

Nucleon structure properties with nonperturbative quarks and gluons

Gernot Eichmann

University of Giessen, Germany

37th International School of Nuclear Physics Erice, Sicily September 20, 2015

Outline

"Probing QCD with the electromagnetic interaction":

- typically studied with hadronic approaches (ChPT, dispersion relations, coupled-channel equations, models, . . .)
 - ⇒ quark-level description?
 In terms of QCD's Green functions:
 Dyson-Schwinger, Bethe-Salpeter, Faddeev equations
 ...see talk by Reinhard Alkofer
- four-point functions \Rightarrow complicated momentum and tensor structure
- involve **photons** \Rightarrow electromagnetic gauge invariance important

• Two-photon corrections to form factors: can explain difference between Rosenbluth and polarization transfer measurements Guichon, Vanderhaeghen, PRL 91 (2003)

< ロ ト < 同 ト < 三 ト < 三 ト

Arrington, Blunden, Melnitchouk Prog. Part. Nucl. Phys. 66 (2011)

· Proton radius puzzle:

can 2γ corrections explain difference between electron and muon measurements?

So far: probably not, but . . .

Carlson, Vanderhaeghen, 2011 Birse, McGovern, EPJ A 48 (2012)

... see talk by Oleksandr Tomalak

Four independent variables:

$$\eta_{+} = \frac{Q^{2} + Q'^{2}}{2m^{2}}, \quad \eta_{-} = \frac{Q \cdot Q'}{m^{2}}$$

 $Q^{2} - Q'^{2}, \quad \eta_{-} = \frac{Q \cdot Q'}{m^{2}}$

$$\omega = \frac{Q^2 - {Q'}^2}{2m^2}, \qquad \lambda = \frac{p \cdot \Sigma}{m^2}$$

- DVCS: handbag dominance, GPDs
- Forward limit: structure functions in DIS
- Timelike region: pp annhihilation at PANDA
- Spacelike region: two-photon corrections to nucleon form factors, proton radius puzzle?

< ロ ト < 同 ト < 三 ト < 三 ト

Compton amplitude = sum of Born terms + 1PI structure part:

Compton amplitude = sum of Born terms + 1PI structure part:

Bethe-Salpeter equations

• Extract hadron properties from **poles** in $q\bar{q}$, qqq scattering matrices:

• Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T = K + KG_0 T$

Homogeneous BSE for **BS amplitude:**

イロト イポト イヨト イヨト

· Kernel is connected to quark Dyson-Schwinger equation:

Bethe-Salpeter equations

• Extract hadron properties from **poles** in $q\bar{q}$, qqq scattering matrices:

• Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T = K + KG_0 T$

Homogeneous BSE for **BS amplitude:**

• Kernel is connected to quark Dyson-Schwinger equation:

Rainbow-ladder: $\alpha(k^2) = \alpha_{IR} \left(\frac{k^2}{\Lambda^2}, \eta \right) + \alpha_{UV}(k^2)$

adjust scale Λ to observable, keep width η as parameter

Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999)

Baryons

< ロ ト < 同 ト < 三 ト < 三 ト

Pion form factor

A. Krassnigg (Schladming 2010), Maris & Tandy, Nucl. Phys. Proc. Suppl. 161 (2006) Form factor from

• Timelike vector meson poles automatically generated by quark-photon vertex BSE!

- $\Rightarrow \Gamma^{\mu} = \begin{array}{l} \textbf{Ball-Chiu} \\ (em. gauge invariance) \end{array}$
 - + Transverse part (vm. poles & dominance)
- Include **pion cloud** effects: Kubrak, GE, Fischer, Williams, in preparation

< □ >

Nucleon em. form factors

- same input, all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)
- electric proton form factor:
 consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q², κ^s = -0.12 reproduced (pion effects cancel!)
- charge radii & magnetic moments agree with lattice at larger quark masses, flat, no chiral divergences for radii
- Similar for axial & pseudoscalar FFs, Δ and N→Δγ transition form factors
 GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PRD 87 (2013), Alkofer et al., Hyperf. Int. 234 (2015)
- \Rightarrow "quark core without pion-cloud effects"

イロト イポト イヨト イヨト

Tetraquarks

$$\begin{array}{c} -p_{1} \\ -p_{2} \\ p_{2} \\ p_{1} \\ p_{1} \\ + \end{array} = \begin{array}{c} 0 \\ p_{2} \\ p_{1} \\ p_{1} \\ + \end{array} = \begin{array}{c} 0 \\ p_{2} \\ p_{1} \\ p_{1} \\ + \end{array} = \begin{array}{c} 0 \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{1} \\ p_{1} \\ + \end{array} = \begin{array}{c} 0 \\ p_{1} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{1} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{2} \\$$

 BSE dynamically generates pion poles in wave function, drive σ mass from 1.5 GeV to ~350 MeV

diquark

Four quarks rearrange to "meson molecule", diquarks irrelevant

Tetraquark is at the same time dynamically generated resonance!

... see talk by Christian Fischer

< ロ ト < 同 ト < 三 ト < 三 ト

Compton scattering ...

Compton amplitude = sum of Born terms + 1PI structure part:

... at the quark level

But only **sum** is **gauge invariant**, not individual diagrams \Rightarrow problem!

イロト イポト イヨト イヨト

Gauge invariance

Simplest example: photon vacuum polarization

$$\Pi^{\mu\nu}(Q) = a(Q^2)\,\delta^{\mu\nu} + b(Q^2)\,Q^{\mu}Q^{\nu}$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -bQ^2$ (not $b = -a/Q^2$!!!)

In total:

$$\Pi^{\mu\nu}(Q) = \Pi(Q^2) \left(Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu} \right) = \Pi(Q^2) \, t^{\mu\nu}_{QQ} \quad \sim \quad Q^2 \qquad \qquad t^{\mu\nu}_{AB} = A \cdot B \, \delta^{\mu\nu} - B^{\mu} A^{\nu} + B^{\mu} A^{\mu} + B^{\mu} A^{\nu} + B^{\mu} A^{\mu} + B^{\mu} + B^{\mu} A^{\mu} + B^{\mu} +$$

Or generally:

$$\Pi^{\mu\nu}(Q) = \underbrace{\Pi(Q^2) t^{\mu\nu}_{QQ}}_{\text{transverse}} + \underbrace{\widetilde{\Pi}(Q^2) \delta^{\mu\nu}}_{\text{,gauge}}$$

- 1-loop in dim. reg: $\widetilde{\Pi}(Q^2) = 0$... ok
- 1-loop with cutoff: $\widetilde{\Pi}(Q^2) \sim \Lambda^2 \neq 0$... quadratic divergence!

<□▶ < □▶ < □▶ < 三▶ < 三▶ = 三 のへで

Gauge invariance

Simplest example: photon vacuum polarization

$$\Pi^{\mu\nu}(Q) = a(Q^2)\,\delta^{\mu\nu} + b(Q^2)\,Q^{\mu}Q^{\nu}$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -bQ^2$ (not $b = -a/Q^2$!!!)

In total:

$$\Pi^{\mu\nu}(Q) = \Pi(Q^2) \left(Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu} \right) = \Pi(Q^2) \, t^{\mu\nu}_{QQ} \quad \sim \quad Q^2 \qquad \qquad t^{\mu\nu}_{AB} = A \cdot B \, \delta^{\mu\nu} - B^{\mu} A^{\nu}$$

Or generally:

$$\Pi^{\mu\nu}(Q) = \underbrace{\Pi(Q^2) \, t^{\mu\nu}_{QQ}}_{\text{transverse}} + \underbrace{\widetilde{\Pi}(Q^2) \, \delta^{\mu\nu}}_{\text{,gauge part}}, \underbrace{\underbrace{\Pi(Q^2) \, \delta^{\mu\nu}}_{\text{,gauge part}}}_{\text{part}}$$

What if calculation **breaks** gauge invariance by **more** than cutoff? Transverse projection?

$$T_Q^{\mu\alpha} \Pi^{\alpha\beta} T_Q^{\beta\nu} = \left[\Pi(Q^2) + \frac{\widetilde{\Pi}(Q^2)}{Q^2} \right] t_{QQ}^{\mu\nu}$$

⇒ bad: kinematic singularities

Gauge invariance

Simplest example: photon vacuum polarization

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^2 = 0$ (intermediate massless particle, but $\Pi^{\mu\nu} = 1$ PI)
- Transversality \Rightarrow Ward identity: $Q^{\mu}\Pi^{\mu\nu}(Q) = 0 \Rightarrow a = -bQ^2$ (not $b = -a/Q^2$!!!)

In total:

$$\Pi^{\mu\nu}(Q) = \Pi(Q^2) \left(Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu} \right) = \Pi(Q^2) \, t^{\mu\nu}_{QQ} \quad \sim \quad Q^2 \qquad \qquad t^{\mu\nu}_{AB} = A \cdot B \, \delta^{\mu\nu} - B^{\mu} A^{\nu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu\nu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^{\mu}_{AB} - B^{\mu}_{AB} - B^{\mu} A^{\mu}_{AB} = A \cdot B \, \delta^$$

Or generally:

- In general: need to project onto full transverse + gauge basis, subtract gauge part.
- Compton amplitude: 32 tensors (18 transverse + 14 gauge). Transverse basis derived by Tarrach Tarrach, Nuovo Cim. 28 (1975)

Nucleon resonances I

• Calculate all s- & u-channel nucleon resonance contributions ($J = \frac{1^{\pm}}{2}, \frac{3^{\pm}}{2}$)

(+ crossed term)

- Needs offshell N, N*, Δ, . . . transition vertices.
 Δ vertices must satisfy spin-3/2 gauge invariance, otherwise offshell spin-1/2 background
 Pascalutsa, Timmermanns, PRC 60 (1999); Shklyar, Lenske, PRC 80 (2009)
- General form of offshell $J = \frac{1}{2}^{\pm} (\rightarrow 8)$ and $\frac{3}{2}^{\pm} (\rightarrow 12)$ transition currents: GE. Ramalho. in preparation

Gernot Eichmann (Uni Giessen)

Nucleon resonances II

- · What about nucleon Born term?
- offshell nucleon-photon vertex depends on 12 tensor structures (8 transverse, 4 gauge)
- Must use Dirac current, otherwise Born term not gauge invariant

(can be restored by adding terms in Compton amplitude ⇒ but then no longer just Born) GE, Fischer, PRD 87 (2013)

⇒ careful with offshell form factors!

Compton FFs: gauge part is zero

Gernot Eichmann (Uni Giessen)

Nucleon resonances II

- · What about nucleon Born term?
- offshell nucleon-photon vertex depends on 12 tensor structures (8 transverse, 4 gauge)
- Must use Dirac current, otherwise Born term not gauge invariant

(can be restored by adding terms in Compton amplitude ⇒ but then no longer just Born) GE, Fischer, PRD 87 (2013)

⇒ careful with offshell form factors!

Compton FFs: gauge part is zero

Add **non-Dirac current:** gauge part is nonzero, but transverse almost same!

⇒ transverse + gauge basis works!

Gernot Eichmann (Uni Giessen)

Compton amplitude

Proton polarizabilities

Preliminary results:

- band = result inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- *α_E* in ballpark, *β_M* too small (expect large pion effects)

Proton polarizabilities

Preliminary results:

- band = result inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- *α_E* in ballpark, *β_M* too small (expect large pion effects)
- α_E dominated by Born (handbag), β_M small due to cancellation

↓ η₊

 n_{-}

vcs

ω

RCS

Proton polarizabilities

Preliminary results:

- band = result inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie & Fonvieille, EPJ ST 198 (2011)
- *α_E* in ballpark, *β_M* too small (expect large pion effects)
- α_E dominated by Born (handbag), β_M small due to cancellation
- What about Δ ? Large contribution to β_M ! Pascalutsa & Phillips, PRC 68 (2003)

In total: polarizabilities ≈

Born (handbag)

- + 1PI (t-channel meson poles)
- + nucleon resonances (mostly Δ)
- + pion cloud (at low η_+)?

↓ η₊

vcs

RCS

Summary & Outlook

- Baryon masses, electromagnetic & transition form factors reasonably well described, but need to include pion-cloud effects
- Light scalar mesons as tetraquarks, transition from four quarks to "meson molecule" ...see talk by Christian Fischer GE, Fischer, Heupel, 1508.07178 [hep-oh]
- Compton scattering: looks promising
 ⇒ look into spin polarizabilities, structure functions, VCS, proton radius puzzle
- Hadronic light-by-light: almost same problem! gauge invariant calculation, but need transverse + gauge basis for meaningful predictions GE, Fischer, Heupel, 1505.06336 [hep-ph], to appear in PRD

• Other scattering processes: microscopically the same! $N\pi$ scattering, $\pi\pi$ scattering, pion electroproduction, . . .

イロト イポト イヨト イヨト