New $S U(4)$ symmetry of hadrons after quasi-zero mode removal

Markus Pak

Karl-Franzens-Universität Graz

International School of Nuclear Physics, 37th Course, Erice-Sicily
„Probing Hadron Structure with Lepton and Hadron Beams"

$$
\text { September 16-24, } 2015
$$

in collaboration with: M. Denissenya (Graz), L. Glozman (Graz)

Outline

1. „Exploring a new $S U(4)$ symmetry of meson interpolators"

Phys. Rev. D 92, 01 (2015), 016001; hep-lat/1504.02323
2. „Evidence for a new $S U(4)$ symmetry with $J=2$ mesons" Phys. Rev. D 91, 11 (2015), 114512; hep-lat/1505.03285
3. „Emergence of a new $S U(4)$ symmetry in the baryon spectrum" hep-lat/1508.01413

PRINCIPAL IDEA:

- We remove the chiral condensate from the valence quarks by hand and ask, what happens to the hadron spectrum
- Originally we wanted to study the relation between confinement and chiral symmetry breaking \longrightarrow Does confinement persist the unbreaking of chiral symmetry?
- What we observe seems to be a new symmetry of confinement

Outline

1. Explanation of $S U(4)$ Symmetry via the Example of Spin-2 Mesons

+ Implications of the Symmetry

2. New Results on Baryons and $S U(4)$ Symmetry
3. Conclusions and Outlook

Quasi-zero mode removal

M. Denissenya, L. Glozman, C. B. Lang, M. Pak, M. Schröck

Our working tool is lattice OCD
To calculate meson masses, we evaluate correlators:

$$
O_{\pi^{+}}(x)=\bar{d}(x) \gamma_{5} u(x) \quad\left\langle O_{\pi^{+}}(t) \bar{O}_{\pi^{+}}(0)\right\rangle
$$

In these expectation values the inverse Dirac operator occurs
We remove the quasi-zero modes from the inverse Dirac operator via the prescription:

$$
S_{k}(x, y)=S_{\mathrm{FULL}}(x, y)-\sum_{i=1}^{k} \frac{1}{\lambda_{i}} v_{i}(x) v_{i}^{\dagger}(y)
$$

Banks-Casher: chiral condensate is connected with density of quasi-zero modes
We decouple the condensate from the valence quarks

Only a very small number of eigenvalues removed (10 to 30 out of millions)

Lattice Setup and Meson Spectroscopy

Two-flavor dynamical Overlap configurations from JLOCD on $16^{3} \times 32$ lattice with $a=0.118 \mathrm{fm}$
S. Aoki et. al (2008)

Pion mass $M_{\pi}=289(2) \mathrm{MeV}$

Topological sector fixed to $Q_{T}=0$

83 gauge configurations

Jacobi smeared and derivative based quark propagators with different smearing widths Spectroscopy via the variational method

$$
\begin{gathered}
C_{i j}(t)=\left\langle O_{i}(t) \bar{O}_{j}(0)\right\rangle \\
\lambda_{n}(t) \sim e^{-m_{n} t}
\end{gathered}
$$

Now we evaluate masses of the $J=2$ iso-vector mesons π_{2}, a_{2}, ρ_{2} after quasi-zero mode removal

Do hadrons survive the quasi-zero mode removal?

- States exist \longrightarrow confinement is intact \longrightarrow masses can be extracted
- Masses are too large to come from a system of free or weakly interacting quarks

Chiral symmetry predictions for spin-2 mesons

Classification of states in the $\left(I_{L}, I_{R}\right)$ irreps of $S U(2)_{L} \times S U(2)_{R} \times \mathcal{C}_{i}$

$(0,0)$	$\omega_{2}\left(0,2^{--}\right)$		$f_{2}\left(0,2^{++}\right)$
$(1 / 2,1 / 2)_{a}$	$\pi_{2}\left(1,2^{-+}\right)$	$\stackrel{S U_{\mathrm{A}}(2)}{\longleftrightarrow}$	$f_{2}^{\prime}\left(0,2^{++}\right)$
$(1 / 2,1 / 2)_{b}$	$U_{\mathrm{A}}(1)$	$S U_{\mathrm{A}}(2)$	
$(1,0) \oplus(0,1)$	$a_{2}^{\prime}\left(1,2^{++}\right)$	$\stackrel{ }{\longleftrightarrow}$	
	$a_{2}\left(1,2^{++}\right)$	$\stackrel{S U_{\mathrm{A}}(2)}{\longleftrightarrow}$	$\eta_{2}\left(0,2^{-+}\right)$
		$\rho_{2}\left(1,2^{--}\right)$	

Predictions from $S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$:

$$
a_{2} \longleftrightarrow \rho_{2}
$$

- No degeneracy between these two multiplets
- Not all iso-vectors are mass degenerate

Eigenvalues of the correlation matrix

Before chiral symmetry restoration:

Eigenvalues of the correlation matrix

After chiral symmetry restoration:

$J=2$ meson spectrum after quasi-zero mode removal

All iso-vector states become mass degenerate
Higher symmetry than chiral symmetry is observed

Which symmetry is it? \longrightarrow We find, that $S U(4)$ can explain this degeneracy

Higher symmetry?

Degeneracy of ground state spin-2 mesons with excited spin-1 mesons after quasi-zero mode removal? $\begin{array}{llllllll}0 & 2 & 6 & 10 & 16 & 20 & 30\end{array}$

No evidence for an even higher degeneracy, but for a precise statement repeat calcuation on larger volumes

$S U(4)$ symmetry for spin-2 mesons

Predictions from $S U(4)$:

$$
f_{2} \longleftrightarrow \pi_{2} \longleftrightarrow f_{2}^{\prime} \longleftrightarrow a_{2}^{\prime} \longleftrightarrow \eta_{2} \longleftrightarrow a_{2} \longleftrightarrow \rho_{2}
$$

- All iso-vectors are mass degenerate
- No constraints on mass of $\omega_{2}\left(0,2^{--}\right)$

$S U(4)$ - symmetry

L. Glozman; Eur. Phys. J. A51 (2015) 3, 034505

L. Glozman, M. Pak; Phys. Rev. D92 (2015) 1, 016001

Not a symmetry of the QCD Lagrangian; emerges after quasi zero-mode removal

- Is the symmetry of hadrons after quasi-zero mode removal

The fundamental vector is $\Psi=\binom{u}{d}$ with $\Psi \rightarrow \Psi^{\prime}=e^{i \boldsymbol{\epsilon} \cdot \boldsymbol{T} / 2} \Psi \equiv W \Psi$

$$
\left(\begin{array}{c}
u_{L}^{\prime} \\
u_{R}^{\prime} \\
d_{L}^{\prime} \\
d_{R}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)\left(\begin{array}{l}
u_{L} \\
u_{R} \\
d_{L} \\
d_{R}
\end{array}\right)
$$

Not only quarks of fixed chirality mix, but also the left- and right-handed components
All states of given J except one isoscalar state become mass degenerate via $S U(4)$
Subgroups: $S U(4) \supset S U(2)_{C S} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{A}$

What does the symmetry mean?

- We look at the QCD Hamiltonian in Coulomb gauge
- There are two interactions of quarks with gluons:
- Interaction with color-electric field (via color-Coulomb interaction)
- Interaction with spatial gluons

Confinement: two static quarks mediated by color-Coulomb interaction give a linear rising potential

- Here we consider dynamical quarks

The interaction with the spatial gluons is forbidden due to $S U(4)$

After removing the quasi-zero modes, we have a situation where quarks interact with the color-electric field only \longrightarrow dynamical string

Implications (QCD in Coulomb Gauge)

Coulomb interaction: (comes from the color-electric field; is the confining part)

$$
H_{C}=\frac{g^{2}}{2} \int d^{3} x d^{3} y J^{-1} \rho^{a}(\boldsymbol{x}) F^{a b}(\boldsymbol{x}, \boldsymbol{y}) J \rho^{b}(\mathbf{y})
$$

- This part is $S U(4)$ symmetric Color-Coulomb potential
- Coupling to transverse gluons:

$$
H_{T}=-g \int d^{3} x \Psi^{\dagger}(\boldsymbol{x}) \boldsymbol{\alpha} \cdot \boldsymbol{A}(\boldsymbol{x}) \Psi(\boldsymbol{x})
$$

- This part is not $S U(4)$ symmetric
- The only interaction left in the system is via the color-Coulomb potential

Symmetry of Confinement

- After removing the quasi-zero modes $S U(4)$ becomes the symmetry of confinement
- The hadrons can be viewed to be primaly $S U(4)$ energy levels, before the dynamics of the quasi-zero modes are switched on
- It could be used to construct a new order parameter for the confinementdeconfinement transition
L.Glozman; hep-ph/1508.02885
- It could be important for highly excited hadrons, where it is conjectured, that states are less affected by the chiral condensate

Outline

1. Explanation of $S U(4)$ Symmetry via the Example of Spin-2 Mesons

+ Implications of the Symmetry

2. New Results on Baryons and $S U(4)$ Symmetry
3. Conclusions and Outlook

Chiral symmetry predictions for baryons

Nucleon and Delta Interpolators are of the form:

$$
\begin{aligned}
& N_{ \pm}^{(i)}=\varepsilon_{a b c} \mathcal{P}_{ \pm} \Gamma_{1}^{(i)} u_{a}\left(u_{b}^{T} \Gamma_{2}^{(i)} d_{c}-d_{b}^{T} \Gamma_{2}^{(i)} u_{c}\right) \\
& \Delta_{ \pm}^{(i)}=\varepsilon_{a b c} \mathcal{P}_{ \pm} \Gamma_{1}^{(i)} u_{a}\left(u_{b}^{T} \Gamma_{2}^{(i)} u_{c}\right)
\end{aligned}
$$

Does this symmetry apply for baryons as well?

- We now take the two $J=\frac{1}{2}$ nucleon correlators, which are not related via chiral symmetry

$$
\begin{aligned}
\mathcal{O}_{N^{ \pm}} & =\varepsilon^{a b c} \mathcal{P}_{ \pm} u^{a}\left[u^{b T} C \gamma_{5} d^{c}-d^{b T} C \gamma_{5} u^{c}\right] \\
\mathcal{O}_{N^{ \pm}} & =\varepsilon^{a b c} \mathcal{P}_{ \pm} u^{a}\left[u^{b T} C \gamma_{5} \gamma_{0} d^{c}-d^{b T} C \gamma_{5} \gamma_{0} u^{c}\right]
\end{aligned}
$$

However, they are in the same irreducible rep of $S U(4)$

- If their correlators coincide, then $S U(4)$ is a symmetry of baryons as well

We also take a $J=\frac{1}{2}$ delta correlator into account

$$
\mathcal{O}_{\Delta \pm}=\varepsilon^{a b c} \mathcal{P}_{ \pm} \gamma_{i} u^{a}\left[u^{b T} C \gamma_{i} u^{c}\right]
$$

$J=2$ Correlators

- Before chiral symmetry restoration:

$J=2$ Correlators

After chiral symmetry restoration:

All correlators are degenerate! $S U(4)$ is a symmetry of baryons after quasi-zero mode removal

$J=2$ Correlators

Before chiral symmetry restoration:

$J=2$ Correlators

After chiral symmetry restoration:

Baryon mass evolution

- Nucleon and Delta states from different $S U(4)$ multiplets are degenerate - higher degeneracy? Currently under investigation!

Summary and Conclusions

MESON SECTOR:

- Spin-2 mesons show emergent $S U(4)$ degeneracy pattern after quasi-zero mode removal
- We expect, that this is general and $S U(4)$ applies for all $J \geq 1$ mesons

BARYON SECTOR:

With $J=\frac{1}{2}$ baryons we see the symmetry; for $J=\frac{3}{2}$ baryons more interpolators have to be included (under construction)

- It is speculated that an even higher symmetry is seen, because interpolators from two different irreducible reps are mass degenerate

THEORETICAL OBSERVATIONS:

Only interaction left in the system after quasi-zero mode removal is color-Coulomb interaction

