Exotic Hadron Spectroscopy at LHCb: Candidates for Tetra- and Pentaguark States Ulrich Uwer Heidelberg University On behalf of the LHCb Collaboration Supported by #### **Multi-Quark States in Quark Model** #### A SCHEMATIC MODEL OF BARYONS AND MESONS * M. GELL-MANN California Institute of Technology, Pasadena, California Received 4 January 1964 Both papers mentioned explicitly the possibility for tetra and penta-quark states: qqqq, qqqqq Multiquark states would be short-lived ~10⁻²³s "resonances" whose presences are detected by mass peaks & angular distributions showing unique J^{PC}. Searches for such states made from light quarks (u,d,s) are ~50 years old, but no undisputed experimental evidence has been found. #### Discovery of X(3872) Belle 2003, Phys. Rev. Lett. 91, 262001 $$B^{\pm} \to K^{\pm} \underbrace{J/\psi \pi^{+} \pi^{-}}$$ - Very <u>narrow</u> resonance (Γ <1.2 MeV) close to D⁰D^{0*} threshold. - Nature unclear: conventional charmonium state, exotic state (D⁰D^{0*} molecule, tetraquark), or a mixture - Determination of J^{PC} important PRL 110, 222001 (2013). B⁺ $$\rightarrow$$ X(3872)K⁺ w/ X(3872) \rightarrow J/ ψ ππ \rightarrow J^{PC} = 1⁺⁺ , J^{PC} = 2⁻⁺ rejected w/ >8σ (analysis assumed lowest possible L) PR D 92, 011102 (2015). Update: w/o assumption on L Confirms $J^{PC} = 1^{++}$ #### **Tetra-Quark Candidate** Smoking gun for 4-quark effect. Confirmed only recently by LHCb. LHCb also provides evidence for the resonant character – see later. Supports the possibility for existence of pentaquark state. #### **LHCb-Experiment** ×O(5000) rates of B-factories. Smaller background. ### **LHCb-Experiment** Run 2011-2012: $3 \text{ fb}^{-1} \text{ (LHCb)}$ 200 kHz $b\overline{b} \rightarrow 2.6 \times 10^{11} b\overline{b}$ 4MHz $c\overline{c} \rightarrow 5.9 \times 10^{12} c\overline{c}$ ×O(5000) rates of B-factories. Smaller background. #### **LHCb Detector** # Observation of J/ψp resonances consistent with pentaguark states ## $\Lambda_b^0 \to J/\psi p K^- data sample$ $\Lambda_b^{~0} \rightarrow \text{J/}\psi \text{ p K}^{-} \text{ first observed}$ by LHCb; used for $\Lambda_b^{~0}$ lifetime. \mathcal{B} =(3.04±0.04 $^{+0.55}_{-0.43}$)×10⁻⁴ arXiv:1509.00292 # $\Lambda_b^{\ 0} \rightarrow J/\psi \ p \ K^- \ candidate$ # $\Lambda_b^{\ 0} \rightarrow J/\psi \ p \ K^- \ candidate$ #### **Dalitz-Plot** ## **Projections** # Origin of narrow peak in m_{J/wp} PRL 115, 07201, arXiv:1507.03414 #### Checks to ensure that it is not an artifact of the selection: - Reflections of B⁰ \rightarrow J/ ψ K π & B_s \rightarrow J/ ψ KK are vetoed - $\Xi_{\rm h}$ decays checked - Efficiency is smooth, cannot create a peak - Λ_b sideband background does not peak - Clones and ghost tracks are eliminated Can interference between Λ^* resonances generate peak in $(J/\psi p)$ mass? If not, can data be described in all relevant kinematic variables with the addition of $(J/\psi p)$ resonances? Full amplitude analysis using all known Λ^* 's. ## **Helicity formalism** Each sequential decay A→BC contributes to the amplitude: Express helicity couplings via LS couplings (Clebsch-Gordon coeff.): $$\mathcal{H}_{\lambda_B,\lambda_C}^{A\to BC} = \sum_{L} \sum_{S} \sqrt{\frac{2L+1}{2J_A+1}} B_{L,S} \begin{pmatrix} J_B & J_C & S & J_A \\ \lambda_B & -\lambda_C & \lambda_B - \lambda_C \end{pmatrix} \times \begin{pmatrix} L & S & J_A \\ 0 & \lambda_B - \lambda_C & \lambda_B - \lambda_C \end{pmatrix},$$ Easily consider parity conservation $P_A = P_B P_C (-1)^L$ and restrict L_{max} #### **Amplitude Analysis** #### Consider two interfering processes with two distinct decay chains: #### **Λ* resonance model** #### **Extended model:** - All known Λ^* resonances. Masses and widths fixed to PDG. - All possible L values. #### Reduced model: - Drop $\Lambda(2350)$ and $\Lambda(2585)$ - Remove high L contributions. #### Fit with extended Λ^* model (no P_c^+) - m_{Kp} looks fine, m_{J/\psi p} not described - Additional terms do not help: - Σ*'s (expect small contribution: ΔI=1) - Λ* with free mass and widths - Non-resonant terms w/ J^P=1/2[±] 3/2[±] #### Fit with one additional P_c⁺ state - Extended Λ* model - Try all $J^P (P_C^+)$ up to $7/2^{\pm}$ - Best fit for J^P(P_C⁺)=5/2[±]. Still not a good fit. #### Fit with two additional P_c⁺ states - Obtain good fits even with the reduced Λ^* model (use reduce Λ^* model when determining the P_C^+ parameters) - Best fit has J^P=(3/2⁻, 5/2⁺), also J^P=(3/2⁺, 5/2⁻) and J^P=(5/2⁺, 3/2⁻) possible (Δ(-2ln L)= 1, 2.3²). Other combinations up to 7/2 disfavored. Opposite paraity needed to explain P_c⁺ decay angle distribution. # $m_{J/\psi p}$ projection for different m_{Kp} bins #### **Angular distributions** #### No need for exotic J/ψK-contributions #### Significances and Fit Results PRL 115, 07201, arXiv:1507.03414 Improvement of fit quality: Fit w/ only $$\Lambda^*$$ model + 1st P_c⁺ + 2nd P_c⁺ $$\Delta(-2\ln\mathcal{L}) = 14.7^{2}$$ $$\Delta(-2\ln\mathcal{L}) = 11.6^{2}$$ $$\Delta(-2\ln\mathcal{L}) = 18.7^{2}$$ Simulation of pseudo-experiments used to turn $\Delta(-2\ln\mathcal{L})$ values into significances: (includes dominant systematics: difference between extended and reduced Λ^* model) | P _c (4450) ⁺ | 12σ | |--|-----| | P _c (4380)+ | 9σ | | P _c (4450) &P _c (4380) | 15σ | | State | Mass (MeV) | Width (MeV) | Fit Fraction (%) | | |------------------------------------|-----------------|------------------|------------------|--| | P _c (4380) ⁺ | 4380±8±29 | 205±18±86 | 8.4±0.7±4.2 | | | P _c (4450) ⁺ | 4449.8±1.7±2.5 | 39±5±19 | 4.1±0.5±1.1 | | | Λ(1405) | PRL 115, 07201. | arXiv:1507.03414 | 15±1±6 | | | Λ(1520) | , | | 19±1±4 | | ## Systematic uncertainties | Source | $M_0 \; (\mathrm{MeV}) \; \Gamma_0 \; (\mathrm{MeV})$ | | | | Fit fractions (%) | | | | |---|---|------|-----|------|-------------------|------|-----------------|-----------------| | | low | high | low | high | low | high | $\Lambda(1405)$ | $\Lambda(1520)$ | | Extended vs. reduced | 21 | 0.2 | 54 | 10 | 3.14 | 0.32 | 1.37 | 0.15 | | Λ^* masses & widths | 7 | 0.7 | 20 | 4 | 0.58 | 0.37 | 2.49 | 2.45 | | Proton ID | 2 | 0.3 | 1 | 2 | 0.27 | 0.14 | 0.20 | 0.05 | | $10 < p_p < 100 \text{ GeV}$ | 0 | 1.2 | 1 | 1 | 0.09 | 0.03 | 0.31 | 0.01 | | Nonresonant | 3 | 0.3 | 34 | 2 | 2.35 | 0.13 | 3.28 | 0.39 | | Separate sidebands | 0 | 0 | 5 | 0 | 0.24 | 0.14 | 0.02 | 0.03 | | $J^P (3/2^+, 5/2^-) \text{ or } (5/2^+, 3/2^-)$ | 10 | 1.2 | 34 | 10 | 0.76 | 0.44 | | | | $d = 1.5 - 4.5 \text{ GeV}^{-1}$ | 9 | 0.6 | 19 | 3 | 0.29 | 0.42 | 0.36 | 1.91 | | $L_{\Lambda_b^0}^{P_c} \Lambda_b^0 \to P_c^+ (\text{low/high}) K^-$ | 6 | 0.7 | 4 | 8 | 0.37 | 0.16 | | | | $L_{P_c}^{b} P_c^+ \text{ (low/high)} \to J/\psi p$ | 4 | 0.4 | 31 | 7 | 0.63 | 0.37 | | | | $L_{\Lambda_b^0}^{\Lambda_n^*} \Lambda_b^0 \to J/\psi \Lambda^*$ | 11 | 0.3 | 20 | 2 | 0.81 | 0.53 | 3.34 | 2.31 | | Efficiencies | 1 | 0.4 | 4 | 0 | 0.13 | 0.02 | 0.26 | 0.23 | | Change $\Lambda(1405)$ coupling | 0 | 0 | 0 | 0 | 0 | 0 | 1.90 | 0 | | Overall | 29 | 2.5 | 86 | 19 | 4.21 | 1.05 | 5.82 | 3.89 | | sFit/cFit cross check | 5 | 1.0 | 11 | 3 | 0.46 | 0.01 | 0.45 | 0.13 | - Λ* modeling is largest uncertainty - Fits w/ alternative J^P assignment - Parameters for description of mass dependence #### **Cross checks** - Two independently coded max. log likelihood fitters using different background subtractions (cFit [default] & sFit): - Signal and background described by PDFs - background subtraction using sPlot technique*) - Split data to check consistency: 2011/2012, magnet up/down, Λ_b/Λ_b , $\Lambda_b(p_T low)/\Lambda_b(p_T high)$ - Extended model fits tried without P_c states, but two additional high mass Λ* resonances allowing masses & widths to vary, or 4 non-resonant terms of J up to 3/2 ^{*)} sPlot: M.Pivk and F.R. Le Diberder, NIM A555 (2005) 356. #### Phase motion across the resonance For a Breit-Wigner resonance we expect a phase variation over the resonance: Fit Re and Im part of amplitudes for 6 individual mass bins in $M_0 \pm \Gamma_0$ P_c(4450): clock-wise phase change across pole. P_c(4380): large changes, not conclusive PRL 115, 07201, arXiv:1507.03414 #### Interpretation Kinematic effects in non-perturbative rescattering processes (cusps) e.g. arXiv:1507.04950, 1507.05359, 1507.06552, 1507.07478 bound states (or resonances) formed from open-charm baryon and meson constituents e.g. arXiv:1507.03717, 1507.03704, 1507.05200, 1507.04249, 1508.00924 Baryocharmonia e.g. arXiv:1508.00888 Tightly bound pentaquark states e.g. arXiv:1201.0807, 1507.04980, 1507.07652, 1508.00356, 1507.05867, 1507.08252, 1508.01468, 1508.04189 from arXiv:1507.05359 #### The Z⁺(4430) – a Tetraquark Candidate After the first observation by Belle in 2008 using simple 1D mass fit: 2D analysis. Harmonic moments for K^* reflected to $m(\psi'\pi^+)$: model independent description of $K^* \rightarrow K\pi$ BaBar did not confirm Z(4430)+ 4D amplitude fit: model dependent description of $K^* \rightarrow K\pi$ resonances. 6.4σ (5.6 σ w/ syst.) observation, $J^P=1^+$ preferred by >3.4 σ ### Z(4430)⁺ confirmation by LHCb PRL 112, 222002 (2014), arXiv;1404.1903 #### LHCb: more data and smaller backgrounds #### 4D amplitude analysis: - Clear confirmation of Z(4430)+ - Resonance phase motion - Quantum number: J^P = 1+ - Rescattering →diff. phase behavior P. Pakhlov, T. Uglov PLB 748,183 (2015) ### 2D model independent analysis Describe the K* angular distribution ($\cos\theta_{\text{K*}}$) and thus the reflection in $m_{\psi'\pi}$ using Legendre polynoms. The maximum moment l_{max} of the Legendre polynoms depends on max. $J(K^*)$. K* contribution filtered w/ J(K*) \leq 2 ($l_{max}\leq$ 4): Cannot describe the "Z(4430) region" ## **Quantitative Analysis** To calculate significance from pseudo-experiments we compare to test-statistics obtained with implausible high $l_{max} = 30$. Explanation of data by plausible K* contributions is ruled out with $>8.0\sigma$ w/o assuming anything about the K* model. #### **Conclusion** - Two states decaying to $J/\psi p$ have been observed in Λ_b decays which are consistent with pentaquarks. To better understand the origin: - Search for diff. final-states (e.g. $\Lambda_b \to J/\psi p \pi^-$, $\chi_c p K^-$, $\eta_c p K^-$, $\Lambda_c^+ D^0 K^-$) - Look in different b-hadron decays (e.g. Ξ_b) - Look for isospin partners (e.g. $\Lambda_b \rightarrow [ccddu] K^0$) - Study $\chi_c \Lambda^*$, $\Sigma_c^* D$,... to check rescattering - The 2014 model dependent amplitude analysis confirmed the Z(4430) tetraquark state from Belle and established its resonance character via the phase behavior. - A new model independent analysis also demonstrates the need of an exotic tetraquark contributions with significances $>8\sigma$. - We look forward to the discovery of more exotic hadrons and learning about their internal structure. ## P_c⁺ Angular distribution ## **Helicity Formalism** D-matrix, $$|J_A, m_A> = \sum_{m'_A} D^{J_A}_{m_A, m'_A} (\alpha, \beta, \gamma)^* |J_A, m'_A>,$$ where, $$D_{m,m'}^{J}(\alpha,\beta,\gamma)^* = \langle J,m|\mathcal{R}(\alpha,\beta,\gamma)|J,m'\rangle^* = e^{i\,m\alpha}\,d_{m,m'}^{J}(\beta)\,e^{i\,m'\gamma},$$ $$D^{j}_{m'm}(\alpha,\beta,\gamma) \equiv \langle jm' | \mathcal{R}(\alpha,\beta,\gamma) | jm \rangle = e^{-im'\gamma} d^{j}_{m'm}(\beta) e^{-im\alpha}.$$ ## **Amplitude Analysis II** • The matrix element for the Λ^* decay is: $$\mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{\Lambda^{*}} \equiv \sum_{n} \sum_{\lambda_{\Lambda^{*}}} \sum_{\lambda_{\psi}} \mathcal{H}_{\lambda_{\Lambda^{*}},\lambda_{\psi}}^{\Lambda_{b}^{0} \to \Lambda_{n}^{*}\psi} D_{\lambda_{\Lambda_{b}^{0}},\lambda_{\Lambda^{*}}-\lambda_{\psi}}^{\frac{1}{2}} (0,\theta_{\Lambda_{b}^{0}},0)^{*}$$ $$\mathcal{H}_{\lambda_{p},0}^{\Lambda_{n}^{*} \to Kp} D_{\lambda_{\Lambda^{*}},\lambda_{p}}^{J_{\Lambda_{n}^{*}}} (\phi_{K},\theta_{\Lambda^{*}},0)^{*} R_{n}(m_{Kp}) D_{\lambda_{\psi},\Delta\lambda_{\mu}}^{1} (\phi_{\mu},\theta_{\psi},0)^{*}$$ • And for the P_c : $$\mathcal{M}_{\lambda_{\Lambda_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{P_{c}} \equiv \sum_{j} \sum_{\lambda_{P_{c}}} \sum_{\lambda_{\psi}^{P_{c}}} \mathcal{H}_{\lambda_{P_{c}},0}^{\Lambda_{b}^{0} \to P_{cj}K} D_{\lambda_{\Lambda_{b}^{0}},\lambda_{P_{c}}}^{\frac{1}{2}} (\phi_{P_{c}},\theta_{\Lambda_{b}^{0}}^{P_{c}},0)^{*}$$ $$\mathcal{H}_{\lambda_{\psi}^{P_{c}j} \to \psi p}^{P_{c}j} D_{\lambda_{P_{c}},\lambda_{\psi}^{P_{c}} - \lambda_{p}^{P_{c}}}^{J_{P_{c}j}} (\phi_{\psi},\theta_{P_{c}},0)^{*} R_{j}(m_{\psi p}) D_{\lambda_{\psi}^{P_{c}},\Delta\lambda_{\mu}^{P_{c}}}^{1} (\phi_{\mu}^{P_{c}},\theta_{\psi}^{P_{c}},0)^{*}$$ $$R_X(m) = B'_{L_{A_b^0}}(p,p_0,d) \left(\frac{p}{M_{A_b^0}}\right)^{L_{A_b^0}^X} \, \mathrm{BW}(m|M_{0X},\Gamma_{0X}) \, B'_{L_X}(q,q_0,d) \left(\frac{q}{M_{0X}}\right)^{L_X} \, .$$ Orbital momentum barrier factor (Blatt-Weisskopf functions) ## **Amplitude Analysis III** They are added together as: $$|\mathcal{M}|^2 = \sum_{\lambda_{A_b^0}} \sum_{\lambda_p} \sum_{\Delta \lambda_{\mu}} \left| \mathcal{M}_{\lambda_{A_b^0}, \lambda_p, \Delta \lambda_{\mu}}^{\Lambda^*} + e^{i \Delta \lambda_{\mu} \alpha_{\mu}} \sum_{\lambda_p^{P_c}} d_{\lambda_p^{P_c}, \lambda_p}^{\frac{1}{2}} \left(\theta_p \right) \mathcal{M}_{\lambda_{A_b^0}, \lambda_p^{P_c}, \Delta \lambda_{\mu}}^{P_c} \right|^2$$ • α_{μ} and θ_{p} are rotation angles to align the final state helicity axes of the μ and p, as helicity frames used are different for the two decay chains. ### **cFit** - cFit uses events in ±2σ window (σ=7.52MeV) - Total PDF $\mathcal{P}(m_{Kp}, \Omega | \overrightarrow{\omega}) = (1 \beta) \mathcal{P}_{\text{sig}}(m_{Kp}, \Omega | \overrightarrow{\omega}) + \beta \mathcal{P}_{\text{bkg}}(m_{Kp}, \Omega)$ - Background is described by sidebands 5σ-13.5σ - cFit minimizes Background fraction β =5.4% $$-\ln \mathcal{L}(\overrightarrow{\omega}) = \sum_{i} \ln \left[|\mathcal{M}(m_{Kp\ i}, \Omega_{i}|\overrightarrow{\omega})|^{2} + \frac{\beta I(\overrightarrow{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{Kp\ i}, \Omega_{i})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ i}, \Omega_{i})} \right] + N \ln I(\overrightarrow{\omega}) + \text{constant},$$ $$I_{\rm bkg} \propto \sum_{j} w_{j}^{\rm MC} \frac{\mathcal{P}_{\rm bkg}^{u}(m_{Kp\ j}, \Omega_{j})}{\Phi(m_{Kp\ i})\epsilon(m_{Kp\ j}, \Omega_{j})}$$ Signal efficiency parameterization becomes part of background parameterization, effects only a tiny part of total PDF because of small β ### **sFit** ### Signal PDF $$\mathcal{P}_{\text{sig}}(m_{Kp}, \Omega | \overrightarrow{\omega}) = \frac{1}{I(\overrightarrow{\omega})} |\mathcal{M}(m_{Kp}, \Omega | \overrightarrow{\omega})|^2 \Phi(m_{Kp}) \epsilon(m_{Kp}, \Omega)$$ $\vec{\omega}$: fitting parameters Φ : phase-space = pq ϵ : efficiency #### sFit minimizes $$I(\overrightarrow{\omega}) \propto \sum_{j}^{N_{\mathrm{MC}}} w_{j}^{\mathrm{MC}} |\mathcal{M}(m_{Kpj}, \Omega_{j}|\overrightarrow{\omega})|^{2}$$ - Normalization calculated using simulated PHSP MC ($\Phi\epsilon$ included) - w^{MC} discuss later $$-2 \ln \mathcal{L}(\overrightarrow{\omega}) = -2 \underbrace{s_W} \sum_{i} \underbrace{W_i} \ln \mathcal{P}_{\text{sig}}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})$$ $$= -2 s_W \sum_{i} W_i \ln |\mathcal{M}(m_{Kp\ i}, \Omega_i | \overrightarrow{\omega})|^2 + 2 s_W \ln I(\overrightarrow{\omega}) \sum_{i} W_i$$ $$-2 s_W \sum_{i} W_i \ln [\Phi(m_{Kp\ i}) \epsilon(m_{Kp\ i}, \Omega_i)].$$ W_i is sWeighs from m(J/ ψ Kp) fits $S_W = \Sigma_i W_i / \Sigma_i W_i^2$ constant factor to correct uncertainty Constant (invariant of $\vec{\omega}$), is dropped No need to know $\Phi \varepsilon$ paramerizaiton ### **4D Dalitz-Fit** ## Resonances | State | Mass (MeV) | Width (MeV) | Fit Fraction (%) | |------------------|---------------------------|---------------------------|---| | Z ₁ + | 4475±7 +15 ₋₂₅ | 172±13 +37 ₋₃₄ | 5.9±0.9 ^{+1.5} _{-3.3} | # **Allowing two resonances** 2 resonances: J^p = 0⁻ and 1⁺ 1 resonance: J^p = 1⁺ | State | Mass (MeV) | Width (MeV) | Fit Fraction (%) | |-------------------------|----------------------------|----------------------------|------------------------------| | Z ₀ + | 4239±18 +45 ₋₁₀ | 220±47 +108 ₋₇₄ | 1.6±0.5 ^{+1.9} -0.4 | # Open questions Z⁺(4430) | Disfavoured | Rejection | level relative to 1^+ | |-------------|--------------|-------------------------| | J^P | LHCb | Belle | | 0- | 9.7σ | 3.4σ | | 1^{-} | 15.8σ | 3.7σ | | 2+ | 16.1σ | 5.1σ | | 2- | 14.6σ | 4.7σ | - P=+ rules out interpretation in terms of D̄*(2010)D*1(2420)molecule or threshold effect (cusp). - Potential neutral isospin partner? Z(4430)0 in B+ → ψ'π⁰K⁺ - No clear picture of the complex system of charmonium-like exotic resonances. - Further constraints will come from observing Z(4430)± and other exotics in alternative decay modes and/or production mechanisms. - Look for synergies with the ss and bb sectors. ### cc states ### **B-Physics at the Intensity Frontier** #### LHC @ 14 (13) TeV $$\sigma_{bb}(14 \, TeV) \approx 500 \, \mu b$$ $\rightarrow 10^{10} \, b\bar{b} \text{ events/fb}^{-1}$ #### SuperKEKB & Belle II $$\sigma_{BB} \approx 1 \ nb$$ $\rightarrow 10^9 \ B\bar{B} \ \text{events/ab}^{-1}$ | | LHC era | | High-lumi LHC era | | | |-------------|---------------------|----------------------|----------------------|---------------------|-----------------------| | | 2010-2012 | 2015-2018 | 2020-2022 | 2025-2028 | 2030+ | | ATLAS & CMS | 25 fb ⁻¹ | 100 fb ⁻¹ | 300 fb ⁻¹ | \rightarrow | 3000 fb ⁻¹ | | LHCb | 3 fb ⁻¹ | 8 fb ⁻¹ | 23 fb ⁻¹ | 46 fb ⁻¹ | 100 fb ⁻¹ | | Belle II | | 0.5 ab ⁻¹ | 25 ab ⁻¹ | 50 ab ⁻¹ | - | ## **Upgrade-Project** #### LHCb Upgrade: See also talk by Wander Baldini - Increase levelled luminosity up to 2x10³³ cm⁻²s⁻¹ (pile-up ~8): - Fully flexible & efficient software trigger up to 40 MHz input - Record 20 100 kHz - Upgrade VELO and Tracker (adapt to higher occupancy and radiation load) # Physics Complementarity*) ^{*)} Caveat: I am probably missing "your" favored channel/field # Typical bb event