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Outline

typically studied with hadronic approaches
(ChPT, dispersion relations, coupled-channel equations, models, . . .)

        quark-level description?
        In terms of QCD’s Green functions:
        Dyson-Schwinger, Bethe-Salpeter, Faddeev equations

four-point functions  ⇒  complicated momentum and tensor structure

involve photons  ⇒  electromagnetic gauge invariance important

“Probing QCD with the electromagnetic interaction”: 

Pion electro-
production

Compton 
scattering 

Hadronic
light-by-light

⇒  

. . . see talk by Reinhard Alkofer
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Compton scattering

Two-photon corrections to form factors:
can explain difference between Rosenbluth 
and polarization transfer measurements

Proton radius puzzle:
can 2𝛾 corrections explain difference between 
electron and muon measurements?
So far: probably not, but . . .
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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We can also localize the various kinematic limits in this
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• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

𝛥 𝛥

+ + . . .

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Compton scattering

Forward limit: structure functions in DIS    

Timelike region: 

Spacelike region: two-photon corrections 
to nucleon form factors, proton radius puzzle? 

pp annhihilation at PANDA

RCS: nucleon polarizabilities    

DVCS: handbag dominance, GPDs 

VCS: generalized polarizabilities
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Krupina & Pascalutsa, PRL 110 (2013)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail
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+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Four independent variables:

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
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from Eq. (11) we also have
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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We can also localize the various kinematic limits in this
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• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and
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all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
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• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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2
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:
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Here, a hat denotes a normalized four-momentum (e.g.,
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Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and
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all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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2.2 Hadrons, poles and decay constants

We have mentioned the implications of various symmetry relations for hadrons, but we
have not yet developed the tools to actually extract hadron properties from QCD. In
principle, hadrons are contained in the state space of QCD. A self-adjoint Hamiltonian
has a complete set of orthogonal eigenstates which we will call |λ〉; they carry momenta p
plus further quantum numbers that reflect the symmetries of QCD (angular momentum,
parity, flavor, etc.). Their completeness relation is

1 =
∑

λ

1

(2π)3

∫
d4p θ(p0) δ(p2 − m2

λ) |λ〉〈λ| =
∑

λ

1

(2π)3

∫
d3p

2Ep
|λ〉〈λ| , (2.70)

where the Lorentz-invariant integral weight implements the condition that each hadron
is on its mass shell (p2 = m2

λ, or E2
p = p2 + m2

λ). You might understandably feel a
bit uncomfortable with all this: in principle, the state space can contain (unphysical)
colored states, colorless ’one-particle’ bound states like mesons and baryons, but also
glueballs, multiquark and multi-hadron states – also the C14 nucleus should be some-
where buried in the QCD state space. We will only be interested in qq̄ and qqq color
singlets, but whenever you encounter a sum over λ, keep in mind that the actual Fock
space of QCD is enormous.

Hadrons generate poles. A useful way to extract hadron properties, which is also
closely related to the experimental situation, is based on the fact that hadrons produce
poles in QCD’s Green functions, and hence in scattering amplitudes and cross sections.
The starting point is the Källén-Lehmann spectral representation which is usually de-
rived for the propagator of a theory. Inserting the completeness relation (2.70) between
the two field operators that appear in the propagator’s time-ordered vacuum expecta-
tion value yields a single-particle pole at p2 = m2

λ, and in principle also a multi-particle
continuum with branch cuts that start at p2 = 4m2

λ and extend to infinity. This prop-
erty will, however, not hold in QCD because such states would carry color. Since quarks
transform under the fundamental triplet representation of SU(3)C , a single quark field
operator cannot create colorless states, and one has to make sure somehow that those
are indeed absent from the physical state space. In fact, the absence of a Källén-
Lehmann representation can be used as a criterion for confinement: the elementary
quark and gluon propagators should not have timelike particle poles.

On the other hand, bound states are color singlets and can appear as poles in higher
n−point functions, which allows us to derive a spectral representation for those. Take
for example the quark four-point function

Gαβγδ(x1, x2, x3, x4) = 〈0|Tψα(x1)ψβ(x2)ψγ(x3)ψδ(x4)|0〉 . (2.71)

Inserting a complete set of states will produce bound-state poles because a composite
operator ψψ can produce color singlet quantum numbers (3 ⊗ 3̄ = 1 ⊕ 8). Instead of
working with the four-point function directly, we can simplify the problem by setting
x1 = x2 and x3 = x4 and contracting the resulting quark pairs with Dirac and flavor
matrices ta Γβα Γ

′
δγ tb from Eq. (2.12). Then we obtain current correlators of the form

〈0|TPa(x)Pb(y)|0〉 , 〈0|TV µ
a (x)V ν

b (y)|0〉 , 〈0|TAµ
a(x)Aν

b (y)|0〉 , etc. (2.72)

2, x1x(χ

Use scattering equation (inhomogeneous BSE)
to obtain T in the first place:  
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for BS amplitude:
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµΣA + 2kµ(i/k∆A +∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+)− F (k2

−)
k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

=µΓ

+

⇒

Pion form factor
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+)− A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+)− B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B]C + [B, C]A + [C, A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γ

µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµ
T

(
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i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γ
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i
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It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex
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−

(73)
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Transverse part
(vm. poles & dominance)

Kubrak, GE, Fischer, Williams, in preparation
Include pion cloud effects:
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Nucleon em. form factors

same input, all ingredients calculated, 
model dependence shown by bands
GE,  PRD 84 (2011)

⇒ “quark core without pion-cloud effects”

electric proton form factor:
consistent with data, possible zero crossing 

magnetic form factors:
missing pion effects at low 𝑄�,
𝜅� = –0.12 reproduced (pion effects cancel!) 

charge radii & magnetic moments
agree with lattice at larger quark masses,
flat, no chiral divergences for radii 

Similar for axial & pseudoscalar FFs,
𝛥 and 𝑁�𝛥𝛾 transition form factors
GE, Fischer,  EPJ A 48 (2012),  Sanchis-Alepuz et al., 
PRD 87 (2013),   Alkofer et al., Hyperf. Int. 234 (2015)

Large 

Electric proton form factor 
at large momenta  Eichmann,  PRD 84 (2011)

Difference likely due to
two-photon corrections

Rosenbluth method suggested 
/  = const., in agreement 

with perturbative scaling

Polarization experiments at JLAB 
showed falloff in / , 
with possible zero crossing 

Faddeev result consistent with data:
OAM in nucleon amplitude

Underway: investigate two-photon effects
via Compton scattering amplitude

Guichon, Vanderhaeghen, PRL 91 (2003) 

Warren

Plaster/Madey

Riordan

Glazier

0.0

1.0

1.2

0.4

0.2

0.0

0.4

0.2

0.3

0.1

0.0

0.4

0.5

0.3

0.1

0.2

0.6

0.0

2.0

1.0

1.5

0.5

-0.2

0.6

0.8

0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

0 2 4 6 8

/

/

/

/

Crawford

Paolone

Zhan

Gayou/Puckett

Puckett

Punjabi

Ron

 /  /(    )     

  

Large 

Electric proton form factor 
at large momenta  Eichmann,  PRD 84 (2011)

Difference likely due to
two-photon corrections

Rosenbluth method suggested 
/  = const., in agreement 

with perturbative scaling

Polarization experiments at JLAB 
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Faddeev result consistent with data:
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Underway: investigate two-photon effects
via Compton scattering amplitude
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Tetraquarks

Solution of four-body equation (same input) 
reproduces mass pattern for light scalar mesons: 𝜎, 𝜅, 𝑎₀, 𝑓₀
GE, Fischer, Heupel,  1508.07178 [hep-ph]

BSE dynamically generates pion poles in wave function,
drive 𝜎 mass from 1.5 GeV to ~350 MeV

Four quarks rearrange
to “meson molecule”,  
diquarks irrelevant 

Tetraquark is at the 
same time dynamically 
generated resonance! 
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Compton scattering ...

„Pion cloud“ 
(ChPT)

t-channel
meson exchange

(𝜋, 𝜎, 𝑎�, . . .)

Compton amplitude = sum of Born terms + 1PI structure part:

s/u-channel
nucleon resonances

(𝛥, 𝑁*, . . .)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Griesshammer, McGovern, Phillips, Feldman,
Prog. Part. Nucl. Phys. 67 (2012)

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’
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D
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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+ . (15)
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

Born terms: 
determined
by nucleon 
form factors

Polarizabilities: 
structure information 
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4.2.4 Leading-order structure contributions and polarisabilities

It is gratifying that the basic low-energy theorems of Eq. (2.3) are reproduced in this EFT, but our
interest is in the predictions made by the theory for the structure-dependent amplitudes, including the
static polarisabilities αE1, βM1 and the γ’s. As just described, the leading-order HBχPT Compton-
scattering amplitude is simply the Thomson term. At NLO—O(P 3)—there are the spin-dependent
Born contributions described above, but there are also contributions from pion loops [182], specifically
the diagrams depicted in Fig. 4.3. Individually these diagrams are divergent and violate the LETs, but

t

Figure 4.3: (Colour online) O(P 3) loop diagrams in HBχPT; all orderings of vertices and crossed as
well as direct photons are implied. Vertices (shown without dots) are all from the LO Lagrangian, that

is, L(1)
πN for the nucleonic coupling and L(2)

π for the γπ couplings. These also count as ε3 and e2δ2.

the sum is finite and leaves the Born contributions intact. Thus the sum of the loop diagrams contributes
only to the structure parts of the six amplitudes and hence vanishes quadratically for A1 and A2 as
ω → 0 and as the third power of ω for A3−6. The coefficients of these terms are the polarisabilities,
and at this order they are the same for both the proton and neutron. The results, first calculated by
Bernard et al. [98, 182], are

αE1 = 10βM1 =
10αEMg

2
A

192πmπf 2
π

= 12.5 , γE1E1 = 5γM1M1 = −5γM1E2 = −5γE1M2 = − 5αEMg
2
A

96π2m2
πf

2
π

= −5.6.

(4.13)
It should be stressed that up to third order the full amplitudes, as well as the polarisabilities, are

entirely predicted in terms of the well-known quantities mπ, fπ and gA; there are no free parameters. Of
course, the best method to analyse experiments for extracting even αE1 and βM1 is the subject of this
review, but nonetheless, the many attempts made in the past to measure these quantities all come out
close to these values for both the proton and neutron; in particular, the order-of-magnitude difference
between αE1 and βM1 and their nearly isoscalar nature is not easily understood in most models. This
has long been lauded as a stunning early success of HBχPT. (As the spin polarisabilities are less well
known, it is harder to judge these predictions; see Section 4.3.)

There are a number of caveats, however. Even strictly within HBχPT, one would expect higher-
order corrections to be of order P/Λχ—around 20% if the scale of the expansion were Λχ ∼ mρ. There
is also good reason to expect that for βM1 (as well as γM1M1), the scale is actually set by the much
smaller ∆-nucleon mass difference M∆ −MN. Furthermore, in a relativistic framework, the predictions
from the diagrams in Fig. 4.3 are substantially smaller: α

(p)
E1 = 6.8, β

(p)
M1 = −1.8 [183, 184]. But, before

dismissing the success of third-order HBχPT as a fluke, we should step back and remember that the
calculation gives us full amplitudes as a function of ω, not merely the static polarisabilities. As will
be shown in more detail subsequently, the full third-order cross section extends the region in which
data can be well described substantially beyond that where the Petrun’kin cross section (Born plus
static scalar polarisabilities) is valid. In particular, it reproduces the pronounced cusp at the photopion
threshold which is seen at forward scattering angles (see Fig. 3.1). Beyond that point, the data show a
huge rise in the cross section which is obviously due to the ∆(1232) (see Fig. 3.2), and one could not
expect a theory without the ∆(1232) to work in that region.

For completeness, we should mention that a handful of calculations of polarisabilities have been
done in the framework of SU(3)×SU(3) chiral perturbation theory, involving kaons as well as pions and
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all the octet baryons. Bernard et al. calculated the spin-independent static polarisabilities in HBχPT
[185] and showed that for nucleons the effect of kaon loops was small (see also Butler and Savage [186]);
Vijaya Kumar et al. found a similar result for γ0 [187]. Dynamical polarisabilities αE1(ω) and βM1(ω)
have also been calculated at NLO in a covariant framework by Aleksejevs and Barkanova [188].

4.2.5 Structure beyond leading order

Although the ability of third-order HBχPT to qualitatively describe low-energy data is encouraging,
the lack of any free parameters limits its use as a tool to extract more information from those data.
This situation changes at fourth order, because at that order we can construct Lagrangian terms like
ψ†F µνFµνψ which are multiplied by new, undetermined LECs. Such terms give rise to photon-nucleon
seagull diagrams which contribute terms proportional to ω2 to the amplitudes A1 and A2 [189]. In the
enumeration of Ref. [181], there are actually six such terms (numbers 89-94) but in the photon-nucleon

sector only four independent combinations of LECs enter, which we can call δα
(p)
E1, δα

(n)
E1, δβ

(p)
M1 and δβ

(n)
M1

(see L(4)
πN, Eq. (4.11), and Fig. 4.4). These are contributions to the spin-independent polarisabilities

of the proton and neutron which come from non-chiral physics—for example, quark substructure, or
resonances, according to perspective, and they obviously encode the leading effects of a ∆(1232) pole.
In addition, at fourth order a new set of πN diagrams has to be included. Finally, all the N2LO terms
in the expansion of the relativistic Born contributions to A1 and A2 are also generated via fourth-order
seagulls and diagrams like those of Fig. 4.4 with either one vertex taken from L(2)

πN or with an NLO
nucleon propagator.

Figure 4.4: (Colour online) O(P 4) diagrams in HBχPT; vertices labelled as in Figs 4.2 and 4.3 with

the addition of a (magenta) diced dot for the fourth-order counterterms δα
(p)
E1 etc. of L(4)

πN. All orderings
of vertices and crossed as well as direct photons are implied. Omitted are all diagrams obtained from
those in Fig. 4.3 by substituting an NLO vertex or propagator for an LO one. These also count as ε4

and e2δ4, though the final diagram is included at one order lower if polarisabilities are fit.

Of the loop diagrams, many are 1/MN corrections to the diagrams of Fig. 4.3 (no new LECs enter
in these). However, there are also two new types of diagrams—those with magnetic-moment couplings
as well as a pion loop, and those with a pion-nucleon seagull, as shown in Fig. 4.4. In the former, the
only new LECs are the well-known proton and neutron anomalous magnetic moments. In the latter,
however, the three πN LECs c1, c2 and c3 enter.

This time, the sum of all loop diagrams does make a O(ω) contribution to the Born terms. The
contributions are exactly those which are needed to replace the chiral-limit κ(0) with the correction that
shifts κ to its experimental value at this order. In the expansion of the γN vertex, this shift comes
from a diagram in which the photon couples to a pion loop, as in the third diagram of Fig. 4.4, but in
Compton scattering this is not the only diagram which gives δκ corrections to the Born term, nor is such
a correction the only contribution from this diagram [190–192]. The O(ω2) piece of the sum of all fourth-
order loop diagrams produces a logarithmically divergent result for the spin-independent polarisabilities.
These divergences are cancelled by the divergent parts of δα

(p)
E1 etc. to leave a finite but undetermined

total fourth-order contribution to the spin-independent polarisabilities [189]. By contrast, the O(ω3)
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... at the quark level

Derived closed expression for Compton amplitude at quark level
(here: rainbow-ladder, modulo crossing & permutation)

But only sum is gauge invariant, not individual diagrams ⇒ problem!

calculate thisapproximate this
(include all resonances)

neglect this
(for the moment)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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�   crossing symmetry 
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s- and u-channel
nucleon resonances: handbag diagrams +
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Gauge invariance 

Simplest example: photon vacuum polarization

transverse 
part

„gauge 
part“

Analyticity ⇒  a, b cannot have poles at Q  = 0 (intermediate massless particle, but        = 1PI)

Transversality ⇒  Ward identity: (not                    !!!)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =
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, ω =
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,
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=
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,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Gauge invariance

Simplest example: photon vacuum polarization
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =
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, ω =
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,
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=
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,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
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η+ + η−
2

, Z =
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =
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2

, Z =
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,
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Gauge invariance 

Simplest example: photon vacuum polarization

transverse 
part

„gauge 
part“

Analyticity ⇒  a, b cannot have poles at Q  = 0 (intermediate massless particle, but        = 1PI)

Transversality ⇒  Ward identity: (not                    !!!)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y
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+
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
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, ω =
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or, vice versa,
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∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2
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+
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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µ
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Π

In total:

Or generally:

� �

Compton amplitude: 
32 tensors (18 transverse + 14 gauge).
Transverse basis derived by Tarrach

In general: need to project onto full 
transverse + gauge basis, subtract gauge part.

Tarrach, Nuovo Cim. 28 (1975)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
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− − η2
+

√
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2
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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defined (GP, τ ′ = 0 and η− = 0).
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• Polarizabilities: η+ = η− = ω = λ = 0.

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Needs offshell 𝑁, 𝑁*, 𝛥, . . . transition vertices. 
𝛥 vertices must satisfy spin-3/2 gauge invariance, otherwise offshell spin-1/2 background

General form of offshell              (→8) and       (→12) transition currents:

Pascalutsa, Timmermanns,  PRC 60 (1999);   Shklyar, Lenske, PRC 80 (2009) 

GE,  Ramalho,  in preparation

depends almost only on 𝜂₊ 
⇒ same in all kinematic limits!

Residue of 𝛥 exchange:
18 Compton FFs

Transverse basis works!
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Nucleon resonances II

What about nucleon Born term?
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y
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+
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
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Σ = 1
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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4m2
=
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4
, τ ′ =

Q′2
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=
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Nucleon resonances II

What about nucleon Born term?
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ
m2

=
p · Q
m2

=
p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− are even under photon crossing and charge conjuga-
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tween Lorentz-invariant quantities, such as the Compton
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spacelike region that we need to integrate over in order to
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =
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.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
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4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Compton amplitude
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT
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S-levels:
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2
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η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Proton polarizabilities
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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(expect large pion effects)
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dispersion relation
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Downie & Fonvieille, EPJ ST 198 (2011)

Preliminary results: 

   Born (handbag) 
+ 1PI (t-channel meson poles)
+ nucleon resonances (mostly 𝛥) 
+ pion cloud (at low 𝜂₊)? 

In total: polarizabilities � 

𝛼�  dominated by Born (handbag),
𝛽� small due to cancellation
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
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}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
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2
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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band = result inside 
cone (70% of radius)

𝛼�  in ballpark, 𝛽�  too small
(expect large pion effects)

compared to GPs from 
dispersion relation
Pasquini et al., EPJ A11 (2001),
Downie & Fonvieille, EPJ ST 198 (2011)

Preliminary results: 

   Born (handbag) 
+ 1PI (t-channel meson poles)
+ nucleon resonances (mostly 𝛥) 
+ pion cloud (at low 𝜂₊)? 

In total: polarizabilities � 

𝛼�  dominated by Born (handbag),
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Proton polarizabilities
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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band = result inside 
cone (70% of radius)

𝛼�  in ballpark, 𝛽�  too small
(expect large pion effects)

compared to GPs from 
dispersion relation
Pasquini et al., EPJ A11 (2001),
Downie & Fonvieille, EPJ ST 198 (2011)

Preliminary results: 

   Born (handbag) 
+ 1PI (t-channel meson poles)
+ nucleon resonances (mostly 𝛥) 
+ pion cloud (at low 𝜂₊)? 

In total: polarizabilities � 

𝛼�  dominated by Born (handbag),
𝛽� small due to cancellation

What about 𝛥? Large contribution to 𝛽�!
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Pascalutsa & Phillips, PRC 68 (2003)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions
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pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,
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∆ = Q − Q′ = pf − pi , (8)

with the inverse relations
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2 ,
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)
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Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Hadronic light-by-light: almost same problem!
gauge invariant calculation, but need transverse + gauge basis for meaningful predictions
GE, Fischer, Heupel,  1505.06336 [hep-ph],  to appear in PRD  

Other scattering processes: microscopically the same!
𝑁𝜋 scattering, 𝜋𝜋 scattering, pion electroproduction, . . . 

Baryon masses, electromagnetic & transition form factors
reasonably well described, but need to include pion-cloud effects

Light scalar mesons as tetraquarks,
transition from four quarks to “meson molecule”
GE, Fischer, Heupel,  1508.07178 [hep-ph] 

Compton scattering: looks promising
⇒ look into spin polarizabilities, structure functions, VCS, proton radius puzzle

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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. . . see talk by Christian Fischer
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