Nucleon g₂ Structure Function at Large x: Probing Color Forces

Zein-Eddine Meziani

Outline:

Temple University

- Introduction
- Quark-gluon correlations and color forces
- JLab d2n and SANE experiments
- Physics results
- Summary

On behalf of the d2n and the SANE collaborations

Inclusive Deep Inelastic Scattering: 1-D View

Polarized structure functions
 g₁(x,Q²) (parton model interpretation)
 g₂(x,Q²) (quark-gluon correlations)

- Q^2 :Four-momentum transfer x : Bjorken variable ν : Energy transfer M : Nucleon mass
- W: Final state hadrons mass

$$\mathbf{L} \quad \frac{d^2\sigma}{dE'd\Omega} (\downarrow \Uparrow - \uparrow \Uparrow) = \frac{4\alpha^2}{MQ^2} \frac{E'}{\nu E} \left[(E + E'\cos\theta) \mathbf{g}_1(\mathbf{x}, \mathbf{Q}^2) - \frac{Q^2}{\nu} \mathbf{g}_2(\mathbf{x}, \mathbf{Q}^2) \right]$$

$$\mathbf{T} \quad \frac{d^2\sigma}{dE'd\Omega} (\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu \mathbf{g}_1(\mathbf{x}, \mathbf{Q}^2) + 2E \mathbf{g}_2(\mathbf{x}, \mathbf{Q}^2) \right]$$
September 20, 2015 Erice

Moments of Spin Structure Functions

First moments

Moments of Structure Functions: Probing Color Forces

 $\tau = 2$

 $\tau > 2$

 $\begin{array}{rcl} \text{single quark} & qq \text{ and } qg\\ \text{scattering} & \text{correlations} \end{array}$ $\longrightarrow \Gamma_1(Q^2) &\equiv \int_0^1 \mathrm{d}x \, g_1(x,Q^2) \\ &= \Gamma_1^{\mathrm{twist}-2}(Q^2) + \frac{M_N^2}{9\,Q^2} \left[a_2(Q^2) + 4\,d_2(Q^2) + 4\,f_2(Q^2)\right] + \mathcal{O}\left(\frac{M_N^4}{Q^4}\right) \end{array}$

 $\tau \equiv \text{twist} \equiv \text{operator dimension} - \text{spin}$

Moment of spin structure function g_1

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) \, dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \cdots$$

leading twist higher twist

 $\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12}g_A + \frac{1}{36}a_8) + \frac{1}{9}\Delta\Sigma + pQCD$ corrections

 $g_A = 1.257$ and $a_8 = 0.579$ are the triplet and octet axial charge, respectively $\Delta \Sigma$ = singlet axial charge

Moments of Structure Functions (continued)

$$\implies a_2(Q^2) \equiv 2 \int_0^1 dx \, x^2 \, g_1^{\text{twist}-2}(x,Q^2) \rightarrow \text{target mass correction term}$$

 \Rightarrow $d_2(Q^2) \rightarrow$ dynamical twist-3 matrix element

$$d_2(Q^2) = \int_0^1 dx \ x^2 \left[2g_1(x, Q^2) + 3g_2(x, Q^2) \right] \ d_2(Q^2) = \int_0^1 dx x^2 \bar{g}_2(x, Q^2)$$

$$\frac{1}{2} \langle N | \bar{\psi} \gamma^{\{\alpha} g \widetilde{G}^{\beta\}\gamma} \psi | N \rangle = d_2 \left(p^{\{\alpha} p^{\beta\}} S^{\gamma} - p^{\gamma} p^{\{\beta\}} S^{\gamma\}} \right)$$

 \implies $f_2(Q^2)$ \implies dynamical twist-4 matrix element

$$f_2(Q^2) = \frac{1}{2} \int_0^1 dx \ x^2 \left[7g_1(x, Q^2) + 12g_2(x, Q^2) - 9g_3(x, Q^2) \right]$$

 $\frac{1}{2} \langle N | \bar{\psi} \gamma_{\alpha} g \tilde{G}^{\beta \alpha} \psi | N \rangle = f_2 S^{\beta}$

g_2 and quark-gluon correlations

 $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$

• a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_{-1}^{1} g_1(x,Q^2) \frac{dy}{y}$$

• a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M} \frac{h_{T}(y,Q^{2})}{M} + \underbrace{\xi(y,Q^{2})}_{y} \frac{dy}{y} \right]_{q-g} \text{ correlations}$$

$$d_{2} = 3\int_{0}^{1} dxx^{2} \bar{g}_{2}(x) = \int_{0}^{1} dxx^{2} \left[3g_{2}(x) + 2g_{1}(x) \right]_{q-g}$$

"Color Polarizabilities"

X.Ji 95, E. Stein et al. 95

How does the gluon field respond when a nucleon is polarized ?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

 $\chi_{B,E} 2M^{2}\vec{S} = \langle PS | \vec{O}_{B,E} | PS \rangle$ where $\vec{O}_{B} = \psi^{\dagger} g \vec{B} \psi$ $\vec{O}_{E} = \psi^{\dagger} \vec{\alpha} \times g \vec{E} \psi$ $d_{2} = (\chi_{E} + 2\chi_{B})/4$ $f_{2} = \chi_{E} - \chi_{B}$

 d_2 and f_2 represent the response of the color $\vec{\mathsf{B}}$ & $\vec{\mathsf{E}}$ fields to the nucleon polarization

Lorentz Color Force (M. Burkardt)

Consider a charge e moving near speed of light ($\vec{v} = (0, 0, -1)$) along the $-\hat{z}$ direction. The electromagnetic Lorentz force is written as:

$$F^{y} = e\left[\vec{E} \times \vec{v}\vec{B}\right]^{y} = e(E^{y} - B^{x}) = -e\sqrt{(2)}F^{+y}$$

Color Lorentz force reads:

$$F^{y} = -\frac{\sqrt{2}}{2P^{+}} \langle P, S | \bar{q}G^{+y}\gamma^{+}q | P, S \rangle$$
$$= -\frac{1}{2P^{+}} \langle P, S | \bar{q}(B^{x} - E^{y})\gamma^{+}q | P, S \rangle$$
$$= -M^{2}d_{2}$$

M. Burkardt, Phys. Rev. D 88, 114502 (2013) and Nucl. Phys. A 735, 185 (2004).

Average Color Lorentz Force (M. Burkardt)

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \langle P, S | \bar{q}(0)gG^{+y}(0)\gamma^+q(0) | P, S \rangle$$

 \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

 $\langle F^y(0) \rangle = -M^2 d_2$ (rest frame; $S^x = 1$)

$$F_{E}^{y}(0) = -\frac{M^{2}}{4}\chi_{E} = -\frac{M^{2}}{4}\left[\frac{2}{3}\left(2d_{2}+f_{2}\right)\right]$$
$$F_{B}^{y}(0) = -\frac{M^{2}}{2}\chi_{B} = -\frac{M^{2}}{2}\left[\frac{1}{3}\left(4d_{2}-f_{2}\right)\right]$$

Earlier nucleon world results of g_2

Recent work on g₂: V. Braun et al. Phys. Rev. D83 (2011) 094023 September 20, 2015 Erice

Models and Lattice evaluations of d_2

Quark Bag Models

M.Stratmann, Z.Phys.C60,763(1993). X.Song, Phys.Rev.D54,1955(1996). X.Ji and P.Unrau, Phys.Lett.B333,228(1994).

Chiral Soliton Model

H.Weigel and L.Gamberg, Nucl. Phys. A680, 48 (2000). M.Wakamatsu, Phys. Lett. B487,118(2000).

Lattice QCD

M.Gockeler et al., Phys.Rev.D72:054507, (2005)

Two Jefferson lab experiments dedicated to measure the g_2 structure function

Hall A d₂ⁿ and Hall C SANE experiments Neutron and Proton

Spokespeople:

B. Sawatzky, S. Choi, X. Jiang and Z.-E.M

Students: D. Flay, D. Parno, M. Posik

and the Hall A collaboration

Posik, Flay, Parno et al., Phys.Rev.Lett. 113 (2014) 2, 022002 Phys.Lett. B744 (2015) 309-314 Spokespeople: O. Rondon, S. Choi, M. Jones and Z.-E. M

Students: W. Armstrong, H. Kang, A. Liyanage, J. Maxwell, J. Mulholland

and the Hall C collaboration

Analysis close to completion: Preliminary results

Jefferson Lab Polarized DIS experiments at 6 GeV

The JLab E06-014 (d₂ⁿ) Experiment

Spin Asymmetries of the Nucleon Experiment (SANE)

³He g_2 structure function

M. Posik, D. Flay, D. Parno et al. Phys.Rev.Lett. 113 (2014) 2, 022002

V. Braun et al. Nucl. Phys. B603 (2001) 69-124

³He g_2 structure function

d_2^n results compared to calculations

Proton g_2 spin structure function (SANE)

- Beta proton data
 - DIS and Resonance data
 - $g2^{WW}$ curves using g_1 at $Q^2 = 4 \text{ GeV}^2$
 - E'> 0.6 GeV
 - More data at $Q^2 = 1.6$ GeV²

(W. Armstrong)

Proton d_2 compared to calculations

 $d_2(Q^2) = \int_{\text{September 2002015}}^1 dx \xi^2 \left(2\frac{\xi}{x} g_1 + 3(1 - \frac{\xi^2 M^2}{2Q^2}) g_2 \right)_{\text{Erice}}$

Flavor separated color forces

Table: Flavor separated color forces.

d_2^p Input	d_2^n Input	F^u (MeV/fm)	F^d (MeV/fm)
E155	E155	-26.22±44.54 _{stat}	-151.96±103.13 _{stat}
LQCD	LQCD	-45.48±54.10 _{stat}	21.40±34.78 _{stat}
E155	E0-6014(3)	-91.01±36.63 _{stat} ±4.39 _{sys}	$107.23 \pm 19.20_{stat} \pm 17.55_{sys}$
E155	E0-6014(4)	$-70.36 \pm 36.65_{stat} \pm 3.69_{sys}$	$24.61 \pm 19.96_{stat} \pm 14.77_{sys}$
LQCD	E0-6014(3)	$-65.33\pm53.67_{stat}\pm4.39_{sys}$	$100.81 \pm 21.56_{stat} \pm 17.55_{sys}$
LQCD	E0-6014(4)	$-44.68\pm53.69_{stat}\pm3.69_{sys}$	$18.19 \pm 22.24_{stat} \pm 14.77_{sys}$

Will finalize the SANE proton results ...

Extraction of Twist-4 f_2

Color Electric and Mgnetic Components

Need d_2 and f_2 to perform the Electric and Magnetic components separations

Virtual-Photon Nucleon Asymmetry A₁

Phys.Lett. B744 (2015) 309-314

Flavor decomposition

Summary

- The neutron was measured with precision and found consistent with Lattice and in contrast with previous results.
- The proton d_2 is measured with reasonable precision and found to be consistent with Lattice QCD calculations and consistent with the SLAC data around 5 GeV². The results need to be finalized.
- Using the proton and neutron data a preliminary flavor decomposition of the color forces is carried out.
- The helicity contribution of the up and down quarks at large x still exhibits a behavior consistent with quark models and not pQCD predictions.
- This program will be pursued at JLab 11 GeV for higher precision and greater Q² and x coverage.

