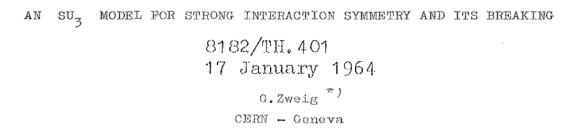


Exotic Hadron Spectroscopy at LHCb: Candidates for Tetra- and Pentaguark States

Ulrich Uwer
Heidelberg University
On behalf of the LHCb Collaboration

Supported by



Multi-Quark States in Quark Model

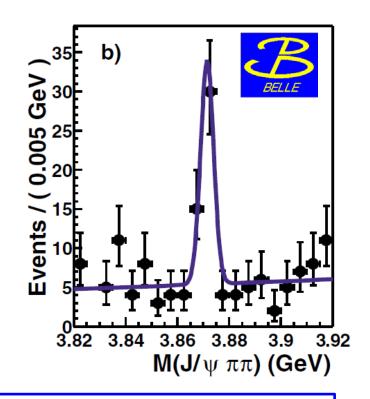
A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

Both papers mentioned explicitly the possibility for tetra and penta-quark states: qqqq, qqqqq

Multiquark states would be short-lived ~10⁻²³s "resonances" whose presences are detected by mass peaks & angular distributions showing unique J^{PC}.


Searches for such states made from light quarks (u,d,s) are ~50 years old, but no undisputed experimental evidence has been found.

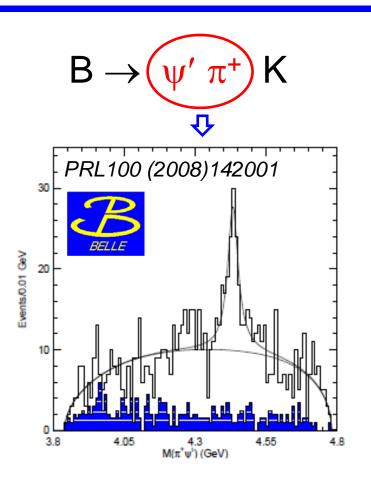
Discovery of X(3872)

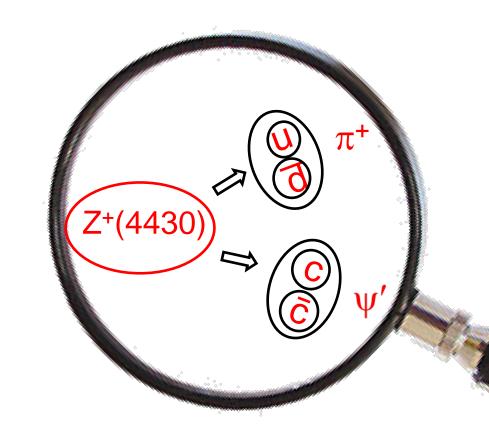
Belle 2003, Phys. Rev. Lett. 91, 262001

$$B^{\pm} \to K^{\pm} \underbrace{J/\psi \pi^{+} \pi^{-}}$$

- Very <u>narrow</u> resonance (Γ <1.2 MeV) close to D⁰D^{0*} threshold.
- Nature unclear: conventional charmonium state, exotic state (D⁰D^{0*} molecule, tetraquark), or a mixture
- Determination of J^{PC} important

PRL 110, 222001 (2013).

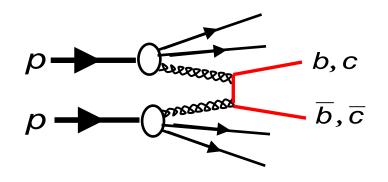

B⁺
$$\rightarrow$$
X(3872)K⁺ w/ X(3872) \rightarrow J/ ψ ππ \rightarrow J^{PC} = 1⁺⁺ , J^{PC} = 2⁻⁺ rejected w/ >8σ


(analysis assumed lowest possible L)

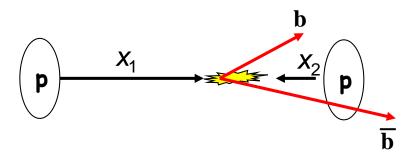
PR D 92, 011102 (2015).

Update: w/o assumption on L Confirms $J^{PC} = 1^{++}$

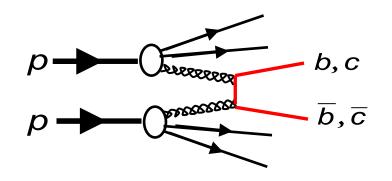
Tetra-Quark Candidate



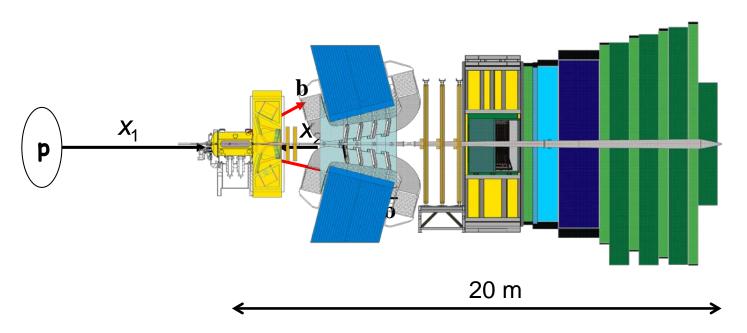
Smoking gun for 4-quark effect. Confirmed only recently by LHCb. LHCb also provides evidence for the resonant character – see later.


Supports the possibility for existence of pentaquark state.

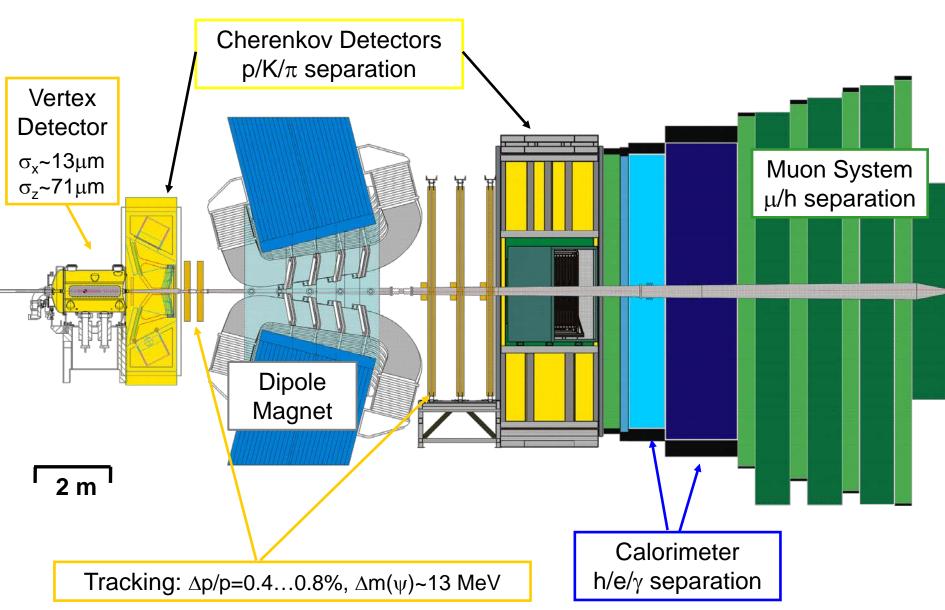
LHCb-Experiment



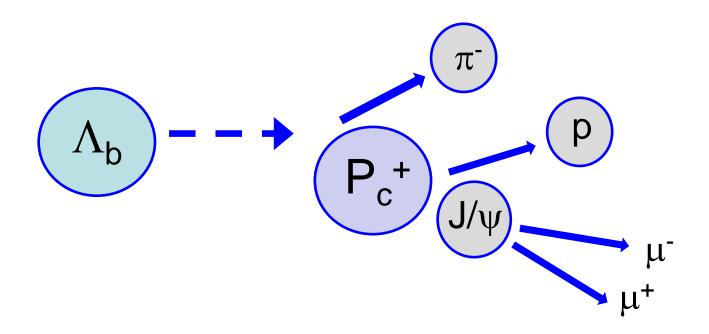
×O(5000) rates of B-factories. Smaller background.



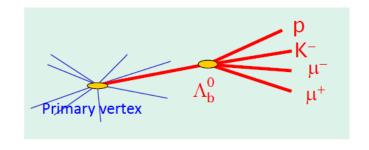
LHCb-Experiment

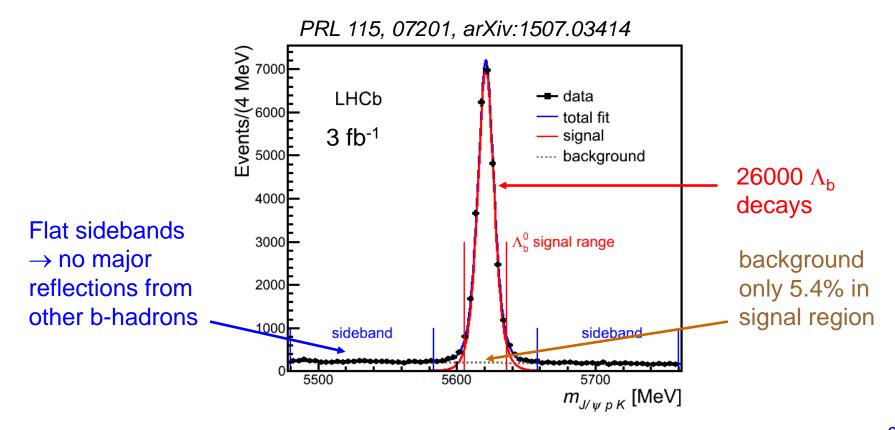


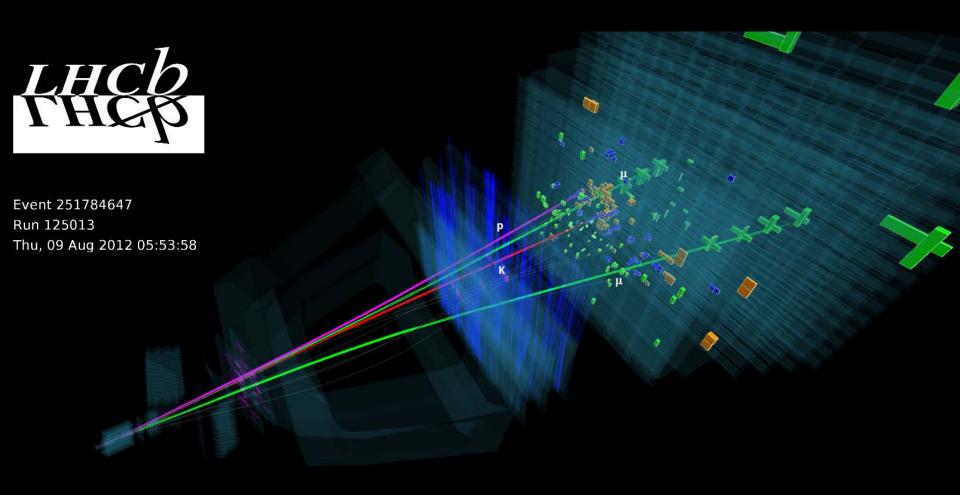
Run 2011-2012: $3 \text{ fb}^{-1} \text{ (LHCb)}$ 200 kHz $b\overline{b} \rightarrow 2.6 \times 10^{11} b\overline{b}$ 4MHz $c\overline{c} \rightarrow 5.9 \times 10^{12} c\overline{c}$


×O(5000) rates of B-factories. Smaller background.

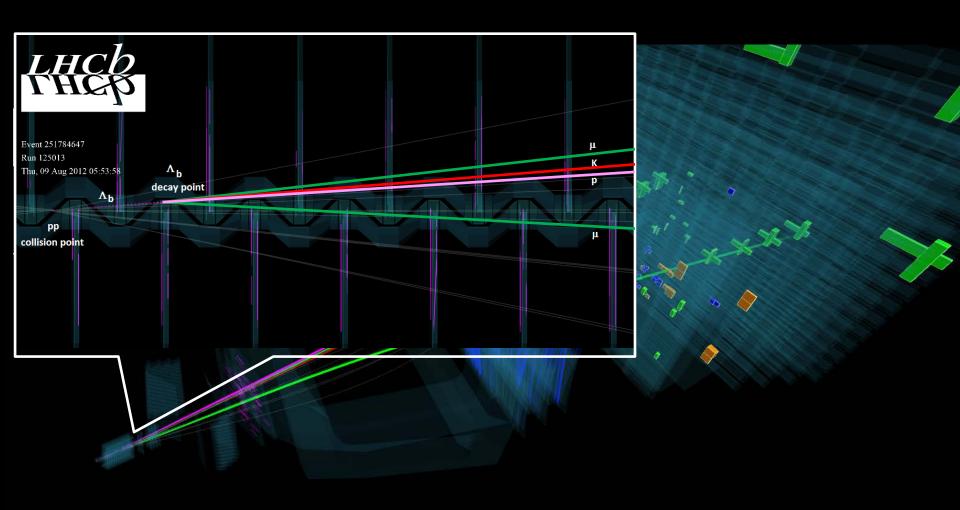
LHCb Detector

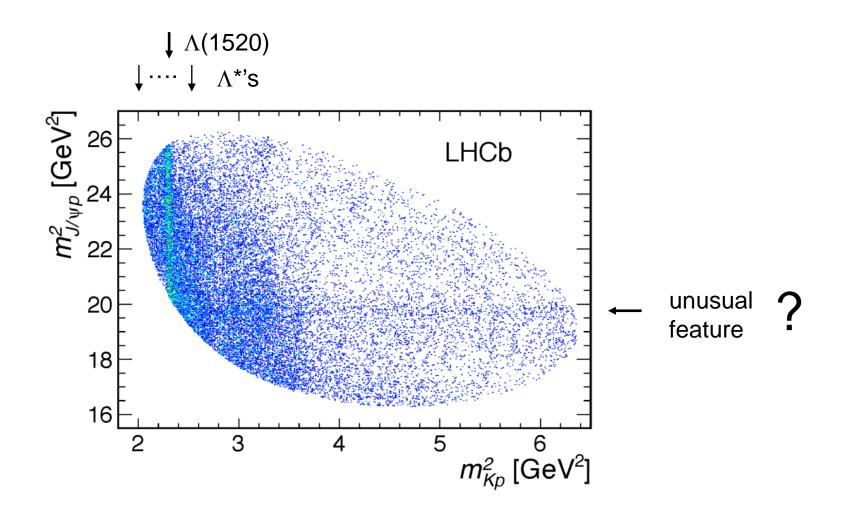


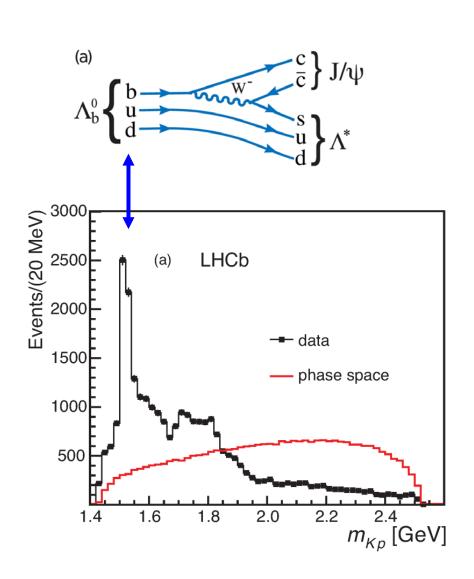

Observation of J/ψp resonances consistent with pentaguark states

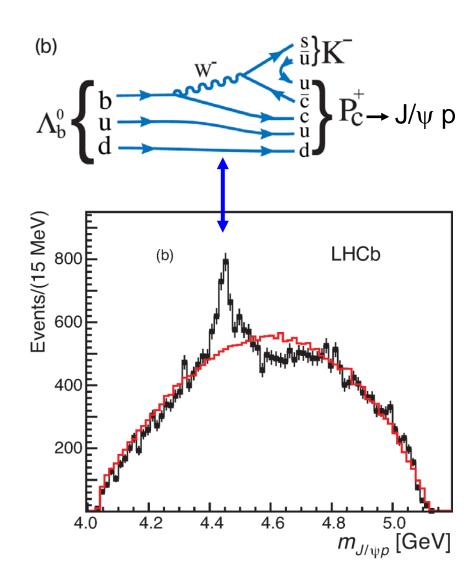

$\Lambda_b^0 \to J/\psi p K^- data sample$

 $\Lambda_b^{~0} \rightarrow \text{J/}\psi \text{ p K}^{-} \text{ first observed}$ by LHCb; used for $\Lambda_b^{~0}$ lifetime. \mathcal{B} =(3.04±0.04 $^{+0.55}_{-0.43}$)×10⁻⁴ arXiv:1509.00292



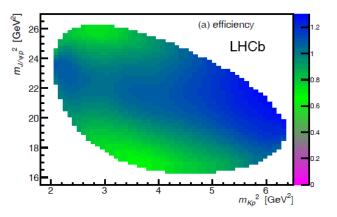

$\Lambda_b^{\ 0} \rightarrow J/\psi \ p \ K^- \ candidate$


$\Lambda_b^{\ 0} \rightarrow J/\psi \ p \ K^- \ candidate$



Dalitz-Plot

Projections

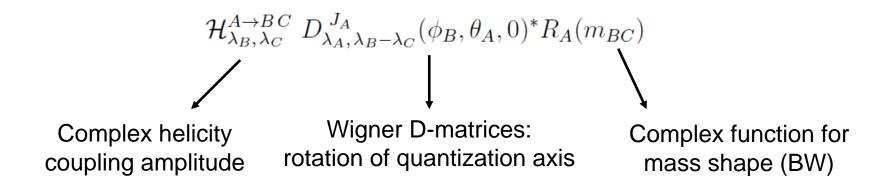


Origin of narrow peak in m_{J/wp}

PRL 115, 07201, arXiv:1507.03414

Checks to ensure that it is not an artifact of the selection:

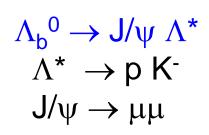
- Reflections of B⁰ \rightarrow J/ ψ K π & B_s \rightarrow J/ ψ KK are vetoed
- $\Xi_{\rm h}$ decays checked
- Efficiency is smooth, cannot create a peak
- Λ_b sideband background does not peak
- Clones and ghost tracks are eliminated

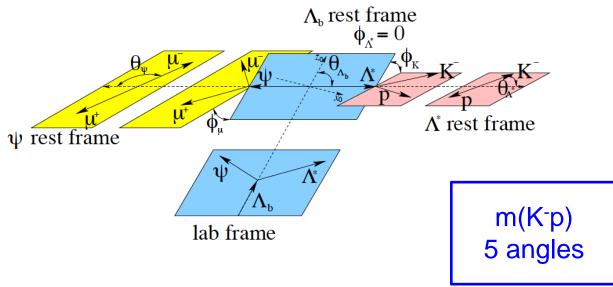

Can interference between Λ^* resonances generate peak in $(J/\psi p)$ mass? If not, can data be described in all relevant kinematic variables with the addition of $(J/\psi p)$ resonances?

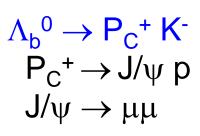
Full amplitude analysis using all known Λ^* 's.

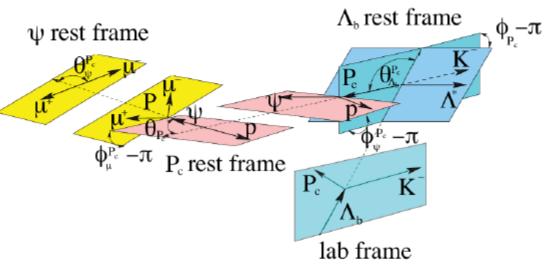
Helicity formalism

Each sequential decay A→BC contributes to the amplitude:

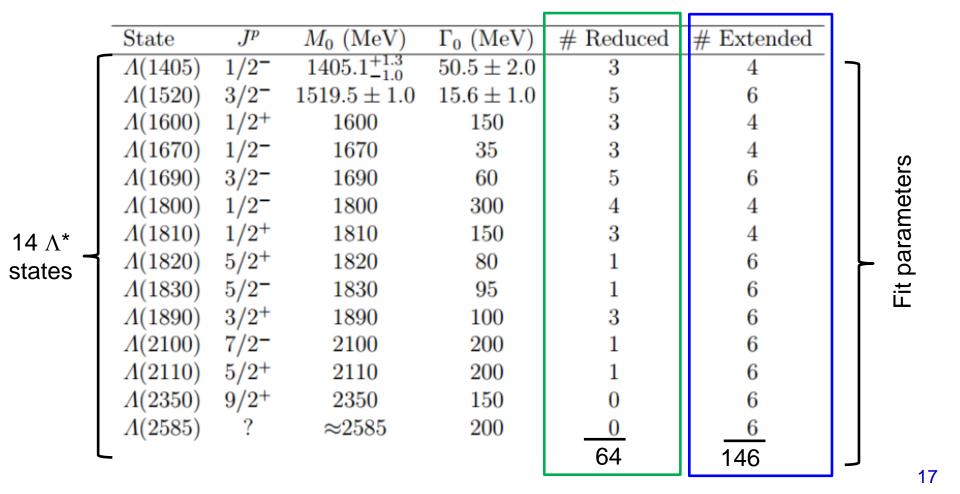

Express helicity couplings via LS couplings (Clebsch-Gordon coeff.):


$$\mathcal{H}_{\lambda_B,\lambda_C}^{A\to BC} = \sum_{L} \sum_{S} \sqrt{\frac{2L+1}{2J_A+1}} B_{L,S} \begin{pmatrix} J_B & J_C & S & J_A \\ \lambda_B & -\lambda_C & \lambda_B - \lambda_C \end{pmatrix} \times \begin{pmatrix} L & S & J_A \\ 0 & \lambda_B - \lambda_C & \lambda_B - \lambda_C \end{pmatrix},$$

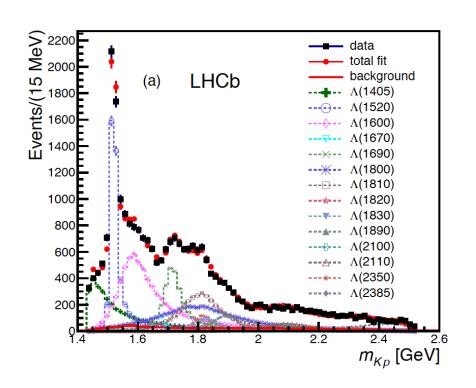

Easily consider parity conservation $P_A = P_B P_C (-1)^L$ and restrict L_{max}

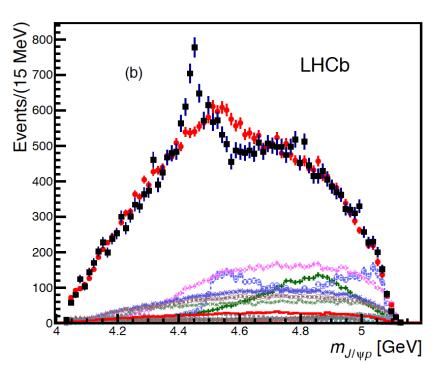

Amplitude Analysis

Consider two interfering processes with two distinct decay chains:


Λ* resonance model

Extended model:

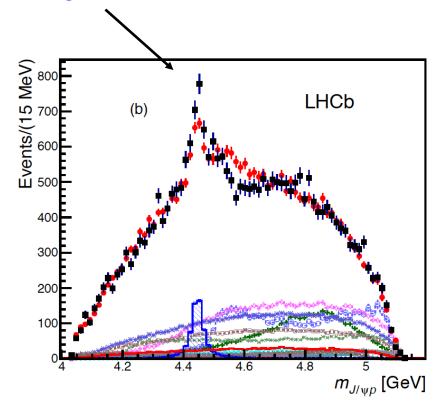

- All known Λ^* resonances. Masses and widths fixed to PDG.
- All possible L values.


Reduced model:

- Drop $\Lambda(2350)$ and $\Lambda(2585)$
- Remove high L contributions.

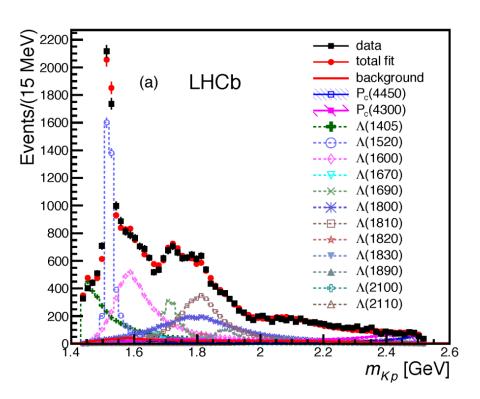
Fit with extended Λ^* model (no P_c^+)

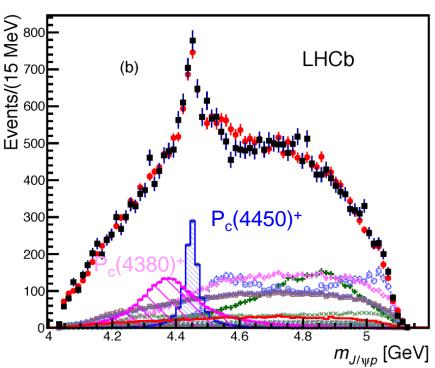


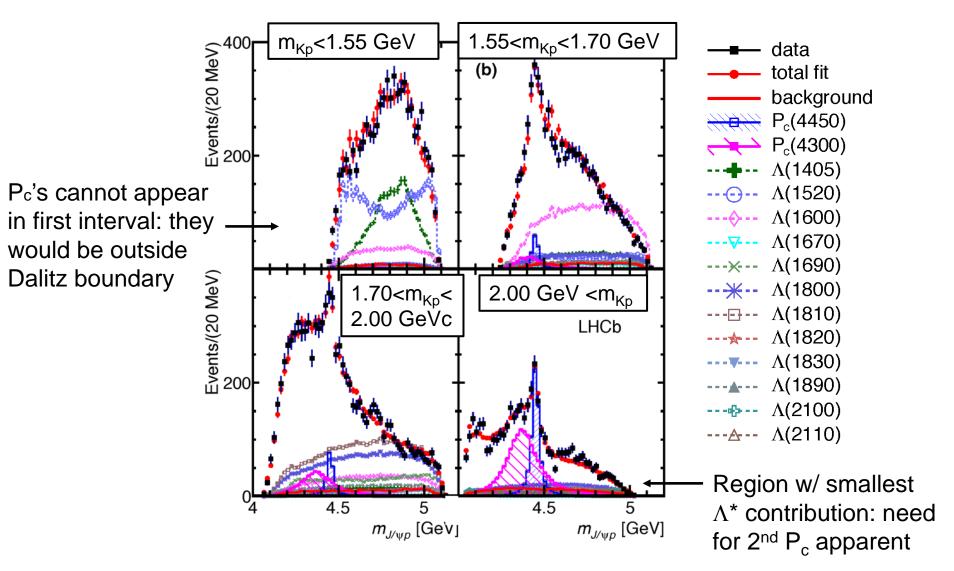


- m_{Kp} looks fine, m_{J/\psi p} not described
- Additional terms do not help:
 - Σ*'s (expect small contribution: ΔI=1)
 - Λ* with free mass and widths
 - Non-resonant terms w/ J^P=1/2[±] 3/2[±]

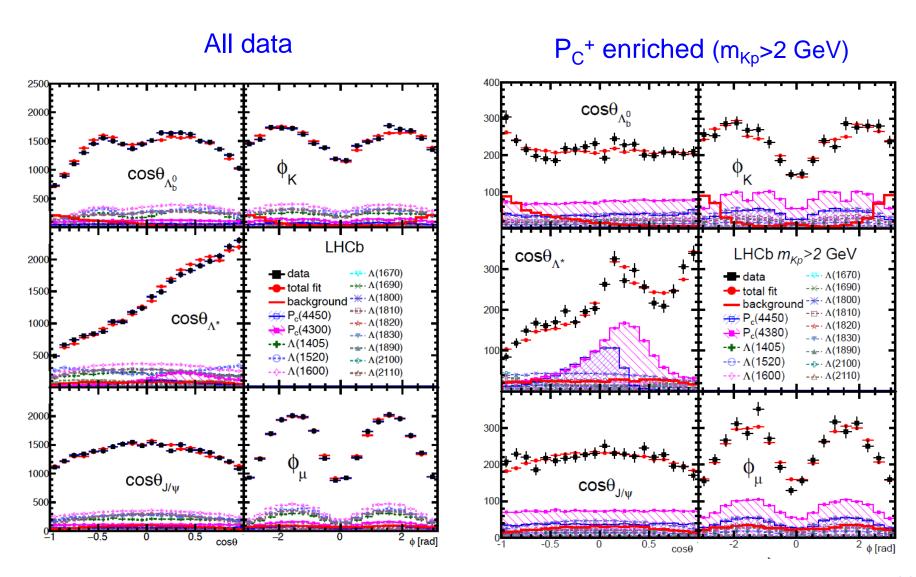
Fit with one additional P_c⁺ state

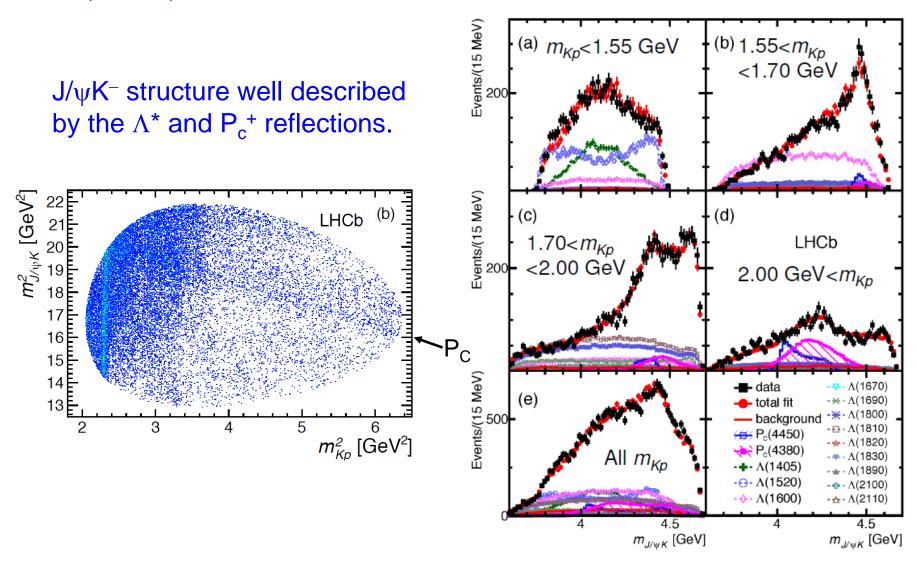

- Extended Λ* model
- Try all $J^P (P_C^+)$ up to $7/2^{\pm}$
- Best fit for J^P(P_C⁺)=5/2[±]. Still not a good fit.




Fit with two additional P_c⁺ states

- Obtain good fits even with the reduced Λ^* model (use reduce Λ^* model when determining the P_C^+ parameters)
- Best fit has J^P=(3/2⁻, 5/2⁺), also J^P=(3/2⁺, 5/2⁻) and J^P=(5/2⁺, 3/2⁻) possible (Δ(-2ln L)= 1, 2.3²). Other combinations up to 7/2 disfavored. Opposite paraity needed to explain P_c⁺ decay angle distribution.




$m_{J/\psi p}$ projection for different m_{Kp} bins

Angular distributions

No need for exotic J/ψK-contributions

Significances and Fit Results

PRL 115, 07201, arXiv:1507.03414

Improvement of fit quality:

Fit w/ only
$$\Lambda^*$$
 model
+ 1st P_c⁺
+ 2nd P_c⁺

$$\Delta(-2\ln\mathcal{L}) = 14.7^{2}$$

$$\Delta(-2\ln\mathcal{L}) = 11.6^{2}$$

$$\Delta(-2\ln\mathcal{L}) = 18.7^{2}$$

Simulation of pseudo-experiments used to turn $\Delta(-2\ln\mathcal{L})$ values into significances:

(includes dominant systematics: difference between extended and reduced Λ^* model)

P _c (4450) ⁺	12σ
P _c (4380)+	9σ
P _c (4450) &P _c (4380)	15σ

State	Mass (MeV)	Width (MeV)	Fit Fraction (%)	
P _c (4380) ⁺	4380±8±29	205±18±86	8.4±0.7±4.2	
P _c (4450) ⁺	4449.8±1.7±2.5	39±5±19	4.1±0.5±1.1	
Λ(1405)	PRL 115, 07201.	arXiv:1507.03414	15±1±6	
Λ(1520)	,		19±1±4	

Systematic uncertainties

Source	$M_0 \; (\mathrm{MeV}) \; \Gamma_0 \; (\mathrm{MeV})$				Fit fractions (%)			
	low	high	low	high	low	high	$\Lambda(1405)$	$\Lambda(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{ GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Nonresonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
$J^P (3/2^+, 5/2^-) \text{ or } (5/2^+, 3/2^-)$	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \text{ GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$L_{\Lambda_b^0}^{P_c} \Lambda_b^0 \to P_c^+ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$L_{P_c}^{b} P_c^+ \text{ (low/high)} \to J/\psi p$	4	0.4	31	7	0.63	0.37		
$L_{\Lambda_b^0}^{\Lambda_n^*} \Lambda_b^0 \to J/\psi \Lambda^*$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

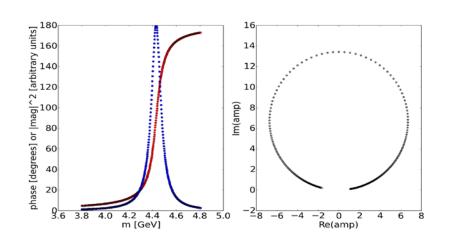
- Λ* modeling is largest uncertainty
- Fits w/ alternative J^P assignment
- Parameters for description of mass dependence

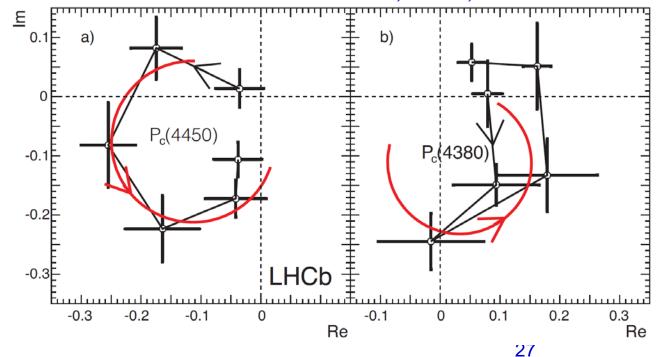
Cross checks

- Two independently coded max. log likelihood fitters using different background subtractions (cFit [default] & sFit):
 - Signal and background described by PDFs
 - background subtraction using sPlot technique*)
- Split data to check consistency: 2011/2012, magnet up/down, Λ_b/Λ_b , $\Lambda_b(p_T low)/\Lambda_b(p_T high)$
- Extended model fits tried without P_c states, but two additional high mass Λ* resonances allowing masses & widths to vary, or 4 non-resonant terms of J up to 3/2

^{*)} sPlot: M.Pivk and F.R. Le Diberder, NIM A555 (2005) 356.

Phase motion across the resonance


For a Breit-Wigner resonance we expect a phase variation over the resonance:


Fit Re and Im part of amplitudes for 6 individual mass bins in $M_0 \pm \Gamma_0$

P_c(4450): clock-wise phase change across pole.

P_c(4380): large changes, not conclusive

PRL 115, 07201, arXiv:1507.03414

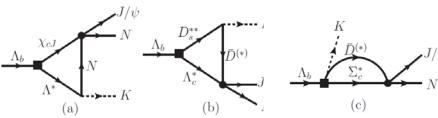
Interpretation

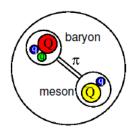
Kinematic effects in non-perturbative rescattering processes (cusps)

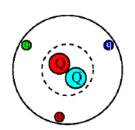
e.g. arXiv:1507.04950, 1507.05359, 1507.06552, 1507.07478

 bound states (or resonances) formed from open-charm baryon and meson constituents

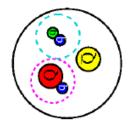
e.g. arXiv:1507.03717, 1507.03704, 1507.05200, 1507.04249, 1508.00924

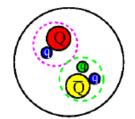

Baryocharmonia

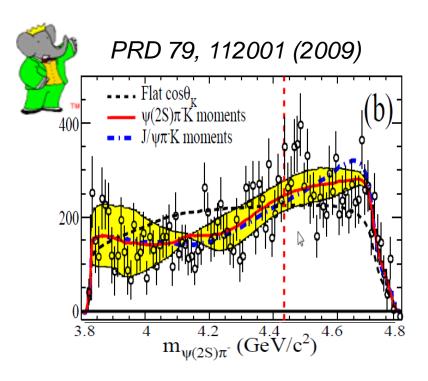

e.g. arXiv:1508.00888


Tightly bound pentaquark states

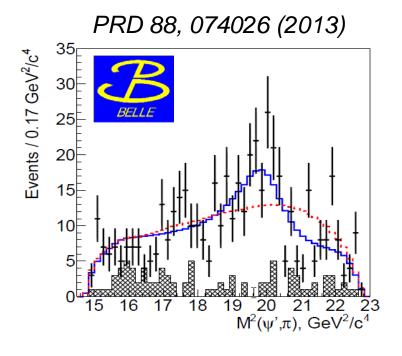
e.g. arXiv:1201.0807, 1507.04980, 1507.07652, 1508.00356, 1507.05867, 1507.08252, 1508.01468, 1508.04189


from arXiv:1507.05359



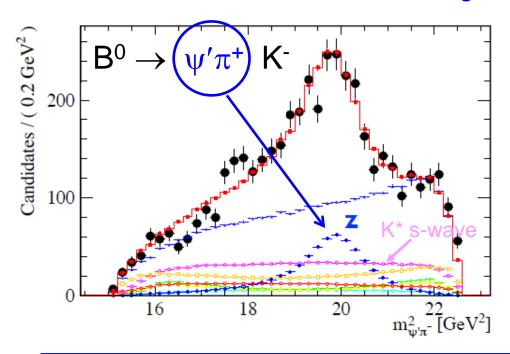


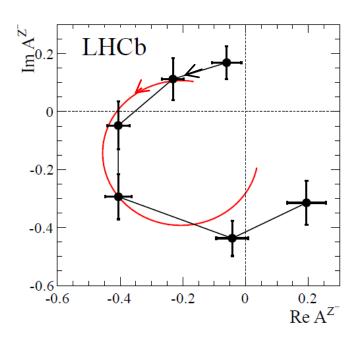
The Z⁺(4430) – a Tetraquark Candidate


After the first observation by Belle in 2008 using simple 1D mass fit:

2D analysis. Harmonic moments for K^* reflected to $m(\psi'\pi^+)$: model independent description of $K^* \rightarrow K\pi$

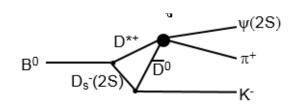
BaBar did not confirm Z(4430)+


4D amplitude fit: model dependent description of $K^* \rightarrow K\pi$ resonances.

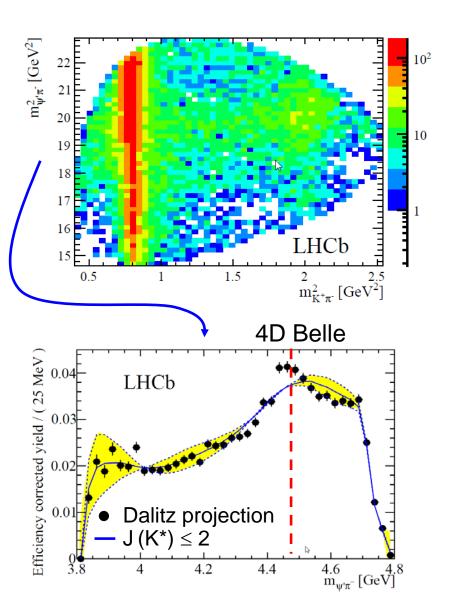

 6.4σ (5.6 σ w/ syst.) observation, $J^P=1^+$ preferred by >3.4 σ

Z(4430)⁺ confirmation by LHCb

PRL 112, 222002 (2014), arXiv;1404.1903

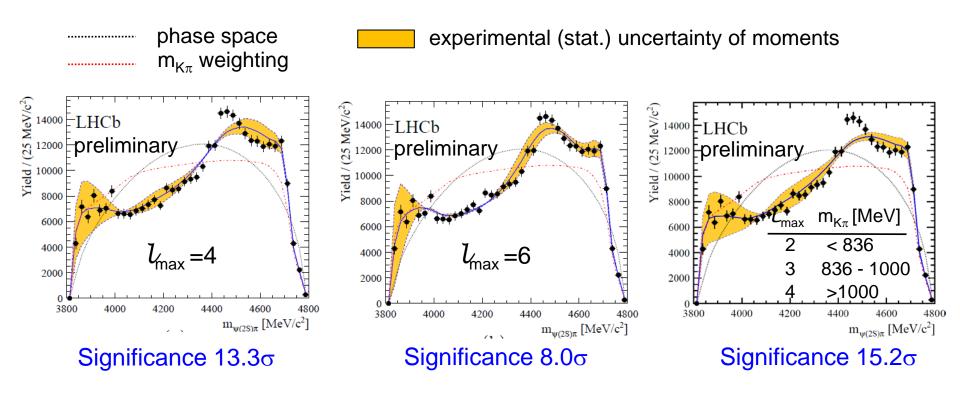

LHCb: more data and smaller backgrounds

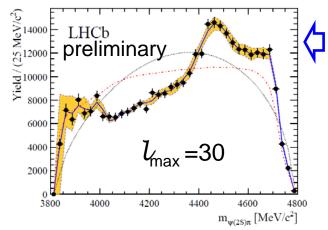
4D amplitude analysis:


- Clear confirmation of Z(4430)+
- Resonance phase motion
- Quantum number: J^P = 1+
- Rescattering →diff. phase behavior

P. Pakhlov, T. Uglov PLB 748,183 (2015)

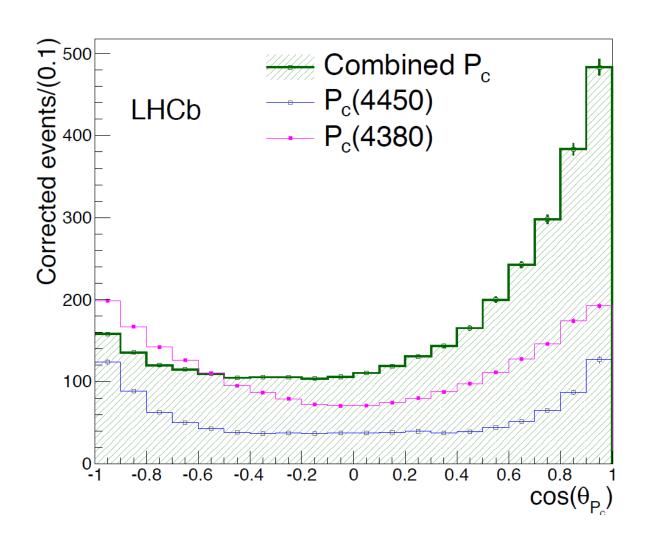
2D model independent analysis


Describe the K* angular distribution ($\cos\theta_{\text{K*}}$) and thus the reflection in $m_{\psi'\pi}$ using Legendre polynoms.


The maximum moment l_{max} of the Legendre polynoms depends on max. $J(K^*)$.

K* contribution filtered w/ J(K*) \leq 2 ($l_{max}\leq$ 4): Cannot describe the "Z(4430) region"

Quantitative Analysis


To calculate significance from pseudo-experiments we compare to test-statistics obtained with implausible high $l_{max} = 30$.

Explanation of data by plausible K* contributions is ruled out with $>8.0\sigma$ w/o assuming anything about the K* model.

Conclusion

- Two states decaying to $J/\psi p$ have been observed in Λ_b decays which are consistent with pentaquarks. To better understand the origin:
 - Search for diff. final-states (e.g. $\Lambda_b \to J/\psi p \pi^-$, $\chi_c p K^-$, $\eta_c p K^-$, $\Lambda_c^+ D^0 K^-$)
 - Look in different b-hadron decays (e.g. Ξ_b)
 - Look for isospin partners (e.g. $\Lambda_b \rightarrow [ccddu] K^0$)
 - Study $\chi_c \Lambda^*$, $\Sigma_c^* D$,... to check rescattering
- The 2014 model dependent amplitude analysis confirmed the Z(4430) tetraquark state from Belle and established its resonance character via the phase behavior.
 - A new model independent analysis also demonstrates the need of an exotic tetraquark contributions with significances $>8\sigma$.
- We look forward to the discovery of more exotic hadrons and learning about their internal structure.

P_c⁺ Angular distribution

Helicity Formalism

D-matrix,

$$|J_A, m_A> = \sum_{m'_A} D^{J_A}_{m_A, m'_A} (\alpha, \beta, \gamma)^* |J_A, m'_A>,$$

where,

$$D_{m,m'}^{J}(\alpha,\beta,\gamma)^* = \langle J,m|\mathcal{R}(\alpha,\beta,\gamma)|J,m'\rangle^* = e^{i\,m\alpha}\,d_{m,m'}^{J}(\beta)\,e^{i\,m'\gamma},$$

$$D^{j}_{m'm}(\alpha,\beta,\gamma) \equiv \langle jm' | \mathcal{R}(\alpha,\beta,\gamma) | jm \rangle = e^{-im'\gamma} d^{j}_{m'm}(\beta) e^{-im\alpha}.$$

Amplitude Analysis II

• The matrix element for the Λ^* decay is:

$$\mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{\Lambda^{*}} \equiv \sum_{n} \sum_{\lambda_{\Lambda^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{\Lambda^{*}},\lambda_{\psi}}^{\Lambda_{b}^{0} \to \Lambda_{n}^{*}\psi} D_{\lambda_{\Lambda_{b}^{0}},\lambda_{\Lambda^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{\Lambda_{b}^{0}},0)^{*}$$

$$\mathcal{H}_{\lambda_{p},0}^{\Lambda_{n}^{*} \to Kp} D_{\lambda_{\Lambda^{*}},\lambda_{p}}^{J_{\Lambda_{n}^{*}}} (\phi_{K},\theta_{\Lambda^{*}},0)^{*} R_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*}$$

• And for the P_c :

$$\mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{\psi}^{P_{c}}} \mathcal{H}_{\lambda_{P_{c}},0}^{\Lambda_{b}^{0} \to P_{cj}K} D_{\lambda_{\Lambda_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{\Lambda_{b}^{0}}^{P_{c}},0)^{*}$$

$$\mathcal{H}_{\lambda_{\psi}^{P_{c}j} \to \psi p}^{P_{c}j} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}} - \lambda_{p}^{P_{c}}}^{J_{P_{c}j}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$

$$R_X(m) = B'_{L_{A_b^0}}(p,p_0,d) \left(\frac{p}{M_{A_b^0}}\right)^{L_{A_b^0}^X} \, \mathrm{BW}(m|M_{0X},\Gamma_{0X}) \, B'_{L_X}(q,q_0,d) \left(\frac{q}{M_{0X}}\right)^{L_X} \, .$$

Orbital momentum barrier factor (Blatt-Weisskopf functions)

Amplitude Analysis III

They are added together as:

$$|\mathcal{M}|^2 = \sum_{\lambda_{A_b^0}} \sum_{\lambda_p} \sum_{\Delta \lambda_{\mu}} \left| \mathcal{M}_{\lambda_{A_b^0}, \lambda_p, \Delta \lambda_{\mu}}^{\Lambda^*} + e^{i \Delta \lambda_{\mu} \alpha_{\mu}} \sum_{\lambda_p^{P_c}} d_{\lambda_p^{P_c}, \lambda_p}^{\frac{1}{2}} \left(\theta_p \right) \mathcal{M}_{\lambda_{A_b^0}, \lambda_p^{P_c}, \Delta \lambda_{\mu}}^{P_c} \right|^2$$

• α_{μ} and θ_{p} are rotation angles to align the final state helicity axes of the μ and p, as helicity frames used are different for the two decay chains.

cFit

- cFit uses events in ±2σ window (σ=7.52MeV)
- Total PDF $\mathcal{P}(m_{Kp}, \Omega | \overrightarrow{\omega}) = (1 \beta) \mathcal{P}_{\text{sig}}(m_{Kp}, \Omega | \overrightarrow{\omega}) + \beta \mathcal{P}_{\text{bkg}}(m_{Kp}, \Omega)$
- Background is described by sidebands 5σ-13.5σ
- cFit minimizes

Background fraction β =5.4%

$$-\ln \mathcal{L}(\overrightarrow{\omega}) = \sum_{i} \ln \left[|\mathcal{M}(m_{Kp\ i}, \Omega_{i}|\overrightarrow{\omega})|^{2} + \frac{\beta I(\overrightarrow{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{Kp\ i}, \Omega_{i})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ i}, \Omega_{i})} \right] + N \ln I(\overrightarrow{\omega}) + \text{constant},$$

$$I_{\rm bkg} \propto \sum_{j} w_{j}^{\rm MC} \frac{\mathcal{P}_{\rm bkg}^{u}(m_{Kp\ j}, \Omega_{j})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ j}, \Omega_{j})}$$

Signal efficiency parameterization becomes part of background parameterization, effects only a tiny part of total PDF because of small β

sFit

Signal PDF

$$\mathcal{P}_{\text{sig}}(m_{Kp}, \Omega | \overrightarrow{\omega}) = \frac{1}{I(\overrightarrow{\omega})} |\mathcal{M}(m_{Kp}, \Omega | \overrightarrow{\omega})|^2 \Phi(m_{Kp}) \epsilon(m_{Kp}, \Omega)$$

 $\vec{\omega}$: fitting parameters

 Φ : phase-space = pq

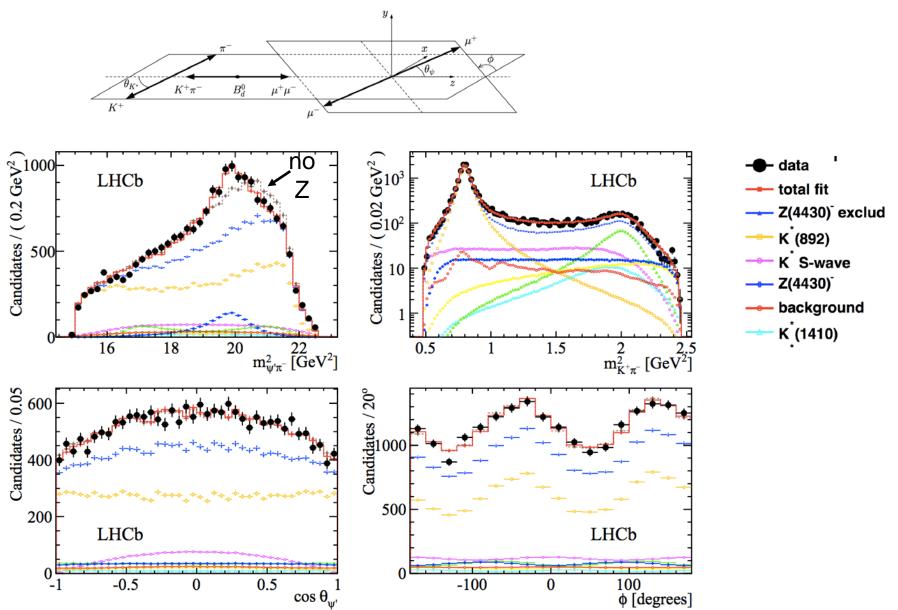
 ϵ : efficiency

sFit minimizes

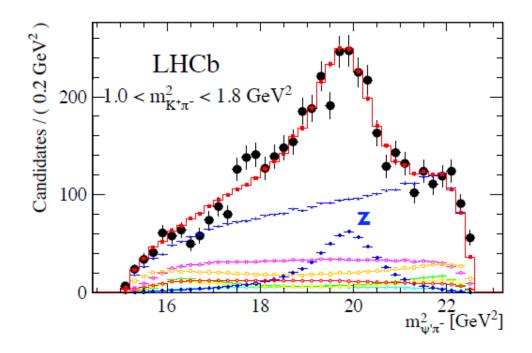
$$I(\overrightarrow{\omega}) \propto \sum_{j}^{N_{\mathrm{MC}}} w_{j}^{\mathrm{MC}} |\mathcal{M}(m_{Kpj}, \Omega_{j}|\overrightarrow{\omega})|^{2}$$

- Normalization calculated using simulated PHSP MC ($\Phi\epsilon$ included)
- w^{MC} discuss later

$$-2 \ln \mathcal{L}(\overrightarrow{\omega}) = -2 \underbrace{s_W} \sum_{i} \underbrace{W_i} \ln \mathcal{P}_{\text{sig}}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})$$

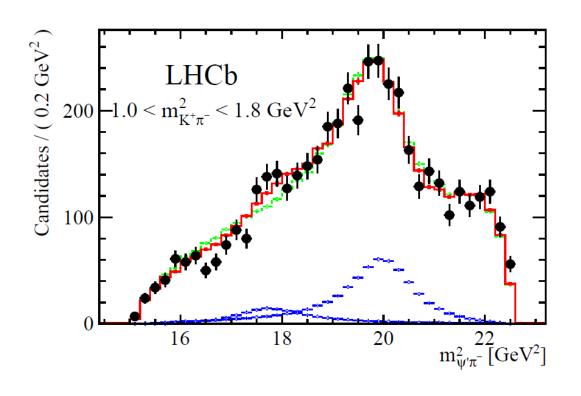

$$= -2 s_W \sum_{i} W_i \ln |\mathcal{M}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})|^2 + 2 s_W \ln I(\overrightarrow{\omega}) \sum_{i} W_i$$

$$-2 s_W \sum_{i} W_i \ln [\Phi(m_{Kp\ i}) \epsilon(m_{Kp\ i}, \Omega_i)].$$


 W_i is sWeighs from m(J/ ψ Kp) fits $S_W = \Sigma_i W_i / \Sigma_i W_i^2$ constant factor to correct uncertainty

Constant (invariant of $\vec{\omega}$), is dropped No need to know $\Phi \varepsilon$ paramerizaiton

4D Dalitz-Fit

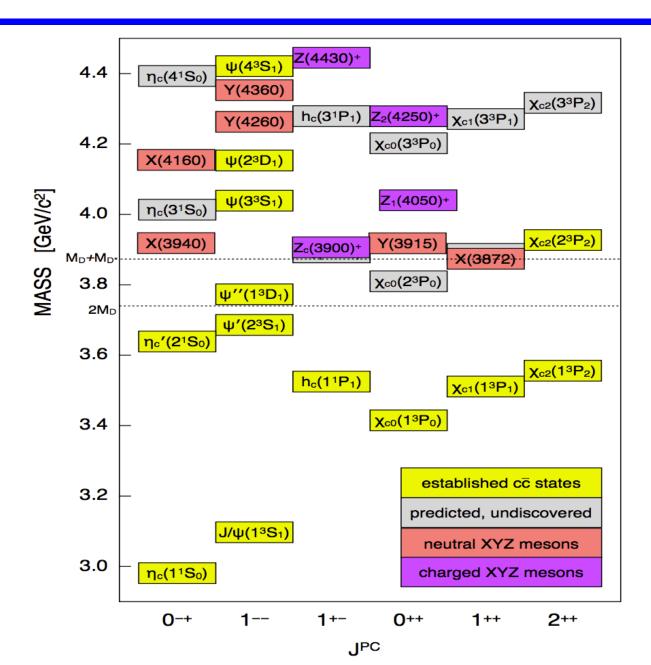


Resonances

State	Mass (MeV)	Width (MeV)	Fit Fraction (%)
Z ₁ +	4475±7 +15 ₋₂₅	172±13 +37 ₋₃₄	5.9±0.9 ^{+1.5} _{-3.3}

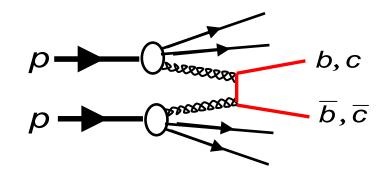
Allowing two resonances

2 resonances: J^p = 0⁻ and 1⁺
 1 resonance: J^p = 1⁺

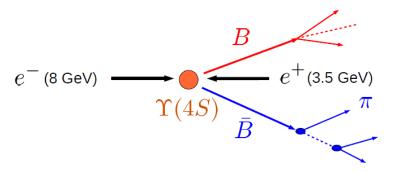

State	Mass (MeV)	Width (MeV)	Fit Fraction (%)
Z ₀ +	4239±18 +45 ₋₁₀	220±47 +108 ₋₇₄	1.6±0.5 ^{+1.9} -0.4

Open questions Z⁺(4430)

Disfavoured	Rejection	level relative to 1^+
J^P	LHCb	Belle
0-	9.7σ	3.4σ
1^{-}	15.8σ	3.7σ
2+	16.1σ	5.1σ
2-	14.6σ	4.7σ


- P=+ rules out interpretation in terms of D̄*(2010)D*1(2420)molecule or threshold effect (cusp).
- Potential neutral isospin partner? Z(4430)0 in B+ → ψ'π⁰K⁺
- No clear picture of the complex system of charmonium-like exotic resonances.
- Further constraints will come from observing Z(4430)± and other exotics in alternative decay modes and/or production mechanisms.
- Look for synergies with the ss and bb sectors.

cc states

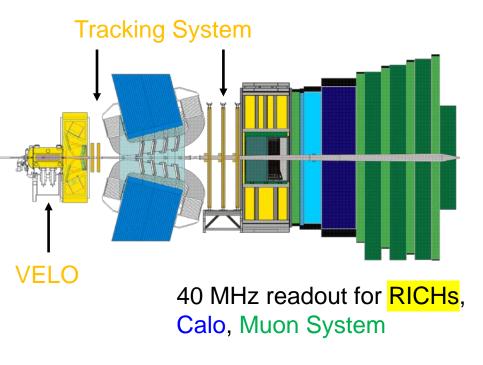

B-Physics at the Intensity Frontier

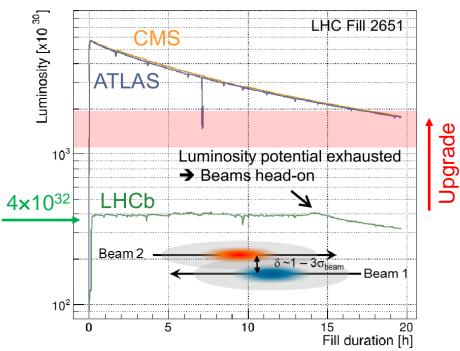
LHC @ 14 (13) TeV

$$\sigma_{bb}(14 \, TeV) \approx 500 \, \mu b$$

 $\rightarrow 10^{10} \, b\bar{b} \text{ events/fb}^{-1}$

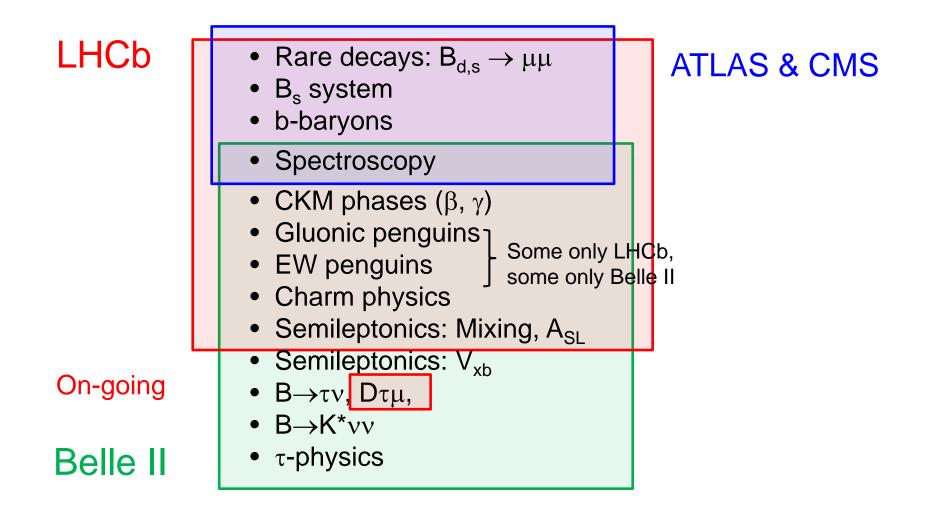
SuperKEKB & Belle II




$$\sigma_{BB} \approx 1 \ nb$$
 $\rightarrow 10^9 \ B\bar{B} \ \text{events/ab}^{-1}$

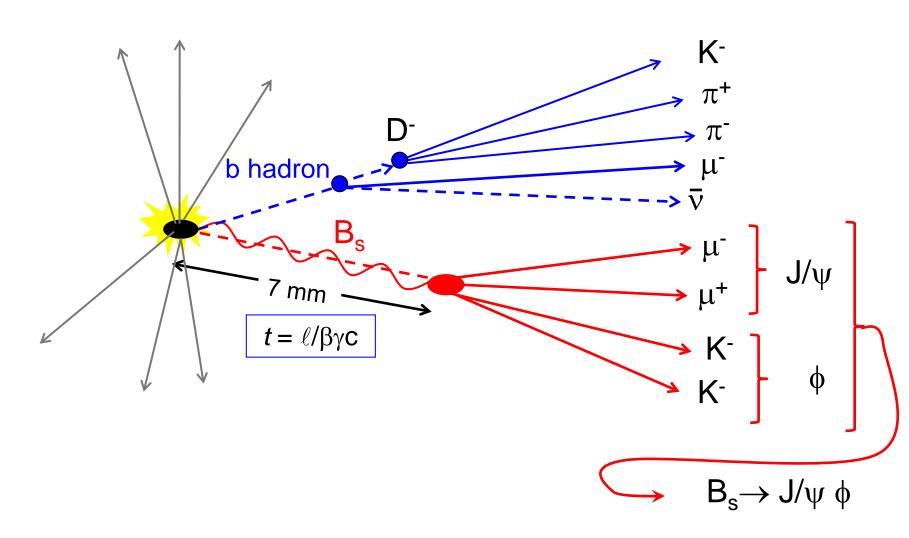
	LHC era		High-lumi LHC era		
	2010-2012	2015-2018	2020-2022	2025-2028	2030+
ATLAS & CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹
Belle II		0.5 ab ⁻¹	25 ab ⁻¹	50 ab ⁻¹	-

Upgrade-Project



LHCb Upgrade:

See also talk by Wander Baldini


- Increase levelled luminosity up to 2x10³³ cm⁻²s⁻¹ (pile-up ~8):
- Fully flexible & efficient software trigger up to 40 MHz input
- Record 20 100 kHz
- Upgrade VELO and Tracker (adapt to higher occupancy and radiation load)

Physics Complementarity*)

^{*)} Caveat: I am probably missing "your" favored channel/field

Typical bb event

