Nucleon structure properties with nonperturbative quarks and gluons

Gernot Eichmann
University of Giessen, Germany

37th International School of Nuclear Physics
Erice, Sicily
September 20, 2015

Outline

"Probing QCD with the electromagnetic interaction":

Compton scattering

Pion electroproduction

Hadronic
light-by-light

- typically studied with hadronic approaches
(ChPT, dispersion relations, coupled-channel equations, models, . . .)
\Rightarrow quark-level description?
In terms of QCD's Green functions:
Dyson-Schwinger, Bethe-Salpeter, Faddeev equations ... see talk by Reinhard Alkofer
- four-point functions \Rightarrow complicated momentum and tensor structure
- involve photons \Rightarrow electromagnetic gauge invariance important

Compton scattering

- Two-photon corrections to form factors: can explain difference between Rosenbluth and polarization transfer measurements
Guichon, Vanderhaeghen, PRL 91 (2003)

Arrington, Blunden, Melnitchouk
Prog. Part. Nucl. Phys. 66 (2011)

- Proton radius puzzle:
can 2γ corrections explain difference between electron and muon measurements?
So far: probably not, but . . .
Carlson, Vanderhaeghen, 2011
... see talk by Oleksandr Tomalak

Compton scattering

Four independent variables:

$$
\begin{array}{cc}
\eta_{+}=\frac{Q^{2}+Q^{\prime 2}}{2 m^{2}}, & \eta=\frac{Q \cdot Q^{\prime}}{m^{2}}, \\
\omega=\frac{Q^{2}-Q^{\prime 2}}{2 m^{2}}, & \lambda=\frac{p \cdot \Sigma}{m^{2}}
\end{array}
$$

- RCS: nucleon polarizabilities

Krupina \& Pascalutsa, PRL 110 (2013)

- VCS: generalized polarizabilities
- DVCS: handbag dominance, GPDs
- Forward limit: structure functions in DIS
- Timelike region: $\mathrm{p} \overline{\mathrm{p}}$ annhihilation at PANDA
- Spacelike region: two-photon corrections to nucleon form factors, proton radius puzzle?

Compton scattering

Compton amplitude $=$ sum of Born terms +1 PI structure part:

 (ChPT)

t-channel
meson exchange
$\left(\pi, \sigma, a_{1}, \ldots\right)$
s/u-channel
nucleon resonances

$\left(\Delta, N^{*}, \ldots\right)$

Compton scattering

Compton amplitude $=$ sum of Born terms +1 PI structure part:

Griesshammer, McGovern, Phillips, Feldman, Prog. Part. Nucl. Phys. 67 (2012)

„Pion cloud" (ChPT)

t-channel
meson exchange
($\pi, \sigma, a_{1}, \ldots$)
s/u-channel
nucleon resonances

$\left(\Delta, N^{*}, \ldots\right)$
but also:

\Rightarrow is there a common underlying quark-level description?

Bethe-Salpeter equations

- Extract hadron properties from poles in $q \bar{q}, q q q$ scattering matrices:

- Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T=K+K G_{0} T$

Homogeneous BSE for BS amplitude:

- Kernel is connected to quark Dyson-Schwinger equation:

Bethe-Salpeter equations

- Extract hadron properties from poles in $q \bar{q}, q q q$ scattering matrices:

- Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T=K+K G_{0} T$

$$
\xrightarrow{p^{2} \rightarrow-m^{2}}
$$

Homogeneous BSE for BS amplitude:

- Kernel is connected to quark Dyson-Schwinger equation:

Rainbow-ladder: $\quad \alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k_{彳^{2}}^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)$ adjust scale Λ to observable, keep width η as parameter

Maris, Roberts, Tandy,
PRC 56 (1997), PRC 60 (1999)

Baryons

- Covariant Faddeev equation for baryons: keep 2-body interactions \& rainbow-ladder, but no further approximations: $M_{N}=0.94 \mathrm{GeV}$
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011),
Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)

- Baryon form factors:

nucleon and Δ FFs, $N \rightarrow \Delta \gamma$ transition
GE, PRD 84 (2011), Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013),
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

Good overall description:
em. gauge invariance $\sqrt{ }$ vector-meson poles $\sqrt{ }$ but missing pion effects at low Q^{2}
... see talk by Reinhard Alkofer

Delta:

Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon:
GE, Alkofer,
Krassnigg, Nicmorus, PRL 104 (2010);
GE, PRD 84 (2011)
ρ-meson:
Maris \& Tandy, PRC 60 (1999)

Pion form factor

A. Krassnigg (Schladming 2010),

Maris \& Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

- Form factor from

- Timelike vector meson poles automatically generated by quark-photon vertex BSE!

$\Rightarrow \Gamma^{\mu}=$ Ball-Chiu (em. gauge invariance)
+ Transverse part
(vm. poles \& dominance)

Nucleon em. form factors

- same input, all ingredients calculated, model dependence shown by bands GE, PRD 84 (2011)
- electric proton form factor: consistent with data, possible zero crossing
- magnetic form factors: missing pion effects at low Q^{2}, $\kappa^{s}=-0.12$ reproduced (pion effects cancel!)
- charge radii \& magnetic moments agree with lattice at larger quark masses, flat, no chiral divergences for radii
- Similar for axial \& pseudoscalar FFs, Δ and $N \rightarrow \Delta \gamma$ transition form factors GE, Fischer, EPJ A 48 (2012), Sanchis-Alepuz et al., PRD 87 (2013), Alkofer et al., Hyperf. Int. 234 (2015)
\Rightarrow "quark core without pion-cloud effects"

Tetraquarks

- Solution of four-body equation (same input) reproduces mass pattern for light scalar mesons: $\sigma, \kappa, a_{0}, f_{0}$ GE, Fischer, Heupel, 1508.07178 [hep-ph]

- BSE dynamically generates pion poles in wave function, drive σ mass from 1.5 GeV to $\sim 350 \mathrm{MeV}$

Four quarks rearrange
to "meson molecule", diquarks irrelevant

Tetraquark is at the same time dynamically generated resonance!
... see talk by Christian Fischer

Compton scattering

Compton amplitude $=$ sum of Born terms +1 PI structure part:

Griesshammer, McGovern, Phillips, Feldman, Prog. Part. Nucl. Phys. 67 (2012)
"Pion cloud" (ChPT)

Born terms: determined by nucleon form factors

t-channel meson exchange

$$
\left(\pi, \sigma, a_{1}, \ldots\right)
$$

s/u-channel
nucleon resonances
$\left(\Delta, N^{*}, \ldots\right)$
but also:

\Rightarrow is there a common underlying quark-level description?

... at the quark level

Derived closed expression for Compton amplitude at quark level (here: rainbow-ladder, modulo crossing \& permutation)

GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

\checkmark crossing symmetry
$\sqrt{ }$ em. gauge invariance
\checkmark perturbative processes included
$\checkmark \mathrm{s}$, t , u channel poles generated in QCD

But only sum is gauge invariant, not individual diagrams \Rightarrow problem!

Gauge invariance

Simplest example: photon vacuum polarization

$$
\Pi^{\mu \nu}(Q)=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!) In total:

$$
\Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right)\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu} \quad \sim \quad Q^{2} \quad t_{A B}^{\mu \nu}=A \cdot B \delta^{\mu \nu}-B^{\mu} A^{\nu}
$$

Or generally:

- 1-loop in dim. reg: $\widetilde{\Pi}\left(Q^{2}\right)=0$... ok
- 1-loop with cutoff: $\widetilde{\Pi}\left(Q^{2}\right) \sim \Lambda^{2} \neq 0 \quad$... quadratic divergence!

Gauge invariance

Simplest example: photon vacuum polarization

$$
\Pi^{\mu \nu}(Q)=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!)

In total:

$$
\Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right)\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu} \quad \sim \quad Q^{2} \quad t_{A B}^{\mu \nu}=A \cdot B \delta^{\mu \nu}-B^{\mu} A^{\nu}
$$

Or generally:

What if calculation breaks gauge invariance by more than cutoff? Transverse projection?

$$
T_{Q}^{\mu \alpha} \Pi^{\alpha \beta} T_{Q}^{\beta \nu}=\left[\Pi\left(Q^{2}\right)+\frac{\widetilde{\Pi}\left(Q^{2}\right)}{Q^{2}}\right] t_{Q Q}^{\mu \nu}
$$

\Rightarrow bad: kinematic singularities

Gauge invariance

Simplest example: photon vacuum polarization

$$
\Pi^{\mu \nu}(Q)=a\left(Q^{2}\right) \delta^{\mu \nu}+b\left(Q^{2}\right) Q^{\mu} Q^{\nu}
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (intermediate massless particle, but $\Pi^{\mu \nu}=1 \mathrm{PI}$)
- Transversality \Rightarrow Ward identity: $Q^{\mu} \Pi^{\mu \nu}(Q)=0 \Rightarrow a=-b Q^{2} \quad$ (not $b=-a / Q^{2}$!!!) In total:

$$
\Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right)\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)=\Pi\left(Q^{2}\right) t_{Q Q}^{\mu \nu} \quad \sim \quad Q^{2} \quad t_{A B}^{\mu \nu}=A \cdot B \delta^{\mu \nu}-B^{\mu} A^{\nu}
$$

Or generally:

- In general: need to project onto full transverse + gauge basis, subtract gauge part.
- Compton amplitude:

32 tensors (18 transverse + 14 gauge).
Transverse basis derived by Tarrach
Tarrach, Nuovo Cim. 28 (1975)

Nucleon resonances I

- Calculate all s- \& u-channel nucleon resonance contributions ($J=\frac{1_{2}}{}{ }^{ \pm}, \frac{3}{2}^{ \pm}$)

- Needs offshell N, N^{*}, Δ, \ldots transition vertices.
Δ vertices must satisfy spin-3/2 gauge invariance, otherwise offshell spin-1/2 background Pascalutsa, Timmermanns, PRC 60 (1999); Shklyar, Lenske, PRC 80 (2009)
- General form of offshell $J=\frac{1}{2}^{ \pm}(\rightarrow 8)$ and $\frac{3}{2}^{ \pm}(\rightarrow 12)$ transition currents:

GE, Ramalho, in preparation

Residue of Δ exchange: 18 Compton FFs

Transverse basis works!
depends almost only on η_{+}
\Rightarrow same in all kinematic limits!

Nucleon resonances II

- What about nucleon Born term?
- offshell nucleon-photon vertex depends on 12 tensor structures (8 transverse, 4 gauge)
- Must use Dirac current, otherwise Born term not gauge invariant (can be restored by adding terms in Compton amplitude \Rightarrow but then no longer just Born)
GE, Fischer, PRD 87 (2013)
\Rightarrow careful with offshell form factors!

\[

\]

Compton FFs: gauge part is zero

Nucleon resonances II

- What about nucleon Born term?
- offshell nucleon-photon vertex depends on 12 tensor structures (8 transverse, 4 gauge)
- Must use Dirac current, otherwise Born term not gauge invariant (can be restored by adding terms in Compton amplitude \Rightarrow but then no longer just Born) GE, Fischer, PRD 87 (2013)
\Rightarrow careful with offshell form factors!

\[

\]

Compton FFs: gauge part is zero

Add non-Dirac current: gauge part is nonzero, but transverse almost same!
\Rightarrow transverse + gauge basis works!

Compton amplitude

Nucleon resonances

"Impulse approximation"

cat's ears diagrams

- Offshell quark Compton vertex: 6 kinematic invariants, 128 tensors $(72+56)$, \Rightarrow difficult!
- Derived inhomogeneous BSE, solved in rainbow-ladder GE, Fischer, PRD 87 (2013)
- Calculate Compton amplitude, project on transverse + gauge \Rightarrow extract polarizabilities!

Proton polarizabilities

Preliminary results:

- band = result inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie \& Fonvieille, EPJ ST 198 (2011)

- α_{E} in ballpark, β_{M} too small (expect large pion effects)

Proton polarizabilities

Preliminary results:

- band = result inside cone (70% of radius)
- compared to GPs from dispersion relation Pasquini et al., EPJ A11 (2001), Downie \& Fonvieille, EPJ ST 198 (2011)

- α_{E} in ballpark, β_{M} too small (expect large pion effects)
- α_{E} dominated by Born (handbag), β_{M} small due to cancellation

Proton polarizabilities

Summary \& Outlook

- Baryon masses, electromagnetic \& transition form factors reasonably well described, but need to include pion-cloud effects
- Light scalar mesons as tetraquarks, transition from four quarks to "meson molecule"
... see talk by Christian Fischer GE, Fischer, Heupel, 1508.07178 [hep-ph]
- Compton scattering: looks promising \Rightarrow look into spin polarizabilities, structure functions, VCS, proton radius puzzle
- Hadronic light-by-light: almost same problem! gauge invariant calculation, but need transverse + gauge basis for meaningful predictions GE, Fischer, Heupel, 1505.06336 [hep-ph], to appear in PRD

- Other scattering processes: microscopically the same! $N \pi$ scattering, $\pi \pi$ scattering, pion electroproduction, ...

