Calculation techniques for QCD final states at forward rapidity

Mirko Serino
Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

Erice School 2015, 16-24 September 2015

Supported by NCN grant DEC-2013/10/E/ST2/00656
of Krzysztof Kutak

1 Motivation

2 Including off-shell particles in a gauge invariant way

3 BCFW recursion relations

4 Conclusions and perspectives

High-Energy-Factorisation

High-Energy-factorisation (Catani,Ciafaloni,Hautmann, 1991 / Collins,Ellis, 1991)

$+$

$\sigma_{h_{1}, h_{2} \rightarrow q \bar{q}}=\int d^{2} k_{1 \perp} d^{2} k_{2 \perp} d x_{1} d x_{2} \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} f_{g}\left(x_{1}, k_{1 \perp}\right) f_{g}\left(x_{2}, k_{2 \perp}\right) \hat{\sigma}_{g g}\left(\frac{m^{2}}{x_{1} x_{2} s}, \frac{k_{1 \perp}}{m}, \frac{k_{2 \perp}}{m}\right)$ where the f_{g} 's are the gluon densities, obeying BFKL, BK, CCFM evolution equations.

Non negligible transverse momentum is associated to small x physics.
Momentum parameterization:

$$
\begin{array}{r}
k_{1}^{\mu}=x_{1} l_{1}^{\mu}+k_{1 \perp}^{\mu} \quad, \quad k_{2}^{\mu}=x_{2} l_{2}^{\mu}+k_{2 \perp}^{\mu} \\
l_{i}^{2}=0, \quad l_{i} \cdot k_{i}=0, \quad k_{i}^{2}=-k_{i \perp}^{2}, \quad i=1,2
\end{array}
$$

Hybrid High-Energy-Factorisation: forward final states

Hybrid HEF for forward jet production: only one of the partons' momenta with non negligible transverse component

Deak, Hautmann, Jung, Kutak $(2010,2011)$ van Hameren, Kotko, Kutak (2015)

Applications: $\left\{\begin{array}{l}\text { Production of forward dijets initiated with gluons : } g g^{*} \rightarrow g g \\ \text { Production of forward dijets initiated with quarks : } q \bar{q}^{*} \rightarrow g g \\ \text { Pilute-dense hadronic collisions in TMD factorization } \\ \text { (Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren, 2015) }\end{array}\right.$

Small x-physics: GDF growth for small x

Growth of the gluon distribution function for small x (\Rightarrow Mallot, Bradamante, Deshpande) Non linear effects expected: see BK equation!

The hard-core of scattering: amplitudes !

WANTED:

Tree-level color-ordered partial amplitudes for (possibly) any number of legs
Kinematics and color are factorised like

$$
\mathcal{M}_{n}=g^{n-2} \sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left(T_{\sigma(1)} \ldots T_{\sigma(n)}\right) \mathcal{A}\left(g_{\sigma(1)}, \ldots, g_{\sigma(n)}\right)
$$

PROBLEM:

■ Partonic processes must be described by gauge invariant amplitudes

- with ordinary Feynman rules gauge invariant scattering amplitudes only for all particles on-shell
■ \Rightarrow something else must be devised !

Is there a general \& efficient method to compute such gauge-invariant amplitudes analytically ?

Formal interlude: Weyl spinors

In the high energy limit \Rightarrow massless particles \Rightarrow Weyl basis for spinors.
If $p^{2}=0$, it can be cast in the Pauli matrices language,

$$
\begin{array}{ll}
\mid p]=\binom{L(p)}{\mathbf{0}} & L(p)=\frac{1}{\sqrt{\left|p^{0}+p^{3}\right|}}\binom{-p^{1}+i p^{2}}{p^{0}+p^{3}} \\
|p\rangle=\binom{\mathbf{0}}{R(p)} & R(p)=\frac{\sqrt{\left|p^{0}+p^{3}\right|}}{p^{0}+p^{3}}\binom{p^{0}+p^{3}}{p^{1}+i p^{2}}
\end{array}
$$

and the charge-conjugated spinors

$$
\begin{gathered}
{\left[p \mid=\left((\mathcal{E} L(p))^{T}, \mathbf{0}\right) \quad\langle p|=\left(\mathbf{0}\left(\mathcal{E}^{T} R(p)\right)^{T}\right) \quad \text { where } \quad \mathcal{E}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right.} \\
\left.p \cong p^{\mu} \sigma_{\mu}=\left(\begin{array}{cc}
p^{0}-p^{3} & -p^{1}+i p^{2} \\
-p^{1}-i p^{2} & p^{0}+p^{3}
\end{array}\right)=\mid p\right]\langle p|
\end{gathered}
$$

Prescription for off-shell gluons

ONE IDEA:

on-shell amplitudes are gauge invariant, so off-shell gauge-invariant amplitudes could be got by embedding them into on-shell processes...
...first result...: 1) For off-shell gluons: represent g^{*} as coming from a $\bar{q} q g$ vertex, with the quarks taken to be on-shell

$+$

- embed the scattering of the off-shell gluons in the scattering of two quark pairs carrying momenta $p_{A}^{\mu}=k_{1}^{\mu}, p_{B}^{\mu}=k_{2}^{\mu}, p_{A^{\prime}}^{\mu}=0, p_{B^{\prime}}^{\mu}=0$
- Assign the spinors $\left.\left|p_{1}\right\rangle, \mid p_{1}\right]$ to the A-quark and the propagator $\frac{i p_{1}}{p_{1} \cdot k}$ instead of $\frac{i k}{k^{2}}$ to the propagators of the A-quark carrying momentum k; the same goes for the B-quark line.
- multiply the amplitude by $g_{s}^{-1} x_{1} \sqrt{-2 k_{1 \perp}^{2}} \times g_{s}^{-1} x_{2} \sqrt{-2 k_{2 \perp}^{2}}$.
- ordinary Feynman rules must be used everywhere else and the procedure holds for any number of off-shell gluons.
K. Kutak, P. Kotko, A. van Hameren, JHEP 1301 (2013) 078

Prescription for off-shell gluons: derivation, 1

Auxiliary vectors (complex in general): $\left\{\begin{array}{l}\left.\left.p_{3}^{\mu}=\frac{1}{2}\left\langle p_{2}\right| \gamma^{\mu} \right\rvert\, p_{1}\right] \\ \left.\left.p_{4}^{\mu}=\frac{1}{2}\left\langle p_{1}\right| \gamma^{\mu} \right\rvert\, p_{2}\right] \\ p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0 \\ p_{1,2} \cdot p_{3,4}=0, \quad p_{1} \cdot p_{2}=-p_{3} \cdot p_{4}\end{array}\right.$

Auxiliary momenta: $\begin{cases}p_{A}^{\mu}=\left(\Lambda+x_{1}\right) p_{1}^{\mu}-\frac{p_{\mathbf{4}} \cdot k_{1} \perp}{p 1 \cdot p_{\mathbf{2}}} p_{3}^{\mu}, & p_{A^{\prime}}^{\mu}=\Lambda p_{1}^{\mu}+\frac{p_{\mathbf{3}} \cdot k_{1 \perp}}{p 1 \cdot p_{\mathbf{2}}} p_{4}^{\mu} \\ p_{B}^{\mu}=\left(\Lambda+x_{2}\right) p_{2}^{\mu}-\frac{p_{\mathbf{3}} \cdot k_{\mathbf{2}} \perp}{p 1 \cdot p_{\mathbf{2}}} p_{4}^{\mu}, & p_{B^{\prime}}^{\mu}=\Lambda p_{2}^{\mu}+\frac{p_{\mathbf{4}} \cdot k_{\mathbf{2}} \perp}{p 1 \cdot p_{\mathbf{2}}} p_{3}^{\mu}\end{cases}$

For any $\wedge:\left\{\begin{array}{l}p_{A}^{\mu}-p_{A^{\prime}}^{\mu}=x_{1} p_{1}^{\mu}+k_{1 \perp}^{\mu} \\ p_{B}^{\mu}-p_{B^{\prime}}^{\mu}=x_{2} p_{2}^{\mu}+k_{2 \perp}^{\mu} \\ p_{A}^{2}=p_{A^{\prime}}^{2}=p_{B}^{2}=p_{B^{\prime}}^{2}=0\end{array}\right.$

Prescription for off-shell gluons: derivation, 2

Momentum flowing through a propagator of an auxiliary quark line:

$$
k^{\mu}=\left(\Lambda+x_{k}\right) p_{1}^{\mu}+y_{k} p_{2}^{\mu}+k_{\perp}
$$

Final step: remove complex components taking the $\Lambda \rightarrow \infty$ limit.

$$
\begin{aligned}
& \frac{k}{k^{2}}=\frac{\left(\Lambda+x_{k}\right) p_{1}+y_{k} \phi_{2}+\not k}{2\left(\Lambda+x_{k}\right) y_{k} p_{1} \cdot p_{2}+k_{\perp}^{2}} \xrightarrow{\Lambda \rightarrow \infty} \frac{p_{1}}{2 y_{k} p_{1} \cdot p_{2}}=\frac{p_{1}}{2 p_{1} \cdot k} \\
& \text {...and the factor } x_{1} \sqrt{-k_{\perp}^{2} / 2} \text { is to match the collinear limit. }
\end{aligned}
$$

In agreement with other approaches (e.g. Lipatov's effective action)

Prescription for off-shell quarks

... and second result:
2) for off-shell quarks: represent q^{*} as coming from a $\gamma \bar{q} q$ vertex, with a 0 momentum and \bar{q} on shell (and vice-versa)

- embed the scattering of the quark with whatever set of particles in the scattering of an auxiliary quark-photon pair, q_{A} and γ_{A} carrying momenta $p_{q_{A}}^{\mu}=k_{1}^{\mu}, p_{\gamma_{A}}^{\mu}=0$
- Let q_{A}-propagators of momentum k be $\frac{i p_{1}}{p_{1} \cdot k}$ and assign the spinors $\left.\left|p_{1}\right\rangle, \mid p_{1}\right]$ to the A-quark.
- Assign the polarization vectors $\epsilon_{+}^{\mu}=\frac{\left.\langle q| \gamma^{\mu} \mid p_{1}\right]}{\sqrt{2}\left\langle p_{1} q\right\rangle}, \epsilon_{-}^{\mu}=\frac{\left.\left\langle p_{\mathbf{1}}\right| \gamma^{\mu} \mid q\right]}{\sqrt{2}\left[p_{1} q\right]}$ to the auxiliary photon, with q a light-like auxiliary momentum.
- Multiply the amplitude by $x_{1} \sqrt{-k_{1 \perp}^{2} / 2}$ and use ordinary Feynman rules everywhere else.
K. Kutak, T. Salwa, A. van Hameren, Phys.Lett. B727 (2013) 226-233

Reminds us of BCFW...

The analytical results derived with the mentioned trick are strikingly similar to the ones obtained in the on-shell case via, for example, the BCFW recursion relation (which does not require auxiliary particles).

Computing scattering amplitudes in Yang-Mills theories via ordinary Feynman diagrams: soon overwhelming !

Number of Feynman diagrams at tree level on-shell:

\# of gluons	4	5	6	7	8	9	10
\# of diagrams	4	25	220	2485	34300	559405	10525900

And there are even more with the proposed method for amplitudes with off-shell particles due to the gauge-restoring terms.
A method to efficiently compute helicity amplitudes: BCFW recursion relation Britto, Cachazo, Feng, Nucl.Phys. B715 (2005) 499-522

BCFW recursion relation

Two very simple ideas for tree level amplitudes:
1 Cauchy's residue theorem: if the amplitude is formally treated as a function of a complex variable z and if it is rational and vanishes for $z \rightarrow \infty$, then the integral extended to an infinite contour enclosing all poles vanishes

$$
\lim _{z \rightarrow \infty} \mathcal{A}(z)=0 \Rightarrow \frac{1}{2 \pi i} \oint d z \frac{\mathcal{A}(z)}{z}=0
$$

implying that the value at $z=0$ (physical amplitude) can be determined as a sum of the residues at the poles:

$$
\mathcal{A}(0)=-\sum_{i} \frac{\lim _{z \rightarrow z_{i}}\left[\left(z-z_{i}\right) \mathcal{A}(z)\right]}{z_{i}}
$$

where z_{i} is the location of the i-th pole
E Unitarity: Poles in Yang-Mills tree level amplitudes can only be due to gluon propagators dividing the n-point amplitude into two on-shell sub-amplitudes with $k+1$ and $n-k+1$ gluons \Rightarrow it is all about finding the proper way to "complexify" an amplitude.

To properly "complexify" \mathcal{A} : for helicities $\left(h_{1}, h_{n}\right)=(-,+)$ (no loss of generality...)

$$
\begin{aligned}
& \left.\left.\mid 1] \quad \rightarrow \quad \mid \hat{1}] \equiv \mid 1]-z \mid n] \Rightarrow p_{1} \rightarrow \hat{p}_{1}=\mid 1\right]\langle 1|-z \mid 1\right]\langle n| \\
& \left.\left.|n\rangle \quad \rightarrow \quad|\hat{n}\rangle \equiv|n\rangle+z|1\rangle \Rightarrow p_{n} \rightarrow \hat{p}_{n}=\mid n\right]\langle n|+z \mid 1\right]\langle n|
\end{aligned}
$$

With such a choice

- On-shellness, gauge invariance and momentum conservation preserved throughout.
- then, in order to have $\lim _{z \rightarrow \infty} \mathcal{A}(z)=0$, either shift $(+,+)$ or $(-,-)$, relying on Cachazo,Svrcek and Witten JHEP 0409 (2004) 006
- or shift always $(-,+)$ and skip twistor-inspired proofs right away, Britto, Cachazo, Feng, Witten, Phys.Rev.Lett. 94 (2005) 181602.

The result is an amazingly simple recursive relation:
any tree-level color-ordered amplitude is the sum of residues of the poles it develops when it is made dependent on a complex variable as above.
Such residues are simply products of color-ordered lower-point amplitudes evaluated at the pole times an intermediate propagator.
Shifted particles are always on opposite sides of the propagator.
$\mathcal{A}\left(g_{1}, \ldots, g_{n}\right)=\sum_{i=2}^{n-2} \sum_{h=+,-} \mathcal{A}\left(g_{1}, \ldots, g_{i}, \hat{P}^{h}\right) \frac{1}{\left(p_{1}+\cdots+p_{i}\right)^{2}} \mathcal{A}\left(-\hat{P}^{-h}, g_{i+1}, \ldots, g_{n}\right)$
$z_{i}=\frac{\left(p_{1}+\cdots+p_{i}\right)^{2}}{\left[1\left|p_{1}+\cdots+p_{i}\right| n\right\rangle}$ location of the pole corresponding for the "i-th" partition

The inclusion of fermions and MHV amplitudes

The BCFW recursion was promptly extended to Yang-Mills theories with fermions: M. Luo, C. Wen, JHEP 0503 (2005) 004

A couple of MHV amplitudes:

$$
\begin{aligned}
\mathcal{A}\left(g_{1}^{+}, g_{2}^{+}, \ldots, g_{i}^{-}, \ldots, g_{j}^{-}, \ldots, g_{n}^{+}\right) & =\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n-1 n\rangle\langle n 1\rangle} \\
\mathcal{A}\left(q^{-}, g_{1}^{-}, g_{2}^{+}, \ldots, g_{n}^{+}, \bar{q}^{+}\right) & =\frac{\langle q 1\rangle^{3}\langle\bar{q} 1\rangle}{\langle\bar{q} q\rangle\langle q 1\rangle\langle 12\rangle \ldots\langle n \bar{q}\rangle}
\end{aligned}
$$

It is natural to ask whether something like a BCFW recursion relation exists with off-shell particles. For off shell, gluons, the answer was first found in A. van Hameren, JHEP 1407 (2014) 138

$$
\mathcal{A}(0)=\sum_{s=g, f}\left(\sum_{p} \sum_{h=+,-} \mathrm{A}_{p, h}^{s}+\sum_{i} \mathrm{~B}_{i}^{s}+\mathrm{C}^{s}+\mathrm{D}^{s}\right)
$$

- $A_{p, h}^{g / f}$ are due to the poles which appear in the original BCFW recursion for on-shell amplitudes. The pole appears because one of the intermediate virtual gluon, whose shifted momentum squared $K^{2}(z)$ goes on-shell.
- $\mathrm{B}_{i}^{g / f}$ are due to the poles appearing in the propagator of auxiliary eikonal quarks. This means $p_{i} \cdot \hat{K}(z)=0$ for $z=-\frac{2 p_{i} \cdot \cdot K}{2 p_{i} \cdot e} . \hat{K}$ is the momentum flowing through the eikonal propagator.
- $\mathrm{C}^{g / f}$ and $\mathrm{D}^{g / f}$ show up us the first/last shifted particle is off-shell and their external propagator develops a pole.
The external propagator for off-shell particles is necessary to ensure

$$
\lim _{z \rightarrow \infty} \mathcal{A}(z)=0
$$

Classification of poles in the gluon case

Classification of poles in the fermion case

Some simple amplitudes

Transverse momentum parameterization: $\left\{\begin{array}{l}k_{T i}^{\mu}=-\frac{\kappa_{i}}{2} \frac{\left.\left\langle p_{i}\right| \gamma^{\mu} \mid q\right]}{\left[p_{i} q\right]}-\frac{\kappa_{i}^{*}}{2} \frac{\left.\langle q| \gamma^{\mu} \mid p_{i}\right]}{\left\langle q p_{i}\right\rangle} \\ \kappa_{i} \equiv \frac{\left.\langle q| \kappa_{i} \mid p_{i}\right]}{\left\langle q p_{i}\right\rangle} \quad \kappa_{i}^{*} \equiv \frac{\left.\left\langle p_{i}\right| \kappa_{i} \mid q\right]}{\left[p_{i} q\right]} \\ q^{2}=0 \quad \text { auxiliary momentum }\end{array}\right.$
Subleading contribution: this is zero in the on-shell case!

$$
\mathcal{A}\left(g_{1}^{+}, g_{2}^{+}, \ldots, g_{n-1}^{+}, \bar{q}, q, g_{n}^{+}\right)=\frac{\langle\bar{q} q\rangle^{3}}{\langle 12\rangle\langle 23\rangle \ldots\langle\bar{q} q\rangle\langle q n\rangle\langle n 1\rangle}
$$

Structure of MHV amplitudes

$$
\begin{aligned}
\mathcal{A}\left(g_{1}^{+}, g_{2}^{+}, \ldots, g_{n-1}^{+}, \bar{q}^{*}, q^{+}, g_{n}^{-}\right) & =\frac{1}{\kappa_{\bar{q}}^{*}} \frac{\langle\bar{q} n\rangle^{3}\langle q n\rangle}{\langle 12\rangle\langle 23\rangle \ldots\langle\bar{q} q\rangle\langle q n\rangle\langle n 1\rangle} \\
\mathcal{A}\left(g^{*}, \bar{q}^{+}, q^{-}, g_{1}^{+}, g_{2}^{+}, \ldots, g_{n}^{+}\right) & =\frac{1}{\kappa_{g}^{*}} \frac{\langle g q\rangle^{3}\langle g \bar{q}\rangle}{\langle g \bar{q}\rangle\langle\bar{q} q\rangle \ldots\langle n-1 \mid n\rangle\langle n g\rangle}
\end{aligned}
$$

But not everything is so smooth...

$$
\begin{aligned}
& \mathcal{A}\left(g^{*}, \bar{q}^{+}, q^{-}, g_{1}^{+}, g_{2}^{-}\right)=\frac{1}{\kappa_{g}^{*}} \frac{[\bar{q} 1]^{3}\langle 2 g\rangle^{4}}{\left.\left.[\bar{q} q]\langle g| \phi_{2}+k_{g}[1]\langle 2| k_{g}\left(k_{g}+p_{2}\right) \mid g\right] \mid\langle 2| k_{g} \mid \bar{q}\right]} \\
& +\frac{1}{\kappa_{g}} \frac{1}{\left(k_{g}+p_{\bar{q}}\right)^{2}} \frac{\left.[g \bar{q}]^{2}\langle 2 q)^{3}\langle 2| k_{g}+p_{\bar{q}} \mid g\right]}{\left.\left.\langle 1 q\rangle\langle 12\rangle\left\{\left(k_{g}+p_{\bar{q}}\right)^{2}[\bar{g} g\rangle\langle 2 q\rangle-\langle 2| k_{g}+p_{\bar{q}} \mid g\right]\langle q| k_{g} \mid \bar{q}\right]\right\}} \\
& +\frac{\langle g q\rangle^{3}[g 1]^{4}}{\left.\left.\left.\langle\bar{q} q\rangle[12][g 2]\langle q| \phi_{1}+p_{2} \mid g\right]\langle g| p_{1}+p_{2} \mid g\right]\langle g| k_{g}+p_{2} \mid 1\right]}
\end{aligned}
$$

General outline of the results

- It is necessary to understand which shifts are legitimate in the off-shell case, i.e. for which choices $\lim _{z \rightarrow \infty} \mathcal{A}(z)=0$. Full classification of the possible shifts.
- All 4-point amplitudes are always MHV, just as in the on-shell case.
- First calculation of 5-point amplitudes in the literature

■ Some amplitudes absent in the on-shell case do not vanish here

- Cross-checked (numerically)! Tests were performed cross checked with a program implementing Berends-Giele recursion relation, A. van Hameren, M. Bury, arXiv:1503.08612

Thorough technical discussion is found in A. van Hameren, M.S. JHEP 1507 (2015) 010 .

Conclusions and perspectives

- High-energy factorisation requires gauge invariant scattering amplitudes with off-shell partons.
- BCFW construction was extended to Yang Mills with fermions with off-shell particles. This implies identifying a new set of poles in the auxiliary complex variable. To obtain the scattering amplitudes with more off-shel partons...just some more work of the same kind.
- we are working on automation...

■ Next natural step in phenomenology: applications of these results to multi-jet production in HEF factorisation. 4 jets production in k_{T}-factorisation is first.
■ Want to go for loops: next standard for on-shell QCD will be NNLO. For loops there is no direct analogous of BCFW. In that case it would be useful to extend Berends-Giele to NNLO starting from van Hameren, JHEP 0907 (2009) 088

The end

THANK YOU FOR YOUR ATTENTION

