Hadrons in the PNJL model for interacting quarks

Kanako Yamazaki-Gelis
IPhT, CEA-Saclay / Nishina center, RIKEN

in collaboration with **Tetsuo Matsui** (the Open University of Japan) and **Gordon Baym** (university of Illinois)

- KY and T. Matsui, Nucl. Phys. A913 (2013) 19.
- KY and T. Matsui, Nucl. Phys. A922 (2014) 237.
- KY, T. Matsui, Gordon Baym, Nucl. Phys. A933 (2015) 245.

Outline

- Introduction
 - motivation of this work
 - · how to approach
- Mesons in the PNJL model
 - · equation of state
 - · collective modes
- Baryons in the PNJL model
- Summary

Quark-Hadron Phase Transition

Quark-Hadron Phase Transition

Quark-Hadron Phase Transition

- Chiral symmetry restoration Quark-Gluon - Colour de-confinement plasma - Chiral symmetry breaking **Hadronic** - Colour confinement phase

Transitions

chiral transition

- spontaneous chiral symmetry breaking generates quark mass in the vacuum : M \sim 300 MeV
- as T increases, chiral symmetry restores: mo ~ 3-7 MeV
- order parameter: chiral condensate < qq>

Transitions

chiral transition

- spontaneous chiral symmetry breaking generates quark mass in the vacuum : M \sim 300 MeV
- as T increases, chiral symmetry restores: $m_0 \sim 3-7$ MeV
- order parameter: chiral condensate < qq>

de-confinement transition

- characterised by expectation value of Polyakov loop

$$L(x) = \mathcal{P}\exp\left[-ig\int_0^\beta dx_4 A_4(\boldsymbol{x}, x_4)\right], \quad \mathcal{P} : \text{path ordering} \quad l = \frac{1}{N_c} \text{tr}L \quad , \quad \Phi(\boldsymbol{x}) = \langle l(\boldsymbol{x}) \rangle$$

- relation between P-loop and quark free energy : $\Phi = e^{-\beta f_q}$

confinement:
$$f_q = \infty$$
 $\Phi = 0$

de-confinement :
$$f_q < \infty$$
 $\qquad \qquad \qquad \Phi \neq 0$

Order parameters

	chiral condensate	Expectation value of Polyakov loop
low temperature	$\langle \bar{q}q \rangle \neq 0$	$\Phi = 0$
high temperature	$\langle \bar{q}q \rangle = 0$	$\Phi \neq 0$

Purpose

describe the hadrons at low temperatures, and study how they melt as the temperature increases

For this, we use an effective model which describes

- chiral transition and de-confinement transition simultaneously
- quarks: fundamental fields
 hadrons: composed by quarks

Nambu-Jona-Lasinio model with Polyakov loop (PNJL model) k. Fukushima, 2004

PNJL model

chiral phase transition

Nambu-Jona-Lasinio (NJL)

Y. Nambu, G. Jona-Lasinio, 1961

T. Hatsuda, T. Kunihiro, 1985

V. Bernard, U. G. Meissner, I. Zahed, 1987

interaction:

de-confinement transition

Polyakov loop

A. M. Polyakov, 1978

L. Susskind, 1979

PNJL model

Mesons in the PNJL model

2 flavour PNJL model

Partition function

K. Fukushima, 2004

$$Z = \int [dq][d\bar{q}] \exp\left[\int_0^\beta d\tau \int d^3x \, \mathcal{L}(q,\bar{q})\right]$$

$$\mathcal{L} = \bar{q}(i\gamma_{\mu}D^{\mu} - m_0)q + \mathcal{L}_4 - \mathcal{U}[\bar{\Phi}, \Phi, T]$$

$$D_\mu = \partial_\mu + g A_0 \delta_{\mu,0}$$
 , $A_4 = i A_0$

mo: bare quark mass breaks chiral symmetry explicitly

2 flavour PNJL model

Partition function

K. Fukushima, 2004

$$Z = \int [dq][d\bar{q}] \exp\left[\int_0^\beta d\tau \int d^3x \, \mathcal{L}(q,\bar{q})\right]$$
$$\mathcal{L} = \bar{q}(i\gamma_\mu D^\mu - m_0)q + \mathcal{L}_4 - \mathcal{U}[\bar{\Phi},\Phi,T]$$

$$D_{\mu} = \partial_{\mu} + gA_0\delta_{\mu,0}$$
 , $A_4 = iA_0$

Effective potential (as a function of the Polyakov): represent dynamics of gluon phenomenologically

Method

- Calculate the partition function which is given in terms of the integral over the quark fields in the path integral method.
- Meson fields are introduced as auxiliary fields, then the partition function contains the integrals over the quark fields and meson fields.

- The simplest way to calculate the partition function is the mean field approximation

mean field approximation is NOT good

- Meson fields are treated as uniform back ground under the mean field approximation
- Even at low temperatures, mesonic excitations cannot be described
- However, mesonic excitations must dominate equation of state at low temperatures
 - Taking fluctuations into account by expanding the effective action up to the second order
 - MFA + mesonic correlations

Thermodynamic potential

- partition function after inserting boson fields:

$$Z(T, A_4) = \int [d\bar{q}][dq][d\phi] e^{-I(\bar{q}, q, \phi, A_4)}$$

- integrating over fermion fields

$$Z(T,A_4)=\int [d\phi^{\scriptscriptstyle{\dagger}}]e^{-I(\phi^{\prime},A_4)}$$

- expand the effective action up to second order in the fluctuations around the stationary point, in order to take mesonic correlations into account

Thermodynamic potential

- partition function

$$Z(T,A_4) \simeq e^{-I_0} \int [darphi] \exp \left[-rac{1}{2} \left. rac{\delta^2 I}{\delta \phi_i' \delta \phi_j'}
ight|_{\phi'=\phi_0'} arphi_i arphi_j
ight]$$

- integrating over boson fields

contribution from mean field

contribution from mesonic excitations

Pressure

$$p(T) = -\frac{1}{V}\Omega(T)$$

Pressure

$$p(T) = -\frac{1}{V}\Omega(T)$$

Mesonic Correlations

- Contribution of mesonic correlations to pressure

$$p_M = -\frac{T}{2V} \operatorname{Tr}_M \ln \left. \frac{\delta^2 I}{\delta \phi_i \delta \phi_j} \right|_{\phi = \phi_0}$$

$$\mathcal{M}(\omega, \mathbf{q})$$
: $\mathcal{M}_{\pi}(\omega, q) = 1 - 2G\Pi_{\pi}(\omega, q)$

 $\Pi(\omega, \mathbf{q})$:

Mesonic Correlations

- Contribution of mesonic correlations to pressure

$$p_M = -\frac{T}{2V} \operatorname{Tr}_M \ln \left. \frac{\delta^2 I}{\delta \phi_i \delta \phi_j} \right|_{\phi = \phi_0}$$

$$\operatorname{Re}[1 - 2G\Pi_{\pi/\sigma}]$$
$$\operatorname{Im}[1 - 2G\Pi_{\pi/\sigma}]$$

Collective mode of pion

Collective mode of pion

Collective mode of sigma meson

Baryons in the PNJL model

The way to describe baryons

idea

- rewrite quark fields to auxiliary fields, like mesons' case
- assume that baryons are constructed by quarks and diquarks
- need diquark interactions in Lagrangian

$$\mathcal{L} = \bar{q}(i\mathcal{D} - m)q + \mathcal{L}_{\bar{q}q} + \mathcal{L}_{qq} - \mathcal{U}[\bar{\Phi}, \Phi, T]$$

Insert auxiliary fields

- mesons

 $G\bar{q}q \to \phi$

- diquarks

 $Hqq \to \Delta$

Partition function

- effective action is a function of quarks, mesons, diquarks and baryons
- perform first quark integrals

- approximation to the auxiliary fields in the same way as mesons
- obtain the equation of state

Pressure

mesons

$$p_{M}(T) = -\frac{1}{2} \int \frac{d^{3}q}{(2\pi)^{3}} \int \frac{d\omega}{2\pi i} \left[1 + 2f_{B}(\omega) \right]$$
$$\times \left\{ 3\ln \left[\frac{\mathcal{M}_{\pi}(\omega + i\epsilon, q)}{\mathcal{M}_{\pi}(\omega - i\epsilon, q)} \right] + \ln \left[\frac{\mathcal{M}_{\sigma}(\omega + i\epsilon, q)}{\mathcal{M}_{\sigma}(\omega - i\epsilon, q)} \right] \right\}$$

$$p_B = \frac{1}{2} \int \frac{d^3P}{(2\pi)^3} \int \frac{dE}{2\pi i} \Big[f(E - 3\mu) + f(E + 3\mu) - 1 \Big]$$
$$\times \ln \Big[\frac{\mathcal{M}_B(E + i\delta, P)}{\mathcal{M}_B(E - i\delta, P)} \Big]$$

- mesons

- mesons

$$Re[1 - 2G\Pi_{\pi/\sigma}]$$
$$Im[1 - 2G\Pi_{\pi/\sigma}]$$

- mesons

$$\operatorname{Re}[1 - 2G\Pi_{\pi/\sigma}]$$

$$\operatorname{Im}[1 - 2G\Pi_{\pi/\sigma}]$$

$$Re[1-2G\Pi_{\Delta}]$$

$$\operatorname{Im}[1-2G\Pi_{\Delta}]$$

Collective mode of diquark

Summary

Summary

- We have calculated the melting temperatures of the pion and sigma meson.
- The collective modes of mesons at low T melt into the quarks and antiquarks in the intermediate T.
- We have described baryons composed of quarks and diquarks.
- Diquark correlation in baryons disappears as the temperature increases.

Back Up

Effective potential $U(\Phi, \overline{\Phi}, T)$

C. Ratti, M. A. Thaler, W. Weise, 2006

principle

- U($\Phi, \overline{\Phi}$,T) satisfies SU(3) center symmetry like pure gauge QCD Lagrangian
- U(Φ , $\overline{\Phi}$,T) has a single minimum at Φ =0 at T<<Tc
- Φ gets close to 1 at T>>Tc

the simplest form of effective potential

$$\frac{\mathcal{U}(\Phi, \bar{\Phi}, T)}{T^4} = -\frac{b_2}{2}\bar{\Phi}\Phi - \frac{b_3}{6}(\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{4}(\bar{\Phi}\Phi)^2$$

$$b_2(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2 + a_3 \left(\frac{T_0}{T}\right)^3$$

Effective potential $U(\Phi, \overline{\Phi}, T)$

C. Ratti, M. A. Thaler, W. Weise, 2006

parameters in $U(\Phi, \overline{\Phi}, T)$

- U(Φ , $\overline{\Phi}$,T) contains 7 parameters
- They are fixed to reproduce lattice datas in pure gauge sector

Kaczmarek, Karsch, Petreczky, Zantow, 2002

Order parameters (2f)

- quark mass M and expectation value of Polyakov loop are determined by stationary conditions

$$\frac{\delta I}{\delta \phi_i} \Big|_{\phi_0 = M} = 0 \quad , \qquad \frac{\delta I}{\delta \Phi} = 0$$

$$M - m_0 = -2G\langle \bar{q}q \rangle$$

Pressure (2f) mo=0

KY, T. Matsui, 2013

Entropy (2f) mo=0

- Collective excitations carry entropy at low T.
- Free quarks and gluons carry entropy at high T.

Entropy (2 flavour)

KY, G. Baym, T. Matsui, 2015

- Collective excitations carry entropy at low T.
- Free quarks and gluons carry entropy at high T.

Quark distribution function

Two extreme cases

- De-confining phase

$$\Phi = \bar{\Phi} = 1$$

$$\left|f_{arPhi}(E_p)
ight|_{arPhi=1}=rac{1}{e^{eta E_p}+1}$$

quark distribution function

- Confining phase

$$\Phi = \bar{\Phi} = 0$$

$$m{\Phi} = ar{m{\Phi}} = 0$$
 $f_{\Phi}(E_p)|_{\Phi=0} = rac{1}{e^{3eta E_p} + 1}$

triad quark distribution function

Pion

Kaon

