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Introduction

@ Lepton scattering experiments have been performed for a wide range of
energy.
© Lepton induced processes may be subdivided as

@ Elastic scattering
@ Inelastic scattering
© Deep Inelastic scattering(DIS)

© Early experiments at SLAC exhibited Bjorken scaling phenomenon
corresponding to DIS.

© Structure functions are found to be independent of Q? in the asymptotic
limit.

@ 07 independence of structure functions gave first evidence of quarks and
gluons.
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@ Earlier it was believed that quarks inside the nucleon are insensitive to
the nuclear enviroment.
© In 1982 EMC at CERN found that structure function for a nuclear target
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© Theoretically to incorporate the nuclear medium effects many efforts has
been done for the e.m. interaction but only few for the weak interaction

© Phenomenologically, people tried to obtain a correction factor to take
into account the nuclear medium effects
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@ DY process

Farhana Zaidi (AMU, India) International School of Nuclear P]



Basic reaction for deep inelastic scattering process is

I(k)+N(p) = T(K)+XP")
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Basic reaction for deep inelastic scattering process is

I(k)+N(p) = T(K)+XP")

NC " =N cC y-N

The general expression of two body scattering cross section

1 4 <4 R - dP 2
- () Sk p-K Y i M
95 = Sppgy 3™ Skt X.7) (27:)3E,,H 2m)Ex IHIE

i=1
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Square of matrix element is

| M|2 2 Lyv W;N
The leptonic tensor Ly

L’u\; = 2(](“ k(,‘i_kLkV _k'k/gyv)

In general the hadronic tensor is defined as

|
A\

A G
Pub pq
W = —8uv Wl(anZ)"’_;l—zv Wz(V,Q ) lSHVXG 2M? ( ’Q )
Gty (Pugv +Pvay) >
gz Waln @)+ S Ws(v, 07)
l(PuQv quu) 2
" We(v
2M2 6( 7Q )
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By contraction of hadronic tensor with L,y

W3(V’Q2) =0 ) W6(V’Q2) —0

Conservation of current leads to

W = 0

—2p.
Wav.0%) = = W07

M? q\?
Ws(v,0%) = ?WI(WQZ)“'(%) (v, 0%)

Therefore, we are left with only Wy (v,Q%) and W»(v,Q?) and the

hadronic tensor is

v (o L w01 - 20) - 20) 25
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Double differential scattering cross section for em interaction

do o2
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Double differential scattering cross section for em interaction

do o2

ey (o (ot (o)
dQZdV_4E,3Efsin4(g) {2sm <2 Wi(v,07) + cos > Wa(v,0%)

Bjorken variables are

_e v
“oamv’ YT
ds  do dQ%dv
dxdy — dQ2dv dxdy

2
dodv - _ 2MyE?
dxdy
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Double differential scattering cross section for em interaction

do o2 0 0
_ rsin? (2 2 2 (9 2
dQ2dv ~ AE3Esin’ (2) { s <2> Wi(v, Q")+ cos (2) W2(v,2°)

Bjorken variables are

4

oy
wmv: YT E
ds  do dQ%dv
dxdy — dQ2dv dxdy
2
Q"dv 2MyE?
dxdy

do 2 O o Ej Mxy M
—— =2MEjy————o | W, —(1- 2W
dxdy Y4B Elsin(2) [ 2(v,Q >E; ( T AU o) (= Y2E]
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The nucleon structure functions W;(v, Q%) are redefined as
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Differential scattering cross section may also be written as
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dedy o*
Electromagnetic structure functions
Fa(x) = Yeixfix)
i

Fa(x)

hix) = 2x

where xf;(x) is the probability of finding a quark of flavor i carrying a momentum
fraction x of nucleon’s momentum.
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The nucleon structure functions W;(v, Q%) are redefined as

MW (v,0*) = Fi(x)
VWL (v,0%) = Fa(x)

Differential scattering cross section may also be written as

2 2
&0 _ SMEme” (ﬁm () + [(1 —y— %ﬁf)} Fz(x)>

dedy o*
Electromagnetic structure functions
Fa(x) = Yeixfix)
i

Fa(x)

F1(x) 2

where xf;(x) is the probability of finding a quark of flavor i carrying a momentum
fraction x of nucleon’s momentum.
ep 4x _ _ X = _
FY = 5 wtutitetet.)+g (dv+ds+ds+s+5+...)

4 _
(uv—l—ux—ﬁ—ﬁx—l—sﬁ—iﬁ—....)-!-—x (dy+ds+ds+c+T+....)

Fy"
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Parton distribution functions have been parametrized by many grou

@ MRST/MSTW
Q GIR/GRV

@ ALEKHIN

@ CTEQ

We have used CTEQ6.6 PDF's in our numerical calculations.
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Target Mass Correction

At finite Q% heavy quarks are produced like strange, charm, etc.
Heavy quark mass can not be ignored as compared to target
nucleon mass
Heavy quarks production modifiy the scattering kinematics,
therefore

x—&

£ = 2x
14 /1442’

* This effect is known as Target mass correction
s TMC is effective at low Q* and high x
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In this region PDF's are not very well determined

Hence to precisely determine the PDFs TMC should be taken into
account

Structure function depend on the dimensionless variable x

Therefore, nucleon structure function with TMC is given by

FIM x? 6x
‘e x Fh) (1+ “fu—w)

Schienbein et al. JPG 35 (2008) 053101
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Next-to-Leading Order(NLO)

“Structure functions in DIS and their scale evolution are closely
related to the origins of quantum chromodynamics (QCD).”

The expression for structure function F> can be expressed as a function of the
PDFs by

x'F = Z CRf

=48

where C; is the coefficient function for the quarks and gluons, ® symbols is
for the Mellin convolution which turns into a simple multiplication in N-space
and f represents the quark and gluon distributions.
Vermaseren and van Neerven et al. NPB 724(2005)3
van Neerven and Vogt NPB 568(2000)263.
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We have incorporated the following NME in the present calculation

@ Fermi motion

© Pauli blocking

© Nucleon correlations

@ Pion and rho meson cloud contributions

© Shadowing and antishadowing
Kulagin and Petti PRD76,094033, 2007
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Medium effects in lepton-A scattering

@ Kinematic effect which arises as the struck nucleon is not at rest but is
moving with a Fermi momentum in the rest frame of the nucleus.
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Medium effects in lepton-A scattering

@ Kinematic effect which arises as the struck nucleon is not at rest but is
moving with a Fermi momentum in the rest frame of the nucleus.

o Dynamic effect which arises due to the strong interaction of the initial
nucleon in the nuclear medium.

In a nuclear medium for em interaction the expression for the cross

section is written as:

2 2 17
ot ao? K L A

dYdE ¢ [f] v
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Nuclear hadronic tensor: )

4uq w2 (v,0%) p-q p-q
W;}v - < sz g.“") WA(V QZ) ZT Pu— "5 qu| \Pv— "5 qV)
A
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Nuclear hadronic tensor: )

4uq w2 (v,07%) p-q p-q
W;}v = < sz _g#V> Wf(V>Q2) + ZT Pu=—>5qu ) \Pv——%5
A

WA(v,Q?) are redefined as:

MAWE(v,0*) = Fi(x)
VWi (v,0%) = F5(x)
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@ We use a relativistic nucleon spectral function to describe the momentum
distribution of nucleons in nuclei.

o The spectral function has been calculated using Lehmann’s
representation for the relativistic nucleon propagator.

@ Nuclear many body theory is used to calculate it for an interacting Fermi
sea in nuclear matter.

@ A local density approximation is then applied to translate these results to
finite nuclei.
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The probability per unit time for the incoming lepton to collide with nucleons
when traveling through nuclear matter:

K|
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The probability per unit time for the incoming lepton to collide with nucleons
when traveling through nuclear matter:
I'=— @Imi‘.
[K]
The cross section ¢ for lepton-scattering from an element of volume d°r and
surface dS in the nucleus:

do = TdwdS= Fﬂdel = FldV
dl v
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Lepton self energy L(k) for em interaction is written as:

4 m
—ix(k) = / (‘21754 (k) iey" i% ie

photon self-energy IT"V(g) in the nuclear medium:

(q) =

N d
W LIT. Gl TToh TT 26

< X|JMH >< X|JV|H >* 2n)* 8*(q+p — Zpg)
i=1
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Relativistic Dirac propagator G°(po,p) for a free nucleon:

GO(Po,l_j) _ A/{ { Zr“r(pzur(P.) 4 err(_pl‘_’r(_.p) }
Ep) \pP’—E(p)+ie  p°+EPp)—ie
The nucleon propagator in the interacting Fermi sea is obtained by making a
perturbative expansion of G(p°,p) in terms of G°(p°, p) by retaining the
positive energy contributions only:

M Y u(p)iy(p) "
EP) (p° —E(p)+ie)

M\ ! X, (P (p)
(E(f?)) (P° —E(p) +ie) ) (p° —E(p) +ie) +
M X ur(p)ir(p)

E(p) (pO —E(p) +ie s ):)
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This allows us to write the relativistic nucleon propagator in a nuclear

medium in terms of the spectral functions of holes and particles as:

G(p",p) =

Sp(o,p o S,(,p
5 (5) [/ Oh( p). +/ Jo Op( p)‘]
p'—w—ie Jyu p'—O+1€
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This allows us to write the relativistic nucleon propagator in a nuclear

medium in terms of the spectral functions of holes and particles as:

Sh((!),[_j) “ S (0)’1_5)
G 07 Uy / _ / d _PATHET
(v"p) i (p) [ pO—o)—izzJr u wp°—0)+i£
for p® <u
Sip".5) = = %Imz(po’ﬁ)
P R (0 E(P) — 2L ReE(p.P) + (2L mE(p".5) 2
for p > u
PP R 0 —E() - £ Rez<p°,p>> (2L mE(p 7))?

P. Fernandez de Cordoba and E. Oset, Phys. Rev. C 46 (1992) 1697
E. Marco, E. Oset and P. Fernandez de Cordoba, Nucl. Phys. A 611 (1996) 484
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Local Density Approximation

In the local density approximation reaction takes place at a point r, lying

inside a volume d°r with local density p,(r) and p,(r) corresponding to the
proton and neutron densities

pp(r) = —p()

pa(r) = TP(’)
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Local Density Approximation

In the local density approximation reaction takes place at a point r, lying

inside a volume d°r with local density p,(r) and p,(r) corresponding to the
proton and neutron densities

por) = o)

patr) = 2200
Fermi momentum of the nucleon is

P, = (p,(»)'?

I
—
o8]
a
S
2
B
—
~l
=
=
-
~
o

Pr,
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Local Density Approximation

In the local density approximation reaction takes place at a point r, lying

inside a volume d°r with local density p,(r) and p,(r) corresponding to the
proton and neutron densities

por) = o)

patr) = 2200
Fermi momentum of the nucleon is

P, = (p,(»)'?

Pr, = (3752911(7))1/3

This leads to the spectral functions for the protons and neutrons to be the
function of local Fermi momentum given by

Pp [r . 3 )
2/W/°0Sh(0))p7pppﬂ(r)) d()):pp’n(r)

4/d3r/(;{;’; [ siw.5.p(r) do=a
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of
nucleonic hadronic tensor with the hole spectral function

3 U
wy=4f @ | (%3 [ OEA(;))Sh(po’ﬁ’p(r))w‘l"VB )
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of
nucleonic hadronic tensor with the hole spectral function

3 U
wy=4f @ | (%3 [ OEM@)Sh(pO’ﬁ’p(r))W&VB(p’q)

Taking the xx component

qxq 1 r-q r-q
W = < ;\112x _gxx> W{V"i'w (Px— ] 6]x> <Px——2 %c) wy
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Nuclear hadronic tensor:

In the LDA, the nuclear hadronic tensor can be written as a convolution of
nucleonic hadronic tensor with the hole spectral function

3 U
wy=4f @ | (%3 [ OEM@)Sh(pO’ﬁ’p(r))W&VB(p’q)

Taking the xx component

qxq 1 r-q r-q
W = < ;\112x _gxx> W{V"i'w (Px— ] 6]x> <Px——2 %c) wy

Chosing ¢ along the z-axis

1
W)[c\)]C(VNv Qz) = W{V(VN) QZ) + Wp)chéV(VNv QZ)
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Similarily taking xx component of nuclear hadronic tensor

FA
Wi(Va, Q%) = Wi (va, 0°) = #
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Similarily taking xx component of nuclear hadronic tensor

Fi(xa)
AM

Wi (va, Q%) = Wi (v4,0%) =

i = 4/ /d3p v / dp°Si(p°,,p (7)) x

3 E(p
Nx
[Fljf/lzv) +%pszziN)}
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By using Callan-Gross relation 2xF (x) = F5(x)

d M [H L X
F? XA = 4/ p / dpo Sh(PO,Pap(r))_
(p —o0 .xN

2xND5 \ N
1 L F
< +MVN) 2 om)
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= F(x)

By using Callan-Gross relation 2xF(x)

mpU)

where

X
XA = Ka

XN = ———————
2(p°¢° —p.q.)

International School of Nuclear Physics, Erice
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Effect of nuclear medium on Callan Gross relation

To obtain F,(x) independently

2 2
q 1 Pq
Wé\z] = (q_é_gzz> W{v +W(P2_?QZ> Wév
2 2 2
v , ! ((Pg”—P9q) N
= fownv (L AT )y
2 71 +M2 < q4 2
7 pea
W?}(VA,QZ) <6]_; _gzz) W? +W <_ A2 z) W?
A
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Fz(x) =VW2(V,Q2) J

Finally, we obtain

d3p M 0,1
Fi) = 2L [dr [ SEoes [ a0 5.0pn) FY(sw)

p.n
2
. |2 <P2 — P?) L (pq)® (pz o 1) qoM
g\ 2M? M?Vv2 \ p.qq. P0 90 — Pz q:

. . A . . . . .
This expression of F/(x4 ) is obtained without applying Callan-Gross relation.
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T and p mesons contribution to the nuclear structure
function

For mesons cloud contribution

. M
E(p)
Pion propagator in the nuclear medium

D(p) = [po” —p° — mz — x(po,p)] '

21— Su(po,B)War (p.q) — 2ImD(p)8(po) WaP (p, q)

with
_ P [m P )

I =
-2/ m2V I

TtNN form factor
F(p) = (A* —my)/(A* +P?)
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Similar to nucleonic case

d4
Wg‘fn:3/d3r/(2n1;4

Factor 3 = Three Charged states of pion

)(=2) ImD(p) 2mz Wy (p. q)

For pion excess in nuclear medium

ImD(p) — 8ImD(p) = ImD(p) — p a’”gDp(p |o=o0
which leads to
Fii() = —6AM / &Pr / ;i 530(p0) SImD(p) 2ms
|:F1n(xn) N B> — p?  Fanl(xr)
My 2(po g0 — pzqz) mx
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Contribution from rho meson

Propagator for rho meson
Dy(p) = [po” —p> — my — I (po,p)] '
with irreducible p self-energy

. /myCoF (p)p*IT
P 1= /m3 VI

PNN form factor
Fo(p) = (A; —m3) /(A5 +P?)
Finally,
FA — _voamt [ @ [ EP 6(py) 81Dy () 2
1,p(xp) = = ‘ r‘ 2n)* (po) 8ImDy(p) 2my X
[Flp(xp) ’13\2 - P2 FZp(xp)
+
mp 2(poqo — Pz qz:) mp
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FA (xx) = —6/d3 / ) 8ImD(p) 2mz L T,
pPo — Pz Y
2
Q* (B> — P\ | (po — p:¥)? < p: @ >
= + +1) |F
{qg ( 2m} m} (Po — Pz V)dod: i
FA () = —12/d3/ )} 85Dy (p) 2my ——2 %
2 p P ° pPo — Pz Y
2
0 |p|2 - pz (Po — pz Y)z < Pz Q2 >
= aF + 1 Fry(x
{qg ( 2m3 m} (Po — P2 Y)d04: 2 (xp)
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Ratio of Structure functions in Weak and E.M. cases
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Percantage difference f

r F in different nuclei

TOsr - LO: TO7 _NLO NLO7 _NLO
Nucleus | 0%(GeV?) | =28 1% | =L 1% | = g 1%
T2C(x=0.2) 2 18 9 ~2
(x=0.4) 12 6 1
(x=0.8) 0.16 38 0.25
2TAI(x=0.2) 2 20 ~9 2
(x=0.4) 14 6 1
(x=0.8) 0.2 38 0.3
30Fe(x=0.2) 1.8 23 10 2
(x=0.4) 17 5 1.3
(x=0.8) 0.24 37 0.37
3 Cu(x=0.2) 2.9 20 7.7 1.9
(x=0.4) 12 6.5 1
(x=0.8) 0.18 38.7 0.3
850 (x=0.2) 1.8 24.6 9.8 2.3
(x=0.4) 185 5.3 1.3
(x=0.8) 0.26 37 0.4
TAu(x=0.2) 1.8 25 9.7 2.6
(x=0.4) 19.8 5 15
(x=0.8) 0.3 37 0.46
208pp(x=0.2) 1.8 26 9.6 2.4
(x=0.4) 19 5 1.4
(x=0.8) 0.28 37 0.43
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Percantage difference

Nucleus 0%(GeV?) ZXI;};IFZ |%
12C(x=0.2) 2 ~3
(x=0.7) ~ 21
(x=0.2) 3 =)
(x=0.7) ~ 16
(x=0.2) 37 1.4
(x=0.7) ~ 13
OFe(x=0.2) 1.8 ~5
(x=0.7) ~ 23
(x=0.2) 5 13
(x=0.7) 11
(x=0.2) 10 ~ 0.6
(x=0.7) ~ 6
(x=0.2) 20 ~03
(x=0.7) ~ 3
03Cu(x=0.2) 2.9 25
(x=0.7) ~ 17
(x=0.2) 36 2
(x=0.7) ~ 14
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Conclusions

© We find that the effect of nuclear medium is also quite important even for
DIS.
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© We find that the effect of nuclear medium is also quite important even for
DIS.

@ We find that 4 (x, 0?) is different from 2xF% (x, 0?) that means Callan
Gross relation deviates at nuclear level.
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Conclusions

© We find that the effect of nuclear medium is also quite important even for
DIS.

@ We find that 4 (x, 0?) is different from 2xF% (x, 0?) that means Callan
Gross relation deviates at nuclear level.

© We compare our results with the JLab and NMC data and found them in
good agreement.
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Conclusions

© We find that the effect of nuclear medium is also quite important even for
DIS.

@ We find that 4 (x, 0?) is different from 2xF% (x, 0?) that means Callan
Gross relation deviates at nuclear level.

© We compare our results with the JLab and NMC data and found them in
good agreement.

© The present work will make useful predictions for the future experiments
in the low x and moderate Q2.
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Electromagnetic Nuclear Structure Function

AFD(A Be,C,Fe) vs x
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Theoretical Study

@ Along with the experimental efforts theoretical groups also performed
calculations in order to understand the nuclear medium effects for the
e.m. DIS process.
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calculations in order to understand the nuclear medium effects for the
e.m. DIS process.

© Our group at Aligarh performed calculations by taking into account the
dynamic origin of nuclear medium effects.
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Theoretical Study

@ Along with the experimental efforts theoretical groups also performed
calculations in order to understand the nuclear medium effects for the
e.m. DIS process.

© Our group at Aligarh performed calculations by taking into account the
dynamic origin of nuclear medium effects.

Aligarh group:

NPA 943 58 (2015)
NPA 940 138 (2015)
PRC 87 035502 (2013)
PRC 85 055201 (2012)
PRC 84 054610 (2011)
NPA 857 29 (2011)
PLB 668 133 (2008)
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Shadowing and antishadowing effects

“Significant at low-x and low-Q>”

The shadowing suppression at small x occurs due to coherent multiple
scattering inside the nucleus of a quark-anti quark pair coming from the
virtual boson with destructive interference of the amplitudes. The shadowing
effect is important at low x and low Q7 .
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The shadowing suppression at small x occurs due to coherent multiple
scattering inside the nucleus of a quark-anti quark pair coming from the
virtual boson with destructive interference of the amplitudes. The shadowing
effect is important at low x and low Q7 .

The anti-shadowing effect is due to constructive interference of the multiple
scattering amplitudes. This effect is also important at low x but greater than x
region of shadowing.
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Shadowing and antishadowing effects

“Significant at low-x and low-Q>”

The shadowing suppression at small x occurs due to coherent multiple
scattering inside the nucleus of a quark-anti quark pair coming from the
virtual boson with destructive interference of the amplitudes. The shadowing
effect is important at low x and low Q7 .

The anti-shadowing effect is due to constructive interference of the multiple
scattering amplitudes. This effect is also important at low x but greater than x
region of shadowing.

For the shadowing and antishadowing effects, Glauber-Gribov multiple
scattering model has been used following the work of Kulagin and Petti.
PRD76(2007)094033.
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T and p mesons contribution to the nuclear structure

function

(k)

@ More effective for heavier nuclei

© Contributes to the intermediate x region

© Implemented following the many body field theoretical approach
@ Using parametrization by Gluck et al.
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Nature of Spectral Function

60 - 7 O
N ] i p 1.15p . ]
sol- P = L P P ¢ f 4
E ] o.08- " —
r b L P, 221 MeV for °C i
40 1 ' ——- p, 265MeV for °Fe b
£ r ] 0.06 _— —_
a 30F -] = 4
2 F ] L ]
2 r 4 0.04 — —
20 = [ ]
10— — L 4
90.4 —01 .5 o

@ Behave like a d function for p < pp,
o Long range for p > pr.
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Hole and particle spectral function fulfills

,u 1%}
/ dpo Sh(po,D) +/ dpo Sp(po,p) =1
—oo u




Hole and particle spectral function fulfills

U 00
o Sulpop)+ [ dpo Sy(po.p) =1
o o
When interactions are not present

Np) = 0
G(p) — G%p)
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Hole and particle spectral function fulfills
H — * —
/ dpo Sn(po,P) +/ dpo Sp(po,p) =1
oo o

When interactions are not present

Np) = 0
G(p) — G%p)

Therefore,

Sn(po,P) = Sp(po,p) = d(po — E(P))

/f;dPoSh(Po’f?) = /:dpo5(Po—E(I3)):{(l) ii Zzgg;
1
0

/ywdposp(Poaﬁ) = /:dpos(po_E@)):{ i Zig((g

International School of Nuclear Physics, Erice
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Chemical potential is defined as

u = M-+tep
and pp = M+

U u—M
[ dnsiop) = [ dode+M-Ep)

1 ;u—M>EP)—M=¢er >¢€(p)
0 ;u—M<EP)—M=¢ep<e(p)
| dns,pop) = [ dos@+m—EQR)
u u—M

1 ;u—M<EP)—M=¢er <e(p)
0 ;u—M>EP)—M=¢er>¢ep)
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Hole spectral function

With Fermi energy
PF
Cr ===
" om
we have

| droSitpo) = Olpr ~ 1) =mo(p)
/H " dpo S, (p0,8) = O(IB| —pr) = 1 - no(p)

Hole spectral function is
@ P of removing a nucleon from correlated ground state

© P of finding the nucleons with an energy po < E < pg + dpo
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