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Introduction

1 Lepton scattering experiments have been performed for a wide range of

energy.

2 Lepton induced processes may be subdivided as

1 Elastic scattering

2 Inelastic scattering

3 Deep Inelastic scattering(DIS)

3 Early experiments at SLAC exhibited Bjorken scaling phenomenon

corresponding to DIS.

4 Structure functions are found to be independent of Q2 in the asymptotic

limit.

5 Q2 independence of structure functions gave first evidence of quarks and

gluons.
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1 Earlier it was believed that quarks inside the nucleon are insensitive to

the nuclear enviroment.
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1 Earlier it was believed that quarks inside the nucleon are insensitive to

the nuclear enviroment.

2 In 1982 EMC at CERN found that structure function for a nuclear target

is different than for a free nucleon.

FFe
2

FD
2

6= 1

3 Theoretically to incorporate the nuclear medium effects many efforts has

been done for the e.m. interaction but only few for the weak interaction

4 Phenomenologically, people tried to obtain a correction factor to take
into account the nuclear medium effects

1 l±−A

2 p−A

3 ν/ν̄−A

4 DY process
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Basic reaction for deep inelastic scattering process is

l(k)+N(p)→ l′(k′)+X(p′)
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The general expression of two body scattering cross section

dσ =
1

2El2EN

(2π)4 δ4(k+p− k′−
n

∑
i=1

p′i)
d3k′

(2π)3El′

n

∏
i=1

d3p′i
(2π)3EX

∑ ¯∑|M |2
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Square of matrix element is
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Square of matrix element is

|M |2 ∝ LµνWµν

The leptonic tensor Lµν

Lµν = 2(kµ k′ν + k′µkν − k · k′gµν)

In general the hadronic tensor is defined as

Wµν = −gµν W1(ν,Q
2)+

pµpν

M2
W2(ν,Q

2)− iεµνλσ
pλqσ

2M2
W3(ν,Q

2)

+
qµqν

M2
W4(ν,Q

2)+
(pµqν +pνqµ)

2M2
W5(ν,Q

2)

+
i(pµqν −pνqµ)

2M2
W6(ν,Q

2)
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(

p ·q
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W2(ν,Q
2)

Therefore, we are left with only W1(ν,Q
2) and W2(ν,Q

2) and the

hadronic tensor is

Wµν =

(

−gµν +
qµqν

q2

)

W1(ν,Q
2)+

(

pµ −
p ·q

q2
qµ

)(

pν −
p ·q

q2
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Double differential scattering cross section for em interaction

dσ

dQ2dν
=

πα2

4E3
l E′

lsin4
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θ
2

)
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2sin2

(

θ

2

)

W1(ν,Q
2)+ cos2

(

θ

2

)

W2(ν,Q
2)

}
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Double differential scattering cross section for em interaction
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(
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The nucleon structure functions Wi(ν,Q
2) are redefined as

M W1(ν,Q
2) = F1(x)

ν W2(ν,Q
2) = F2(x)
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where xfi(x) is the probability of finding a quark of flavor i carrying a momentum
fraction x of nucleon’s momentum.

F
ep
2 =

4 x

9
(uv +us + ūs +c+ c̄+ ....)+

x

9

(

dv +ds + d̄s + s+ s̄+ ....
)

Fen
2 =

x

9
(uv +us + ūs + s+ s̄+ ....)+

4 x

9

(

dv +ds + d̄s +c+ c̄+ ....
)
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Parton distribution functions have been parametrized by many groups

1 MRST/MSTW

2 GJR/GRV

3 ALEKHIN

4 CTEQ

5 .............

We have used CTEQ6.6 PDFs in our numerical calculations.
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Target Mass Correction

1 At finite Q2 heavy quarks are produced like strange, charm, etc.

2 Heavy quark mass can not be ignored as compared to target

nucleon mass

3 Heavy quarks production modifiy the scattering kinematics,

therefore

x → ξ

ξ =
2x

1+
√

1+4µx2
, µ =

M2

Q2

4 This effect is known as Target mass correction

5 TMC is effective at low Q2 and high x
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1 In this region PDFs are not very well determined

2 Hence to precisely determine the PDFs TMC should be taken into

account

3 Structure function depend on the dimensionless variable x

4 Therefore, nucleon structure function with TMC is given by

FTMC
2 (x,Q2) ≈

x2

ξ2γ3
F2(ξ)

(

1+
6µxξ

γ
(1−ξ)2

)

γ =

√

1+
4M2x2

Q2

Schienbein et al. JPG 35 (2008) 053101
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Next-to-Leading Order(NLO)

“Structure functions in DIS and their scale evolution are closely

related to the origins of quantum chromodynamics (QCD).”

The expression for structure function F2 can be expressed as a function of the

PDFs by

x−1F2 = ∑
f=q,g

C2 ⊗ f

where C2 is the coefficient function for the quarks and gluons, ⊗ symbols is

for the Mellin convolution which turns into a simple multiplication in N-space

and f represents the quark and gluon distributions.

Vermaseren and van Neerven et al.NPB 724(2005)3

van Neerven and Vogt NPB 568(2000)263.

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 14 / 56



If we look inside the nucleus

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 15 / 56



If we look inside the nucleus

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

q
q
q

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 15 / 56



If we look inside the nucleus

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

q
q
q

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 15 / 56



If we look inside the nucleus

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

q
q
q

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 15 / 56



If we look inside the nucleus

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

q
q
q

l−(k)

l−′(k′)

γ∗(q)

N(p)

X(p′)

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 15 / 56



We have incorporated the following NME in the present calculation

1 Fermi motion

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 16 / 56



We have incorporated the following NME in the present calculation

1 Fermi motion

2 Pauli blocking

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 16 / 56



We have incorporated the following NME in the present calculation

1 Fermi motion

2 Pauli blocking

3 Nucleon correlations

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 16 / 56



We have incorporated the following NME in the present calculation

1 Fermi motion

2 Pauli blocking

3 Nucleon correlations

4 Pion and rho meson cloud contributions

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 16 / 56



We have incorporated the following NME in the present calculation

1 Fermi motion

2 Pauli blocking

3 Nucleon correlations

4 Pion and rho meson cloud contributions

5 Shadowing and antishadowing

Kulagin and Petti PRD76,094033, 2007
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Medium effects in lepton-A scattering

Kinematic effect which arises as the struck nucleon is not at rest but is

moving with a Fermi momentum in the rest frame of the nucleus.

Dynamic effect which arises due to the strong interaction of the initial

nucleon in the nuclear medium.

In a nuclear medium for em interaction the expression for the cross

section is written as:

d2σA

dΩ′dE′
=

α2

q4

|~k′|

|~k|
Lµν WA

µν,
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moving with a Fermi momentum in the rest frame of the nucleus.

Dynamic effect which arises due to the strong interaction of the initial

nucleon in the nuclear medium.

In a nuclear medium for em interaction the expression for the cross

section is written as:

d2σA

dΩ′dE′
=

α2

q4

|~k′|

|~k|
Lµν WA

µν,
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Nuclear hadronic tensor:

WA
µν =

(

qµqν

q2
−gµν

)

WA
1 (ν,Q

2)+
WA

2 (ν,Q
2)

M2
A

(

pµ −
p.q

q2
qµ

)(

pν −
p.q

q2
qν

)

WA
i (ν,Q

2) are redefined as:

MAWA
1 (ν,Q

2) = FA
1 (x)

νWA
2 (ν,Q

2) = FA
2 (x)
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Nuclear hadronic tensor:

WA
µν =

(

qµqν

q2
−gµν

)

WA
1 (ν,Q

2)+
WA

2 (ν,Q
2)

M2
A

(

pµ −
p.q

q2
qµ

)(

pν −
p.q

q2
qν

)

WA
i (ν,Q

2) are redefined as:

MAWA
1 (ν,Q

2) = FA
1 (x)

νWA
2 (ν,Q

2) = FA
2 (x)
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We use a relativistic nucleon spectral function to describe the momentum

distribution of nucleons in nuclei.

The spectral function has been calculated using Lehmann’s

representation for the relativistic nucleon propagator.

Nuclear many body theory is used to calculate it for an interacting Fermi

sea in nuclear matter.

A local density approximation is then applied to translate these results to

finite nuclei.
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The probability per unit time for the incoming lepton to collide with nucleons

when traveling through nuclear matter:

Γ =−
2ml

|~k|
ImΣ
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The probability per unit time for the incoming lepton to collide with nucleons

when traveling through nuclear matter:

Γ =−
2ml

|~k|
ImΣ

The cross section σ for lepton-scattering from an element of volume d3r and

surface dS in the nucleus:

dσ = ΓdtdS = Γ
dt

dl
dSdl = Γ

1

v
dV

= Γ
El(~k)

|~k|
dV =−

2ml

|~k|
Im Σ d3r .

l−′(k′)

l−(k)

l−(k) γ∗(q)

γ∗(q)

N (p) X(p′)
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Lepton self energy Σ(k) for em interaction is written as:

−iΣ(k) =
∫

d4q

(2π)4
ūl(~k) ieγµ i

6k′+m

k′2 −m2 + iε
ieγνul(~k)

−igµρ

q2
(−i) Πρσ(q)

−igσν

q2

γ∗(q)

γ∗(q)

photon self-energy Πµν(q) in the nuclear medium:

Πµν(q) = e2
∫

d4p

(2π)4
G(p)∑

X
∑
sp,sl

∏
N

i=1

∫
d4p′i
(2π)4 ∏

l

Gl(p
′
l) ∏

j

Dj(p
′
j)

< X|Jµ|H >< X|Jν|H >∗ (2π)4 δ4(q+p−
N

∑
i=1

p′i)
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Relativistic Dirac propagator G0(p0,~p) for a free nucleon:

G0(p0,~p) =
M

E(~p)

{

∑r ur(p)ūr(p)

p0 −E(~p)+ iε
+

∑r vr(−p)v̄r(−p)

p0 +E(~p)− iε

}

The nucleon propagator in the interacting Fermi sea is obtained by making a

perturbative expansion of G(p0,p) in terms of G0(p0,p) by retaining the

positive energy contributions only:

+ +

k k k

+..........

G(p0,~p) =
M

E(~p)

∑r ur(p)ūr(p)
(

p0 −E(~p)+ iε
) +

(

M

E(~p)

)2
1

(

p0 −E(~p)+ iε
)∑

∑r ur(p)ūr(p)
(

p0 −E(~p)+ iε
) + ...

=
M

E(~p)

∑r ur(p)ūr(p)
(

p0 −E(~p)+ iε M
E(~p) ∑

)
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This allows us to write the relativistic nucleon propagator in a nuclear

medium in terms of the spectral functions of holes and particles as:

G(p0,~p) =
M

E(~p) ∑
r

ur(~p)ūr(~p)

[∫ µ

−∞
d ω

Sh(ω,~p)

p0 −ω− iε
+

∫ ∞

µ
d ω

Sp(ω,~p)

p0 −ω+ iε

]
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This allows us to write the relativistic nucleon propagator in a nuclear

medium in terms of the spectral functions of holes and particles as:

G(p0,~p) =
M

E(~p) ∑
r

ur(~p)ūr(~p)

[∫ µ

−∞
d ω

Sh(ω,~p)

p0 −ω− iε
+

∫ ∞

µ
d ω

Sp(ω,~p)

p0 −ω+ iε

]

for p0 ≤ µ

Sh(p
0,~p) =

1

π

M
E(~p) ImΣ(p0,~p)

(p0 −E(~p)− M
E(~p)ReΣ(p0,~p))2 +( M

E(~p) ImΣ(p0,~p))2

for p0 > µ

Sp(p
0,~p) =−

1

π

M
E(~p) ImΣ(p0,~p)

(p0 −E(~p)− M
E(~p)ReΣ(p0,~p))2 +( M

E(~p) ImΣ(p0,~p))2

P. Fernandez de Cordoba and E. Oset, Phys. Rev. C 46 (1992) 1697

E. Marco, E. Oset and P. Fernandez de Cordoba, Nucl. Phys. A 611 (1996) 484
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Local Density Approximation

In the local density approximation reaction takes place at a point r, lying

inside a volume d3r with local density ρp(r) and ρn(r) corresponding to the
proton and neutron densities

ρp(r) =
Z

A
ρ(r)

ρn(r) =
A−Z

A
ρ(r)
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Z

A
ρ(r)

ρn(r) =
A−Z

A
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Fermi momentum of the nucleon is

p
Fp

= (3π2ρp(~r))
1/3

p
Fn

= (3π2ρn(~r))
1/3
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Local Density Approximation

In the local density approximation reaction takes place at a point r, lying

inside a volume d3r with local density ρp(r) and ρn(r) corresponding to the
proton and neutron densities

ρp(r) =
Z

A
ρ(r)

ρn(r) =
A−Z

A
ρ(r)

Fermi momentum of the nucleon is

p
Fp

= (3π2ρp(~r))
1/3

p
Fn

= (3π2ρn(~r))
1/3

This leads to the spectral functions for the protons and neutrons to be the

function of local Fermi momentum given by

2

∫
d3p

(2π)3

∫ µ

−∞
Sh(ω,~p,pFp,n

(~r)) dω = ρp,n(~r)

4

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
Sh(ω,~p,ρ(r)) dω = A
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of

nucleonic hadronic tensor with the hole spectral function

WA
αβ = 4

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
dp0 M

E(~p)
Sh(p

0,~p,ρ(r))WN
αβ(p,q)
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of

nucleonic hadronic tensor with the hole spectral function

WA
αβ = 4

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
dp0 M

E(~p)
Sh(p

0,~p,ρ(r))WN
αβ(p,q)

Taking the xx component

WN
xx =

(

qxqx

q2
−gxx

)

WN
1 +

1

M2

(

px −
p.q

q2
qx

)(

px −
p.q

q2
qx

)

WN
2
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of

nucleonic hadronic tensor with the hole spectral function

WA
αβ = 4

∫
d3r

∫
d3p

(2π)3

∫ µ

−∞
dp0 M

E(~p)
Sh(p

0,~p,ρ(r))WN
αβ(p,q)

Taking the xx component

WN
xx =

(

qxqx

q2
−gxx

)

WN
1 +

1

M2

(

px −
p.q

q2
qx

)(

px −
p.q

q2
qx

)

WN
2

Chosing~q along the z-axis

WN
xx(νN ,Q

2) = WN
1 (νN ,Q

2)+
1

M2
p2

xWN
2 (νN ,Q

2)

Farhana Zaidi (AMU, India) International School of Nuclear Physics, Erice 25 / 56



Similarily taking xx component of nuclear hadronic tensor

WA
xx(νA,Q

2) = WA
1 (νA,Q

2) =
FA

1 (xA)

AM
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Similarily taking xx component of nuclear hadronic tensor

WA
xx(νA,Q

2) = WA
1 (νA,Q

2) =
FA

1 (xA)

AM

F1(x) = M W1(ν,Q
2), F2(x) = ν W2(ν,Q

2)

FA
1
(xA)

AM
= 4

∫
d3r

∫
d3p

(2π)3

M

E(~p)

∫ µ

−∞
dp0Sh(p

0,~p,ρ(~r))×

[

FN
1 (xN)

M
+

1

M2
px

2 FN
2 (xN)

ν

]
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By using Callan-Gross relation 2xF1(x) = F2(x)

FA
2 (xA) = 4

∫
d3r

∫
d3p

(2π)3

M

E(~p)

∫ µ

−∞
dp0 Sh(p

0,~p,ρ(~r))
x

xN

×

(

1+
2xNp2

x

MνN

)

FN
2 (xN)
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By using Callan-Gross relation 2xF1(x) = F2(x)

FA
2 (xA) = 4

∫
d3r

∫
d3p

(2π)3

M

E(~p)

∫ µ

−∞
dp0 Sh(p

0,~p,ρ(~r))
x

xN

×

(

1+
2xNp2

x

MνN

)

FN
2 (xN)

where

xA =
x

A
,

xN =
Q2

2(p0q0 −pzqz)
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Effect of nuclear medium on Callan Gross relation

To obtain F2(x) independently

WN
zz =

(

q2
z

q2
−gzz

)

WN
1 +

1

M2

(

pz −
p.q

q2
qz

)2

WN
2

=
q2

0

q2
WN

1 +
1

M2

(

(pzq
2 −p.q qz)

2

q4

)

WN
2

WA
zz(νA,Q

2) =

(

q2
z

q2
−gzz

)

WA
1
+

1

M2
A

(

−
p

A
.q

q2
qz

)2

WA
2
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F2(x) = νW2(ν,Q
2)

Finally, we obtain

FA
2
(xA) = 2∑

p,n

∫
d3r

∫
d3p

(2π)3

M

E(~p)

∫ µ

−∞
dp0S

p,n
h (p0,~p,ρp,n(~r)) FN

2 (xN)

×

[

Q2

q2
z

(

p2 − p2
z

2M2

)

+
(p.q)2

M2ν2

(

pz Q2

p.qqz

+ 1

)2
q0M

p0 q0 − pz qz

]

This expression of FA
2
(xA) is obtained without applying Callan-Gross relation.
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π and ρ mesons contribution to the nuclear structure

function

For mesons cloud contribution

2π
M

E(~p)
Sh(p0,~p)W

αβ
N (p,q)→ 2ImD(p)θ(p0)W

αβ
π (p,q)

Pion propagator in the nuclear medium

D(p) = [p0
2 −~p2 −m2

π −Ππ(p0,~p)]
−1

with

Ππ =
f 2/m2

πF2(p)~p 2Π∗

1− f 2/m2
πV ′

LΠ∗

πNN form factor

F(p) = (Λ2 −m2
π)/(Λ

2 +~p2)
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Similar to nucleonic case

W
µν
A,π = 3

∫
d3r

∫
d4p

(2π)4
θ(p0)(−2) ImD(p) 2mπW

µν
π (p,q)

Factor 3 ⇒ Three Charged states of pion

For pion excess in nuclear medium

ImD(p) → δImD(p)≡ ImD(p)−ρ
∂ImD(p)

∂ρ

∣

∣

ρ=0

which leads to

FA
1,π(xπ) = −6AM

∫
d3r

∫
d4p

(2π)4
θ(p0) δImD(p) 2mπ ×

[

F1π(xπ)

mπ
+

|~p|2 − p2
z

2(p0 q0 − pzqz)

F2π(xπ)

mπ

]
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Contribution from rho meson

Propagator for rho meson

Dρ(p) = [p0
2 −~p2 −m2

ρ −Π∗
ρ(p0,~p)]

−1

with irreducible ρ self-energy

Π∗
ρ =

f 2/m2
ρCρF2

ρ(p)~p
2Π∗

1− f 2/m2
ρV ′

TΠ∗

ρNN form factor

Fρ(p) = (Λ2
ρ −m2

ρ)/(Λ
2
ρ +~p

2)

Finally,

FA
1,ρ(xρ) = −12AM

∫
d3r

∫
d4p

(2π)4
θ(p0) δImDρ(p) 2mρ ×

[

F1ρ(xρ)

mρ
+

|~p|2 − p2
z

2(p0 q0 − pz qz)

F2ρ(xρ)

mρ

]
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Structure functions for π and ρ mesons without using Callan-Gross relation:

FA
2,π
(xπ) = −6

∫
d3r

∫
d4p

(2π)4
θ(p0) δImD(p) 2mπ

mπ

p0 − pz γ
×

[

Q2

q2
z

(

|~p|2 − p2
z

2m2
π

)

+
(p0 − pz γ)2

m2
π

(

pz Q2

(p0 − pz γ)q0qz
+ 1

)2
]

F2π(xπ)

FA
2,ρ
(xρ) = −12

∫
d3r

∫
d4p

(2π)4
θ(p0) δImDρ(p) 2mρ

mρ

p0 − pz γ
×

[

Q2

q2
z

(

|~p|2 − p2
z

2m2
ρ

)

+
(p0 − pz γ)2

m2
ρ

(

pz Q2

(p0 − pz γ)q0qz
+ 1

)2
]

F2ρ(xρ)
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Ratio of Structure functions in Weak and E.M. cases
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M. Sajjad Athar et al. arXiv:1311.2289
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Nuclear dependence in
FA
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Percantage difference for F2 in different nuclei

Nucleus Q2(GeV2) |
LOSF−LOT

LOT
|% |

LOT −NLOT
NLOT

|% |
NLOT−NLOWOS

NLOWOS
|%

12C(x=0.2) 2 18 9 ≈2

(x=0.4) 12 6 1

(x=0.8) 0.16 38 0.25
27Al(x=0.2) 2 20 ≈9 2

(x=0.4) 14 6 1

(x=0.8) 0.2 38 0.3
56Fe(x=0.2) 1.8 23 10 2

(x=0.4) 17 5 1.3

(x=0.8) 0.24 37 0.37
63Cu(x=0.2) 2.9 20 7.7 1.9

(x=0.4) 12 6.5 1

(x=0.8) 0.18 38.7 0.3
118Sn(x=0.2) 1.8 24.6 9.8 2.3

(x=0.4) 18.5 5.3 1.3

(x=0.8) 0.26 37 0.4
197Au(x=0.2) 1.8 25 9.7 2.6

(x=0.4) 19.8 5 1.5

(x=0.8) 0.3 37 0.46
208Pb(x=0.2) 1.8 26 9.6 2.4

(x=0.4) 19 5 1.4

(x=0.8) 0.28 37 0.43
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Percantage difference for |2xF1−F2

2xF1
| in different nuclei

Nucleus Q2(GeV2) |
2xF1−F2

2xF1
|%

12C(x=0.2) 2 ≈ 3

(x=0.7) ≈ 21

(x=0.2) 3 ≈ 2

(x=0.7) ≈ 16

(x=0.2) 3.7 1.4

(x=0.7) ≈ 13

56Fe(x=0.2) 1.8 ≈ 5

(x=0.7) ≈ 23

(x=0.2) 5 1.3

(x=0.7) 11

(x=0.2) 10 ≈ 0.6

(x=0.7) ≈ 6

(x=0.2) 20 ≈ 0.3

(x=0.7) ≈ 3

63Cu(x=0.2) 2.9 2.5

(x=0.7) ≈ 17

(x=0.2) 3.6 2

(x=0.7) ≈ 14
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Conclusions

1 We find that the effect of nuclear medium is also quite important even for

DIS.
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Conclusions

1 We find that the effect of nuclear medium is also quite important even for

DIS.

2 We find that FA
2 (x,Q

2) is different from 2xFA
1 (x,Q

2) that means Callan

Gross relation deviates at nuclear level.

3 We compare our results with the JLab and NMC data and found them in

good agreement.

4 The present work will make useful predictions for the future experiments

in the low x and moderate Q2.
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Electromagnetic Nuclear Structure Function
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Theoretical Study

1 Along with the experimental efforts theoretical groups also performed

calculations in order to understand the nuclear medium effects for the

e.m. DIS process.
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Theoretical Study

1 Along with the experimental efforts theoretical groups also performed

calculations in order to understand the nuclear medium effects for the

e.m. DIS process.

2 Our group at Aligarh performed calculations by taking into account the

dynamic origin of nuclear medium effects.

Aligarh group:

NPA 943 58 (2015)

NPA 940 138 (2015)

PRC 87 035502 (2013)

PRC 85 055201 (2012)

PRC 84 054610 (2011)

NPA 857 29 (2011)

PLB 668 133 (2008)
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Shadowing and antishadowing effects

“Significant at low-x and low-Q2”

The shadowing suppression at small x occurs due to coherent multiple

scattering inside the nucleus of a quark-anti quark pair coming from the

virtual boson with destructive interference of the amplitudes. The shadowing

effect is important at low x and low Q2 .

The anti-shadowing effect is due to constructive interference of the multiple

scattering amplitudes. This effect is also important at low x but greater than x

region of shadowing.

For the shadowing and antishadowing effects, Glauber-Gribov multiple

scattering model has been used following the work of Kulagin and Petti.

PRD76(2007)094033.
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π and ρ mesons contribution to the nuclear structure

function

+ +
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X +...........1h
1p 1h

1h

1h 1p

1∆

1∆

1 More effective for heavier nuclei

2 Contributes to the intermediate x region

3 Implemented following the many body field theoretical approach

4 Using parametrization by Gluck et al.
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Nature of Spectral Function
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Behave like a δ function for p < pF,

Long range for p > pF .
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Hole and particle spectral function fulfills

∫ µ

−∞
dp0 Sh(p0,~p)+

∫ ∞

µ
dp0 Sp(p0,~p) = 1
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Hole and particle spectral function fulfills

∫ µ

−∞
dp0 Sh(p0,~p)+

∫ ∞

µ
dp0 Sp(p0,~p) = 1

When interactions are not present

ΣN(p) = 0

G(p) → G0(p)

Therefore,

Sh(p0,~p) = Sp(p0,~p) = δ(p0 −E(~p))

∫ µ

−∞
dp0 Sh(p0,~p) =

∫ µ

−∞
dp0 δ(p0 −E(~p)) =

{

1 if µ > E(~p)
0 if µ < E(~p)∫ ∞

µ
dp0 Sp(p0,~p) =

∫ ∞

µ
dp0 δ(p0 −E(~p)) =

{

1 if µ < E(~p)
0 if µ > E(~p)
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Chemical potential is defined as

µ = M+ εF

and p0 = M+ω

∫ µ

−∞
dp0 Sh(p0,~p) =

∫ µ−M

−∞
dω δ(ω+M−E(~p))

=

{

1 ; µ−M > E(~p)−M ⇒ εF > ε(~p)
0 ; µ−M < E(~p)−M ⇒ εF < ε(~p)∫ ∞

µ
dp0 Sp(p0,~p) =

∫ ∞

µ−M
dω δ(ω+M−E(~p))

=

{

1 ; µ−M < E(~p)−M ⇒ εF < ε(~p)
0 ; µ−M > E(~p)−M ⇒ εF > ε(~p)
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Hole spectral function

With Fermi energy

εF =
p2

F

2M

we have

∫ µ

−∞
dp0 Sh(p0,~p) = θ(pF −|~p|)≡ n0(~p)

∫ ∞

µ
dp0 Sp(p0,~p) = θ(|~p|−pF)≡ 1−n0(~p)

Hole spectral function is

1 P of removing a nucleon from correlated ground state

2 P of finding the nucleons with an energy p0 < E < p0 +dp0
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