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3.2. Relation to Structure Functions
The optical theorem relates the absorptive parts of the forward VVCS amplitudes to the nucleon

structure functions, or equivalently, the cross sections of virtual-photon absorption �⇤N ! X: 7
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These unitarity relations hold in the physical region, where the Bjorken variable is confined to the
unit interval: x 2 [0, 1].

The structure functions describing the purely elastic scattering are given in terms of the elastic
FFs:eq:elstructure
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where ⌧ = Q2/4M2 and GE(Q2), GM(Q2) are the Sachs FFs,

GE = F1 + ⌧F2, GM = F1 + F2. (3.7)

Furthermore, � is the Dirac delta-function, such that

�(1 � x) = ⌫el �(⌫ � ⌫el), with ⌫el = Q2/2M = 2M⌧. (3.8)

In the asymptotic limit, Q2 ! 1, and fixed x, the structure functions are related to the parton
distribution functions. We are, however, interested in the limit where Q and ⌫ are small. In this case
the VVCS amplitudes can on one hand be expanded in terms of polarizabilities and electromagnetic
radii, and on the other in terms of moments of structure functions. This expansion and the resulting
relations between the static electromagnetic properties of the nucleon and the moments of structure
functions will be discussed further below. Before that, we need to establish the dispersion relations
for the forward VVCS amplitudes.

3.3. Analyticity and Dispersion Relations
Consider the analytic structure the VVCS amplitudes Ti and Si in the complex plane of ⌫. We

have already seen that the Born contribution contains the nucleon pole at the kinematics of elastic
scattering, ⌫el = Q2/2M . The inelastic particle-production processes are manifested in the branch
cuts, starting the at first threshold ⌫0 and extending to infinity. Neglecting the higher-order in ↵

7The definition of the flux factor for the virtual photons, which goes into the definitions of these cross sections, is
rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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These unitarity relations hold in the physical region, where the Bjorken variable is confined to the
unit interval: x 2 [0, 1].

The structure functions describing the purely elastic scattering are given in terms of the elastic
FFs:eq:elstructure
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where ⌧ = Q2/4M2 and GE(Q2), GM(Q2) are the Sachs FFs,

GE = F1 + ⌧F2, GM = F1 + F2. (3.7)

Furthermore, � is the Dirac delta-function, such that

�(1 � x) = ⌫el �(⌫ � ⌫el), with ⌫el = Q2/2M = 2M⌧. (3.8)

In the asymptotic limit, Q2 ! 1, and fixed x, the structure functions are related to the parton
distribution functions. We are, however, interested in the limit where Q and ⌫ are small. In this case
the VVCS amplitudes can on one hand be expanded in terms of polarizabilities and electromagnetic
radii, and on the other in terms of moments of structure functions. This expansion and the resulting
relations between the static electromagnetic properties of the nucleon and the moments of structure
functions will be discussed further below. Before that, we need to establish the dispersion relations
for the forward VVCS amplitudes.

3.3. Analyticity and Dispersion Relations
Consider the analytic structure the VVCS amplitudes Ti and Si in the complex plane of ⌫. We

have already seen that the Born contribution contains the nucleon pole at the kinematics of elastic
scattering, ⌫el = Q2/2M . The inelastic particle-production processes are manifested in the branch
cuts, starting the at first threshold ⌫0 and extending to infinity. Neglecting the higher-order in ↵

7The definition of the flux factor for the virtual photons, which goes into the definitions of these cross sections, is
rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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(i) Describe the response of internal structure to applied external field 

Introduction

Scalar Polarizabilities – Conceptual

Electric Dipole Polarizability

P⃗ = 0

P⃗ = αE1E⃗

E⃗ ! Apply an electric field to a
composite system

! Separation of Charge, or
“Stretchability”

! Proportionality constant between
electric dipole moment and electric
field is the electric dipole
polarizability, αE1.

Provides information on force holding system together.

E. Downie (GWU) Nucleon Polarizabilities 29 July 2013 8 / 48

Electric dipole polarizability

Scalar Polarizabilities – Conceptual

Magnetic Dipole Polarizability

M⃗ = 0

M⃗ = βM1H⃗

H⃗

! Apply a magnetic field to a
composite system

! Alignment of dipoles or
“Alignability”

! Proportionality constant between
magnetic dipole moment and
magnetic field is the magnetic
dipole polarizability, βM1.

! Two contributions, paramagnetic
and diamagnetic, and they cancel
partially, giving βM1 < αE1.

Provides information on force holding system together.

E. Downie (GWU) Nucleon Polarizabilities 29 July 2013 9 / 48

Magnetic dipole polarizability

Nadiia Krupina
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Introduction

non-Born contribution, given by 
polarizabilities

Born (elastic) contributions

(ii) Accessed experimentally in Compton scattering
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Introduction

(iii) Theoretical approaches:
          Effective field theory      

          Dispersion relations

          Lattice QCD

non-Born contribution, given by 
polarizabilities

Born (elastic) contributions

(ii) Accessed experimentally in Compton scattering
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Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418
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Proton dipole polarizabilities
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Past experiments:  measured unpolarized cross sections of Compton scattering to extract 
alpha and beta from the angular dependence. 
(a la Rothenbluth separation of GE, GM)
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Low energy measurement of beam asymmetry can be used to extract 
magnetic polarizability independently of electric one

(applicability region
Energy<100 MeV)

Extraction of beta from beam asymmetry

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013; published 25 June 2013)

We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: 10.1103/PhysRevLett.110.262001 PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in
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FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).
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At 100 MeV NNLO BChPT and LEX curves coincide  for 
forward angles - ‘LEX regime’
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Preliminary results from MAMI

More data is needed to 
extract the values of 

polarizabilities

Nadiia Krupina
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Multipole expansion

fL+
EEwhere          denotes the multipole with the angular momentum of the initial photon L and 

the initial and final photons are both in an electrical mode.

Dynamical polarizabilities:

↵E1(!cm) = !�2
cm(2f1+

EE + f1�
EE),

�M1(!cm) = !�2
cm(2f1+

MM + f1�
MM )

�M1(0)↵E1(0) and
are the scalar polarizabilities

The values of scalar polarizabilities can be obtained by extrapolation of dynamical 
polarizabilities to zero energy.
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Summary

i) Polarizabilities are important for accurate evaluation of other observables, e.g. 
the proton structure effects in atomic Lamb shift
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Thank you for listening
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