

d*(2380) – Observation of a Dibaryon (Hexaquark) Resonance

Erice School Sep 16 - 24, 2015

Heinz Clement

Two-Baryon Scenario

What do we know:

- ³S₁ deuteron groundstate: $I(J^{P}) = 0(1^{+})$
 - the only boundstate! ¹S₀ virtual state (NN FSI): I ($\mathbf{J}^{\mathbf{P}}$) = 1 (0⁺) in addition AN FSI

■ What would we like to know:

- Are there six-quark bags (genuine dibaryons)?
- Are there in general resonant states (molecular, dynamic) at all?

Experimental findings:

- $^{1}D_{2}$ resonance structure at the ΔN threshold:
- $^{3}D_{3}$ resonance much below the $\Delta\Delta$ threshold:

Are there more states?

- Theoretical predictions
- Dyson's sextet

255 $I(J^{P}) = 1(2^{+})$ $I(I^{P}) = 0(3^{+})$

Early Predictions on Dibaryons

1964 Dyson & Xoung: 6 non-strange states
1975 Jaffe: H-dibaryon (uuddss: ΛΛ)
Thereafter:

multitude of predictions of a vast number of dibaryon states (Nijmegen group,)

LANL theory group (T. Goldman, Fan Wang et al.):
 The "inevitable dibaryon": ΔΔ I(J^P) = 0(3⁺)

... inevitable dibaryon

 $I(J^P) = 0(3^+)$ state: totally symmetric in space, spin & color antisymmetric in isospin accessed via $\Delta\Delta$ as doorway?

Early Dibaryon Searches

Before 1964 (quark model):

First hints for resonating ${}^{1}D_{2}$ partial wave from pp $\leftrightarrow d\pi^{+}$ (Dubna)

After 1975 (Jaffe's H-dibaryon prediction):
 Worldwide searches for dibaryons

In the following: only non-strange dibaryons

The Experimental Rush for Dibaryons

Low statistics versus high statistics (quality):

 $np \rightarrow pp\pi^- + n\pi^0$, bubble chamber

Troyan & Pechenov, Phys. At. Nucl. 56 (1993) 528

 $np \rightarrow pp\pi$ -, magn. spectrometer

Abramov et al., Z. Phys. C69 (1996) 409

Possibly the only surviver: ¹D₂ Resonance

Best seen in pp $\leftrightarrow d\pi^+$,

• but also in pp \rightarrow pn π^+ as well as pp and π^+ d scattering (phaseshift analyses)

R.A. Arndt et al., PRC 48 (1993) 1926 50 (1994) 1796 56 (1997) 635 N. Hoshizaki, PRC 45 (1992) R1424 Prog. Theor. Phys. 89 (1993) 245 251 563 569

I (J^P) = 1 (2⁺) M = 2144 MeV = $m_{\Delta} + m_N - 26$ MeV $\Gamma = 110$ MeV $\approx \Gamma_{\Delta}$

Alternative dynamic description: Diss. C.A. Mosbacher, Bonn 1998

d*(2380) - Observation of a Dibaryon (Hexaguark)

One of the Conclusions about this Dibaryon Rush

Kamal Seth (1988) in "Dibaryons in Theory and Practice"

- "Nobody has seen a genuine, gold-(silver-, ... or even un-) plated dibaryon, yet."
- 2) " The days of Q & D … are over…
 We must do honest hard work, or quit…
 We should do exclusive experiments."

1920 and 2250 MeV.

So how to find a Dibaryon?

Exclusive and kinematically complete measurements

Our approach:

Two-pion production with best suited equipment

- 4π detector: WASA
- pellet target: p and d
- storage ring: CELSIUS \rightarrow COSY

■ The learning phase:

pp induced two-pion production

Following a trace:

• the ABC effect in double-pionic fusion

■ The surprise:

a narrow resonance in pn induced two-pion production

2005 - 2006

CELSIUS/WASA

ervation of a Dibaryon exaquark)

Isoscalar : ... this is what we expected!

Isoscalar : ... and this is what we found!

Isoscalar : Results from WASA at COSY

d*(2380) - Observation of a Dibaryon (Hexaquark)

H. Clement

16

Crucial Experiment for d*

- If d^{*} a true s-channel resonance
- ⇔
 then also a resonance in the np system
- - to be sensed in np scattering
 - in particular in the analyzing power
 - resonance effect ~ $P_{3}^{1}(\Theta)$ i.e. maximal at $\Theta = 90^{0}$

 \Leftrightarrow

 \Leftrightarrow

A_y Angular Distribution at Resonance $\sqrt{s} = 2.377 \text{ GeV}$

 A_v

SAID Partial-Wave Analysis

³D₃ – ³G₃ Coupled Partial Waves

Phys. Rev. Letters 112 (2014) 202301

Pole in ³D₃ at

2380±10 - i 40±5 MeV

⇔ Genuine Resonance

in np System

d*(2380) - Observation of a Dibaryon (Hexaquark)

Branching Ratios for the Decay of d*(2380)

hadronic decays

EPJA 51 (2015) 87

decay channel	branching	derived from	
d $\pi^0\pi^0$	14 ± 1 %	measurement	
d $\pi^+\pi^-$	23 ± 2 %	measuremer	consistent with
$pp\pi^0\pi^-$	6 ± 1 %	measurement	isospin coupling
$nn\pi^+\pi^0$	6 ± 1 %	isospin mirrored	for a $\Delta\Delta$ inter-
npπ ⁰ π ⁰	12 ± 2 %	measuremen	mediate system
$np\pi^+\pi^-$	30 ± 4 %	measurement, ol	d data + HADES
np	12 ± 3 %	measurement	
$(NN\pi)_{I=0}$		estimate: 0%	

Further hints: $\gamma d \rightarrow \vec{p}n$

R. Gilman and F. Gross AIP Conf. Proc. 603 (2001) 55 K. Wijesooriya et al., Phys. Rev. Lett. 86 (2001) 2975

T. Kamae, T. Fujita Phys. Rev. Lett. 38 (1977) 471

H. Ikeda et al., Phys. Rev. Lett. 42 (1979) 1321

d*(2380) - Observation of a Dibaryon (Hexaquark)

Comparison to predictions from Quark and Hadron Models

Width of d*(2380)

d*(2380) - Observation of a Dibaryon (Hexaquark)

Molecule vs Hexaquark

d*(2380) internal structure and the ABC effect

Conclusions

Zhang, Chen, Shen et al.

Huang, Ping, Wang et al.

Gal & Garcilazo

Non-Strange Two-Baryon Spectrum • 3 established states: ${}^{3}S_{1}$ deuteron groundstate ${}^{1}S_{0}$ virtual state $^{1}D_{2}$ resonance (ΔN) ■ 1 new - presumably exotic - state: $d^*(2380)$ resonance ($\Delta\Delta$) Are there more states? ■ NN-decoupled states with I = 2, 3? • Search in pp \rightarrow pp π^+ $\pi^$ and in pp $\rightarrow pp\pi^+\pi^+ \pi^-\pi^-$

Strange, charmed ... Di-Baryons?

d*(2380) - Observation of a Dibaryon (Hexaquark)

Outlook and Open Problems

Size of d*(2380) ⇒ elm excitation of d* γd → d* → pn → dπ⁰π⁰ Observation at other installations HADES @ GSI: under way, but no 4π and no neutrals IHEP ?? e⁺e⁻ → d d^{*} at 4.3 – 4.6 GeV ??

Are there more (exotic) dibaryons?
 Mirror state of d^{*} ..., strange, charmed dibaryons

Outlook: mirror dibaryon

 $I(J^P) = 3(0^+)$: totally symmetric in space, isospin & color antisymmetric in spin accessed via $\Delta^{++}\Delta^{++}$ as asymtotic configuration

