Glueballs and tetraquarks from Dyson-Schwinger equations

Christian S. Fischer

Justus Liebig Universität Gießen

with Gernot Eichmann, Walter Heupel and Helios Sanchis-Alepuz

Bundesministerium für Bildung und Forschung

Christian Fischer (University of Gießen)

I.Introduction

-1

-1

2.Gluons and glueballs

3.Quarks and mesons

4. Tetraquarks

Glueballs

Morningstar and Peardon, PRD 60 (1999) 034509 Y.~Chen et al., PRD 73 (2006) 014516

Lattice:

- States in the light and heavy quark energy regions
- Most calculations quenched
- Preliminary unquenched results: larger masses

Gregory et al., JHEP 1210 (2012) 170

DSE:

structural information

Meyers, Swanson, PRD 87 (2013) 3, 036009 Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001

Christian Fischer (University of Gießen)

Tetraquarks in the light meson sector

Tetraquarks in the light meson sector

Christian Fischer (University of Gießen)

Tetraquarks in the light meson sector

Christian Fischer (University of Gießen)

Tetraquark candidates in charmonium region

Internal structure ??

Wolfgang Gradl, BESIII, St Goar 2015

Related to details of underlying QCD forces between quarks

Tetraquarks from the four-body interaction

Exact equation:

Two-body interactions

Three- and four-body interactions

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichman, CF, PLB 718 (2012) 545-549 Eichman, CF, Heupel, 1508.07178

Basic idea:

solve four-body equation without any assumption on internal clustering

• Key elements: quark propagator and interaction kernels

I.Introduction

2.Gluons and glueballs

3.Quarks and mesons

4.Tetraquarks

Christian Fischer (University of Gießen)

QCD in covariant gauge

Quarks, gluons and ghosts

$$\mathcal{Z}_{QCD} = \int \mathcal{D}[\Psi, A, c] \exp\left\{-\int d^4x \left(\bar{\Psi}(i\not\!\!D - m)\Psi - \frac{1}{4}(F^a_{\mu\nu})^2\right)\right\}$$

+gauge term + $\overline{c}(-\partial D)c)$

Landau gauge propagators in momentum space,

The Goal: gauge invariant information in a gauge fixed approach.

Christian Fischer (University of Gießen)

Landau gauge gluon propagator

- spacelike momenta: excellent agreement with lattice
- spectral function: positivity violations

$$600 \,{
m MeV} < m_g < 700 \,{
m MeV}$$

Cornwall, Papavassiliou,...

Gluon cannot appear in detector!

Strauss, CF, Kellermann, Phys. Rev. Lett. 109, (2012) 252001

Glueballs from DSE/BSEs

Mixing of two-gluon amplitudes with ghost-antighost
 Probes analytical structure of gluons and ghosts

Results:
$$M(0^{++}) = 1.64 \,\text{GeV}$$

 $M(0^{-+}) = 4.53 \,\text{GeV}$

Sanchis-Alepuz, CF, Kellermann and von Smekal, PRD 92 (2015) 3, 034001

Christian Fischer (University of Gießen)

I.Introduction

2.Gluons and glueballs

3.Quarks and mesons

4. Tetraquarks

Christian Fischer (University of Gießen)

DSEs and Bethe-Salpeter equation

→Pion is bound state and Goldstone boson

Maris, Roberts, Tandy, PLB 420 (1998) 267

Two strategies:

I. use rainbow-ladder model for quark-gluon interaction
 →ok for some phenomenological applications
 II. calculate gluon and vertex from their DSEs

Christian Fischer (University of Gießen)

Strategie I: Model for quark-gluon interaction

- fix Λ from f_{π}; small dependence of many results on η
- masses $m_u = m_d$, m_s , m_c , from π , K, J/ ψ
- Renormalizable and momentum dependent !
- Qualitatively similar to results from explicit calculation

CF, Maas, Pawlowski, Annals Phys. 324 (2009) 2408. Williams, EPJA 51 (2015) 5, 57.

Quark mass: flavor dependence

Christian Fischer (University of Gießen)

Quark mass: flavor dependence

Christian Fischer (University of Gießen)

Charmonium spectrum

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- good channels: I⁻⁻,2⁺⁺, 3⁻⁻,...
- acceptable channels: 0⁻⁺
- clear deficiencies in other channels: missing spin-structure

Charmonium spectrum

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- good channels: I⁻⁻,2⁺⁺, 3⁻⁻,...
- acceptable channels: 0⁻⁺
- clear deficiencies in other channels: missing spin-structure

Charmonium spectrum

CF, Kubrak, Williams, EPJA 51 (2015) Hilger et al. PRD 91 (2015)

- good channels: I⁻⁻,2⁺⁺, 3⁻⁻,...
- acceptable channels: 0⁻⁺
- clear deficiencies in other channels: missing spin-structure

I.Introduction

2.Gluons and glueballs

3.Quarks and mesons

4. Tetraquarks

Solving the four-body equation

Input: Non-perturbative quark, quark-gluon interaction

$$\alpha(k^2) = \pi \eta^7 \left(\frac{k^2}{\Lambda^2}\right) e^{-\eta^2 \left(\frac{k^2}{\Lambda^2}\right)} + \alpha_{UV}(k^2)$$

Christian Fischer (University of Gießen)

Structure of the amplitude

Scalar tetraquark:

good approximation: keep s-waves only; 16 tensor structures

Four-body equation:

Organise Dirac-Lorentz-tensors into multiplets of S4

- Singlet: $S_0 = (p^2 + q^2 + k^2)/4$, carries overall scale
- Doublet: $a = \sqrt{3}(q^2 p^2)/(4S_0); \ s = (p^2 + q^2 2k^2)/(4S_0)$

Christian Fischer (University of Gießen)

Bound state masses

Bound state masses

Bound state masses

Mass evolution of tetraquark

- Resonance becomes bound state for large m_q
- Dynamical decision: meson clusters, not diquarks
- Results: $m_{\sigma} \sim 350 \, {
 m MeV}$

$$m_{\kappa} \sim 750 \,\mathrm{MeV}$$

 $m_{a_0,f_0} \sim 1080 \,{\rm MeV}$

 $m_{ss\bar{s}\bar{s}} \sim 1.5 \,\mathrm{GeV}$

 $m_{cc\bar{c}\bar{c}} \sim 5.7 \,\mathrm{GeV}$

qualitatively similar to two-body framework

Heupel, Eichman, CF, PLB 718 (2012) 545-549

Christian Fischer (University of Gießen)

Outlook: heavy-light systems

Dynamical situation in **S4**-doublet:

Dynamical decision of most important clustering!

Summary

- Mass gap in YM-theory: scalar glueball mass
- Tetraquarks dominated by internal meson-meson configurations
- Dynamical description of σ as π - π resonance
- Bound cccc-tetraquark....

Outlook

- Improve numerical framework: precision, systematics
- Implement quark mass dependence of quark-gluon interaction
- Explore heavy-light systems