilsson) basis obtained by the deformed axially symmetric Woods-Saxon potential.

$$
\begin{aligned}
& \begin{array}{l}
\text { Obtained by the eigenvalue } \\
\text { Eq. of the total Hamiltonian }
\end{array} \begin{array}{c}
\text { Deformed harmonic } \\
\text { oscillator wave function }
\end{array} \\
& \mid \alpha \rho_{\alpha}=+1>=\sum_{N n_{z}}\left[b_{N n_{z} \Omega_{\alpha}}^{(+)}\left[N, n_{z}, \Lambda_{\alpha}, \Omega_{\alpha}=\Lambda_{\alpha}+1 / 2\right\rangle\right] \\
& \\
& \left.\quad+b_{N n_{z} \Omega_{\alpha}}^{(-)} \mid N, n_{z}, \Lambda_{\alpha}+1, \Omega_{\alpha}=\Lambda_{\alpha}+1-1 / 2>\right],
\end{aligned}
$$

N : main quantum number in deformed basis
n_{z} : the numbers of node the basis function in z direction
Λ : the projection of the orbital angular momentum onto the z axis
The time -reversed state is

$$
\begin{aligned}
\mid \alpha \rho_{\alpha}=-1>= & \sum_{N n_{z}}\left[b_{N n_{z} \Omega_{\alpha}}^{(+)} \mid N, n_{z},-\Lambda_{\alpha}, \Omega_{\alpha}=-\Lambda_{\alpha}-1 / 2>\right. \\
& \left.-b_{N n_{z} \Omega_{\alpha}}^{(-)} \mid N, n_{z},-\Lambda_{\alpha}-1, \Omega_{\alpha}=-\Lambda_{\alpha}-1+1 / 2>\right]
\end{aligned}
$$

* Deformed BCS for the ground state
spherical basis \quad deformed basis $\quad \Omega=1 / 2\left\{\begin{array}{c}\mathrm{j} ~ \mathrm{~m} \\ \frac{1}{2} \frac{1}{2} \\ \frac{3}{2} \frac{1}{2} \\ \frac{5}{2} \frac{1}{2} \\ \frac{7}{2} \frac{1}{2} \\ \cdots\end{array}\right.$

Since the deformed s. p. states are expanded in terms of a spherical s. p. basis, the s. p. states with different orbital and total angular momenta in the spherical basis states would be mixed.

* DQRPA eq with neutron-proton pairing correlations.

$$
\begin{aligned}
A_{\alpha \bar{\beta}, \gamma \bar{\delta}}^{\alpha^{\prime \prime} \beta^{\prime \prime}, \gamma^{\prime \prime} \delta^{\prime \prime}}(K)= & \left(E_{\alpha \alpha^{\prime \prime}}+E_{\beta \beta^{\prime \prime}}\right) \delta_{\alpha \gamma} \delta_{\alpha^{\prime \prime} \gamma^{\prime \prime}} \delta_{\bar{\beta} \bar{\delta}} \delta_{\beta^{\prime \prime} \delta^{\prime \prime}}-\sigma_{\alpha \alpha^{\prime \prime} \bar{\beta} \beta^{\prime \prime}} \sigma_{\gamma \gamma^{\prime \prime} \bar{\delta} \delta^{\prime \prime}} \\
& \times\left[g_{p p}\left(u_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \bar{\beta}, \gamma \bar{\delta}}^{K}\right. \\
& +g_{p h}\left(u_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \delta, \gamma \beta}^{K} \\
& \left.+g_{p h}\left(u_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \gamma, \delta \beta}^{K}\right] \\
B_{\alpha \bar{\beta}, \gamma \bar{\delta}}^{\alpha^{\prime \prime} \beta^{\prime \prime}, \gamma^{\prime \prime} \delta^{\prime \prime}}(K)= & -\sigma_{\alpha \alpha^{\prime \prime} \bar{\beta} \beta^{\prime \prime}} \sigma_{\gamma \gamma^{\prime \prime} \overline{\delta \delta^{\prime \prime}}} \\
& \times\left[-g_{p p}\left(u_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \bar{\beta}, \gamma \bar{\delta}}^{K}\right. \\
& +g_{p h}\left(u_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \delta, \gamma \beta}^{K} \\
& \left.+g_{p h}\left(u_{\alpha \alpha^{\prime \prime}} v_{\bar{\beta} \beta^{\prime \prime}} u_{\gamma \gamma \gamma^{\prime \prime}} v_{\bar{\delta} \delta^{\prime \prime}}+v_{\alpha \alpha^{\prime \prime}} u_{\bar{\beta} \beta^{\prime \prime}} v_{\gamma \gamma^{\prime \prime}} u_{\bar{\delta} \delta^{\prime \prime}}\right) V_{\alpha \gamma, \delta \beta}^{K}\right]
\end{aligned}
$$

$$
\begin{aligned}
V_{\alpha \bar{\beta}, \gamma \bar{\delta}}^{K} & =\sum_{J} \sum_{a b c d} F_{\alpha a \beta b}^{J K} F_{\gamma c \delta d}^{J K} G(a b c d, J) \\
V_{\alpha \delta, \gamma \beta}^{K} & =\sum_{J} \sum_{a b c d} F_{\alpha a \bar{\delta} d}^{J K_{\gamma}^{\prime}} F_{\gamma c \bar{\beta} b}^{J K_{j}^{\prime}} G(a d c b, J) \\
V_{\alpha \gamma, \delta \beta}^{K} & =\sum_{J} \sum_{a b c d} F_{\alpha a \gamma c}^{J K} F_{\beta b \delta,}^{J K}
\end{aligned}
$$

By Including deformation where $F_{\alpha a \beta b}^{J K^{\prime}}=B_{a}^{\alpha} B_{b}^{\beta} C_{j_{a} \Omega_{\alpha} j_{b} \Omega_{\beta}}^{J K^{\prime}}$ with $K^{\prime}=\Omega_{\alpha}+\Omega_{\beta}$.

Realistic two body interaction was taken by Brueckner G-matrix, which is a solution of the Bethe-Goldstone Eq., derived from the Bonn-CD one-boson exchange potential.

Expansion of the deformed state by a spherical basis

To exploit G-matrix elements and matrix elements of transition operators, which are calculated on the spherical basis, the deformed basis is expanded in terms of a spherical basis.

$$
\begin{aligned}
& |\alpha \boldsymbol{\Omega}\rangle=\sum_{\mathrm{Nn}_{\mathrm{z}}} \mathrm{~b}_{\mathrm{Nn}_{\mathrm{z}} \Omega}\left(\left|\mathrm{~N}, \mathrm{n}_{\mathrm{z}}, \boldsymbol{\Lambda}\right\rangle\right) \\
& \sum_{a} \mid a \leq \underbrace{\Omega} \quad(a \equiv \mathrm{n} \ell \mathrm{j}) \\
& \text { Sph. harmonic oscillator w. f. }
\end{aligned}
$$

$$
\left|\alpha \Omega_{\alpha}>=\sum_{a} B_{a}^{\alpha}\right| a \Omega_{\alpha}>
$$

The expansion coefficient B is

$$
\begin{aligned}
& B_{a}^{\alpha}=\sum_{N n_{z} \Sigma} C_{l \Lambda \frac{1}{2} \Sigma}^{j \Omega_{\alpha}} A_{N n_{z} \Lambda}^{N_{0} l} b_{N n_{z} \Sigma} \text {. } \\
& \text { f. of orbital \& spin spatial overlap integral eigenvalue eq. of the total Hamiltonian }
\end{aligned}
$$

* Expansion coefficient B with different β_{2} values

Spherical s. p. s.
$>$ Number of the spherical s. p. basis increases as the β_{2} value increases.

* Particle model space $\mathrm{N}_{\text {max }}$ \& pairing strength $\mathrm{g}_{\text {pair }}$

The particle model space $5 \mathrm{~h} \omega$ is not enough to reproduce the empirical pairing gap. Therefore, the particle model space can be used beyond $6 h \omega$ in G-matrix. In this calculation we use $\mathrm{N}_{\max }=10 \mathrm{~h} \omega$ in G-matrix. ($5 \mathrm{~h} \omega$ in deformed basis)

FIG. 2: (Color online) Dependence of neutron pairing strength $g_{\text {pair }}^{n}$ in Eq. (11) on particle model space $N_{m a x}^{s p h}$ in G-matrix. Black dashed, red dotted, and blue solid points are results for $\beta_{2}=0.1$, 0.2 , and 0.3 , respectively.

* Strength of particle-particle and particle-hole.

g_{ph} is determined by adjusting the calculated positions of the GT giant resonances for ${ }^{48} \mathrm{Ca},{ }^{90} \mathrm{Zr}$, and ${ }^{208} \mathrm{~Pb}$. $g_{\text {pp }}$ is determined by a fitting procedure to β-decay half-lives of nuclei with $Z \leq 40$.

* Particle-particle strength g_{pp}

Test of the expansion method

In deformed bases [case I]

In spherical bases [case II]

$$
<\alpha_{p} \rho_{\alpha}\left|\tau^{+} \sigma_{K}\right| \beta_{n} \rho_{\beta}>=\sum_{a b} F_{\alpha_{p} a \beta_{n} b}^{1 K} \frac{\left\langle a_{p}\left\|\tau^{+} \sigma_{K}\right\| b_{n}\right\rangle}{\sqrt{3}},
$$

$$
<a_{p}\left\|\tau^{+} \sigma_{K}\right\| b_{n}>=\sqrt{6} \delta_{n_{a} n_{b}} \delta_{l a l} \sqrt{2 j_{a}+1} \sqrt{2 j_{b}+1}(-1)^{l_{a}+j_{a}+\frac{3}{2}}\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 1 \\
j_{b} & j_{a} & l_{a} .
\end{array}\right\}
$$

$$
\begin{aligned}
& <K^{+}, m\left|\hat{\beta}_{K}^{-}\right| Q R P A> \\
& \begin{array}{l}
=\sum_{\alpha \rho_{\alpha} \beta \rho_{\beta}}<\alpha p \rho_{\alpha}\left|\tau^{+} \sigma_{K}\right| \beta n \rho_{\beta}>\left[u_{\alpha p} v_{\beta n} X_{(\alpha p \beta n) K}^{m}+v_{\alpha p} u_{\beta n} Y_{(\alpha p \beta n) K}^{m}\right], \\
<\alpha_{p} \rho_{\alpha}\left|\tau^{+} \sigma_{K=0}\right| \beta_{n} \rho_{\beta}>=\delta_{\Omega_{p} \Omega_{n} \rho_{\alpha}} \sum_{N n_{z}}\left[b_{N n_{z} \Omega_{p}}^{(+)} b_{N n_{z} \Omega_{n}}^{(+)}-b_{N n_{z} \Omega_{p}}^{(-)} b_{N n_{z} \Omega_{n}}^{(-)}\right],
\end{array} \\
& <\alpha_{p} \rho_{\alpha}\left|\tau^{+} \sigma_{K=1}\right| \beta_{n} \rho_{\beta}>=-\sqrt{2} \delta_{\Omega_{p} \Omega_{n}+1} \sum_{N n_{z}} b_{N n_{z} \Omega_{p}}^{(+)} b_{N n_{z} \Omega_{n}}^{(-)} \quad\left(\rho_{\alpha}=\rho_{\beta}=+1\right) \\
& =+\sqrt{2} \delta_{\Omega_{p} \Omega_{n}+1} \sum_{N n_{z}} b_{N n_{z} \Omega_{p}}^{(-)} b_{N n_{z} \Omega_{n}}^{(+)} \quad\left(\rho_{\alpha}=\rho_{\beta}=-1\right) \\
& =-\sqrt{2} \delta_{\Omega_{p} \frac{1}{2}} \delta_{\Omega_{n}-\frac{1}{2}} \sum_{N n_{z}} b_{N n_{\Omega} \Omega_{p}}^{(+)} b_{N n_{z} \Omega_{n}}^{(+)} \quad\left(\rho_{\alpha}=+1, \rho_{\beta}=-1\right), \\
& <\alpha_{p} \rho_{\alpha}\left|\tau^{+}{ }_{\sigma_{K=-1}}\right| \beta_{n} \rho_{\beta}>=\sqrt{2} \delta_{\Omega_{p} \Omega_{n}-1} \sum_{N n_{z}} b_{N n_{z} \Omega_{p}}^{(-)} b_{N n_{z} \Omega_{n}}^{(+)} \quad\left(\rho_{\alpha}=\rho_{\beta}=+1\right) \\
& =-\sqrt{2} \delta_{\Omega_{p} \Omega_{n}-1} \sum_{N n_{s}} b_{N n_{z} \Omega_{p}}^{(+)} b_{N n_{z} \Omega_{n}}^{(-)} \quad\left(\rho_{\alpha}=\rho_{\beta}=-1\right) \\
& =+\sqrt{2} \delta_{\Omega_{p}-\frac{1}{2}} \delta_{\Omega_{n} \frac{1}{2}} \sum_{N n_{z}} b_{N n_{z}}^{(+)} \Omega_{p} b_{N n_{z}}^{(+)} \Omega_{n} \quad\left(\rho_{\alpha}=+1, \rho_{\beta}=-1\right) .
\end{aligned}
$$

* Test of the expansion method for the Gamow-Teller strength

FIG. 5: (Color online) GT strength distributions for ${ }^{82}$ Se at $\beta_{2}=0.3$. They are calculated in deformed basis by Eq. (30)~(32) (a) and in the spherical basis by Eq. (33) (b).

Test of the DQRPA by the IKEDA sum rule w and w / o the closure relation

$$
\begin{array}{ll}
\left(S_{G T}^{-}-S_{G T}^{+}\right)_{I S R I I} & \left(S_{G T}^{-}-S_{G T}^{+}\right)_{I S R I} \\
=\sum_{K=0, \pm 1} \sum_{m}^{m}\left[\left|<K^{+}, m\right| \hat{\beta}_{K}^{-}\left|Q R P A>\left.\right|^{2}-\left|<K^{+}, m\right| \hat{\beta}_{K}^{+}\right| Q R P A>\left.\right|^{2}\right] & =\sum_{K=0, \pm 1} \sum_{\alpha \rho_{\alpha} \beta \rho_{\beta}}\left|<\alpha p \rho_{p}\right| \tau^{+} \sigma_{K}\left|\beta n \rho_{n}>\right|^{2}\left(v_{n}^{2}-v_{p}^{2}\right) \\
=\sum_{K=0, \pm 1} \sum_{m} \sum_{\alpha \rho_{\alpha} \beta_{\beta}} \mid\left\langle\alpha p \rho_{\alpha}\right| \tau^{+} \sigma_{K}\left|\beta n \rho_{\beta}>\right|^{2}\left(u_{\alpha p}^{2} v_{\beta n}^{2}-v_{\alpha p}^{2} u_{\beta n}^{2}\right)\left[\left(X_{(\alpha p \beta n) K}^{m}\right)^{2}-\left(Y_{(\alpha p \beta n) K}^{m}\right)^{2}\right]
\end{array}
$$

Results of the Gamow-Teller strength distributions

http://arxiv.org/abs/1205.4561 v4
[11] E. Ha and M-K. Cheoun, Phys. Rev. C 88, 017603 (2013).
[12] E. Ha and M-K. Cheoun, Few Body Syst. 54 1389-1392 (2013).

* GT(-) strength for ${ }^{76} \mathrm{Ge}$ with different β_{2} value

* Running sum of GT(-) strength for ${ }^{76} \mathrm{Ge}$

$\nLeftarrow \mathrm{GT}(+)$ strength for ${ }^{76}$ Se with different β_{2} value

* Running sum of GT(+) strength for ${ }^{76} \mathrm{Se}$

$\mathrm{GT}(-,+)$ strength for ${ }^{90} \mathrm{Zr}$ with different β_{2} value

* Does DQRPA go back to QRPA at $\beta_{2}=0$??

If we take the limit, the deformed basis goes back to the spherical basis.
But, for $\beta_{2} \neq 0$, the deformed basis has many components because the angular momentum projection Ω_{j} may have angular momenta higher j .
$>\Omega_{\mathrm{j}}$ can be composed of different j values in the $\beta_{2}=0.3$.

$$
\begin{aligned}
& \left|N n_{z} \Lambda: 000>=\right| 0 s \frac{1}{2}>; \beta_{2}=0, \\
& \left.\left|N n_{z} \Lambda: 000>=0.98\right| 0 s \frac{1}{2}>+0.0005\left|1 s \frac{1}{2}>+0.094\right| 0 d \frac{5}{2}>+0.0116 \right\rvert\, 0 d \frac{3}{2}>+\cdots ; \beta_{2}=0.3
\end{aligned}
$$

$>$ Single particle states by eigenequation of total Hamiltonian are linear combination of the deformed basis even if we take the $\beta_{2}=0$ limit.

$$
\begin{aligned}
& \left.\left|\frac{1}{2}>=0.93\right| 0 s \frac{1}{2}>-0.36\left|1 s \frac{1}{2}>+0.04\right| 2 s \frac{1}{2}>+0.01 \right\rvert\, 3 s \frac{1}{2}>+\cdots ; \beta_{2}=0, \\
& \left.\left|\frac{1}{2}>=0.92\right| 0 s \frac{1}{2}>-0.36\left|1 s \frac{1}{2}>-0.03\right| 0 d \frac{3}{2}>+0.04 \right\rvert\, 0 d \frac{5}{2}>+\cdots ; \beta_{2}=0.1 .
\end{aligned}
$$

$>$ One may notice $\Omega_{\mathrm{j}}=1 / 2>$ state has other components \mid ns $1 / 2>$ although main component is $|0 \mathrm{~s} 1 / 2\rangle$.
$>$ Therefore, the extension to $\beta_{2}=0$ values may not be exact, but approximate treatment.

Fig. 1. GT(-) strength distributions for ${ }^{90} \mathrm{Zr}$ with $n p$ pairing (right) and without $n p$ pairing (left) with respect to the parent nucleus ${ }^{90} \mathrm{Zr}$. The experimental Q value between ${ }^{90} \mathrm{Zr}$ and ${ }^{90} \mathrm{Nb}$ is 6.111 MeV . Experimental data are from Refs. 20 and 21

Fig. 2. GT(-) strength distributions for ${ }^{92} \mathrm{Zr}$ with $n p$ pairing (right) and without $n p$ pairing (left) and with respect to the parent nuclei ${ }^{92} \mathrm{Zr}$. The experimental Q value between ${ }^{92} \mathrm{Zr}$ and ${ }^{92} \mathrm{Nb}$ is 2.005 MeV .

Results of the nuclear beta decays for Zr and Mo isotopes

Table II. $\quad Q_{\beta}^{\text {exp }}\left(Q_{\beta}^{F R D M}\right)$ used in this work with β_{2} values.

nuclide	$Q_{\beta}^{\text {exp }}\left(Q_{\beta}^{\text {FRDM }}\right)[\mathrm{MeV}]$	$\beta_{2}^{E 2}\left(\beta_{2}^{\text {RMF }}\right)$
${ }^{102} \mathrm{Zr}$	4.61	0.427
${ }^{104} \mathrm{Zr}$	5.9	0.371
${ }^{106} \mathrm{Zr}$	7.2	0.375
${ }^{108} \mathrm{Zr}$	8.6	0.381
${ }^{110} \mathrm{Zr}$	9.3	0.401
${ }^{112} \mathrm{Zr}$	(10.77)	0.421
${ }^{104} \mathrm{Mo}$	2.16	0.362
${ }^{106} \mathrm{Mo}$	3.52	0.354
${ }^{108} \mathrm{Mo}$	4.65	(-0.27)
${ }^{110} \mathrm{Mo}$	5.5	(-0.278)
${ }^{112} \mathrm{Mo}$	7.2	(-0.264)
${ }^{114} \mathrm{Mo}$	8.4	(-0.229)

Beta decay in the neutron rich side

Fermi transitions

$$
\left\langle J_{f} M_{f} T_{f} T_{0 f}\right| T_{\mp}\left|J_{i} M_{i} T_{i} T_{0 i}\right\rangle=\sqrt{T_{i}\left(T_{i}+1\right)-T_{0 i}\left(T_{0 i} \mp 1\right)} \delta_{J_{i} J_{f}} \delta_{M_{i} M_{f}{ }_{f}} \delta_{T_{i} T_{f}} \delta_{T_{0_{i} \mp} \neq 1 T_{0 f}}
$$

The angular momentum (L) of the systems (e $+n u$) can be non-zero (in the center-of-mass frame of the system).

In reality, isospin is violated by the electromagnetic force, but the violation is weak.

$J_{f}=J_{i}$	$(\Delta J=0)$
$T_{f}=T_{i} \neq 0$	$\left(\Delta T=0\right.$, but $T_{i}=0 \rightarrow T_{f}=0$ forbidden $)$
$T_{0 f}=T_{0 i} \mp 1$	$\left(\Delta T_{0}=1\right)$
$\Delta \pi=0$	no parity change

Gamow-Teller transitions

The matrix element strongly depends on the structure of the wave function!

$$
\begin{array}{ll}
\Delta J=0,1 & \text { but } J_{i}=0 \rightarrow J_{f}=0 \text { forbidden } \\
\Delta T=0,1 & \text { but } T_{i}=0 \rightarrow T_{f}=0 \text { forbidden } \\
T_{0 f}=T_{0 i} \mp 1 & \left(\Delta T_{0}=1\right) \\
\Delta \pi=0 & \text { no parity change }
\end{array}
$$

The absolute values of GT matrix elements are generally smaller than those for Fermi transitions.
$\longrightarrow f T=\frac{\text { const }}{\langle F\rangle^{2}+g_{A}^{2}\langle G T\rangle^{2}}$ squared matrix elements

* GT(-) strength for ${ }^{106 \sim 114} \mathrm{Mo}$

β-decay half-life of ${ }^{104 \sim 114} \mathrm{Mo}$ with QRPA

Summary

0 . R - and nu-processes in a view point of nuclear models, QRPA.

1. We used the deformed WS potential and then performed the deformed BCS and deformed QRPA with a realistic two-body interaction calculated by Brueckner Gmatrix based on Bonn potential.
2. Results of the Gamow-Teller strength, $\mathrm{B}(\mathrm{GT} \pm)$, for ${ }^{76} \mathrm{Ge},{ }^{76,82} \mathrm{Se}$, and ${ }^{92} \mathrm{Zr}$ show that the deformation effect leads to a fragmentation of the GT strength into high-lying GT excited states.
3. Our results show that the running sum of the GT strength distributions for ${ }^{76} \mathrm{Ge}$ and ${ }^{76,82}$ Se reproduce well experimental data.
4. Preliminary results of the beta decay of neutron rich nuclei show the importance of the deformation.
5. We are preparing to calculate data relevant to heavy nucleus, $A>110$, by using a super computer.
6. Future plan 1 : apply to the M1 and E2 transitions of even-odd or odd-odd nuclei, and consider the continuum states in DQRPA.
7. Future plan 2 : New Mass 6 Model School, Sicily, Sep. 16-24,

Thanks for your attention !!

