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Calculation techniques for QCD final states at forward rapidity
Motivation

High-Energy-Factorisation

High-Energy-factorisation (Catani,Ciafaloni,Hautmann, 1991 / Collins,Ellis, 1991)

σh1,h2→qq̄ =

∫
d2k1⊥d

2k2⊥dx1dx2
dx1

x1

dx2

x2
fg (x1, k1⊥) fg (x2, k2⊥) σ̂gg

(
m2

x1x2s
,
k1⊥
m

,
k2⊥
m

)
where the fg ’s are the gluon densities, obeying BFKL, BK, CCFM evolution equations.

Non negligible transverse momentum is associated to small x physics.

Momentum parameterization:

kµ1 = x1 l
µ
1 + kµ1⊥ , kµ2 = x2 l

µ
2 + kµ2⊥

l2i = 0, li · ki = 0, k2
i = −k2

i ⊥, i = 1, 2
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Motivation

Hybrid High-Energy-Factorisation: forward final states

Hybrid HEF for forward jet production:
only one of the partons’ momenta with non negligible transverse component

Deak, Hautmann, Jung, Kutak (2010, 2011)
van Hameren, Kotko, Kutak (2015)

Applications:


Production of forward dijets initiated with gluons : gg∗ → gg
Production of forward dijets initiated with quarks : qq̄∗ → gg
Pilute-dense hadronic collisions in TMD factorization
(Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren, 2015)
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Motivation

Small x-physics: GDF growth for small x

Growth of the gluon distribution function for small x
(⇒ Mallot, Bradamante, Deshpande )

Non linear effects expected: see BK equation !
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Motivation

The hard-core of scattering: amplitudes !

WANTED:
Tree-level color-ordered partial amplitudes for (possibly) any number of legs

Kinematics and color are factorised like

Mn = gn−2
∑

σ∈Sn/Zn

Tr(Tσ(1) . . .Tσ(n))A(gσ(1), . . . , gσ(n))

PROBLEM:

Partonic processes must be described by gauge invariant amplitudes

with ordinary Feynman rules gauge invariant scattering amplitudes only for all
particles on-shell

⇒ something else must be devised !

Is there a
general & efficient method

to compute such gauge-invariant amplitudes analytically ?
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Including off-shell particles in a gauge invariant way

Formal interlude: Weyl spinors

In the high energy limit ⇒ massless particles ⇒ Weyl basis for spinors.

If p2 = 0, it can be cast in the Pauli matrices language,

|p] =

(
L(p)
0

)
L(p) =

1√
|p0 + p3|

(
−p1 + i p2

p0 + p3

)

|p〉 =

(
0

R(p)

)
R(p) =

√
|p0 + p3|
p0 + p3

(
p0 + p3

p1 + i p2

)
and the charge-conjugated spinors

[p| =
(

(EL(p))T , 0
)

〈p| =
(
0 (ETR(p))T

)
where E =

(
0 1
−1 0

)

p ∼= pµ σµ =

(
p0 − p3 −p1 + i p2

−p1 − i p2 p0 + p3

)
= |p]〈p|
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Including off-shell particles in a gauge invariant way

Prescription for off-shell gluons

ONE IDEA:
on-shell amplitudes are gauge invariant, so off-shell gauge-invariant amplitudes could

be got by embedding them into on-shell processes...

...first result...: 1) For off-shell gluons: represent g∗ as coming from a q̄qg vertex,
with the quarks taken to be on-shell

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

+ +

pA pA ′

pB pB ′

k1

k2

=

pA pA ′

pB pB ′

+ · · ·

embed the scattering of the off-shell gluons in the scattering of two quark pairs
carrying momenta pµA = kµ1 , p

µ
B = kµ2 , p

µ
A′ = 0, pµ

B′ = 0

Assign the spinors |p1〉, |p1] to the A-quark and the propagator i p/1
p1·k

instead of ik/
k2

to the propagators of the A-quark carrying momentum k; the same goes for the
B-quark line.

multiply the amplitude by g−1
s x1

√
−2 k2

1⊥ × g−1
s x2

√
−2 k2

2⊥.
ordinary Feynman rules must be used everywhere else and the procedure holds for
any number of off-shell gluons.

K. Kutak, P. Kotko, A. van Hameren, JHEP 1301 (2013) 078
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Including off-shell particles in a gauge invariant way

Prescription for off-shell gluons: derivation, 1

Auxiliary vectors (complex in general):



pµ3 = 1
2 〈p2|γµ|p1]

pµ4 = 1
2 〈p1|γµ|p2]

p2
1 = p2

2 = p2
3 = p2

4 = 0

p1,2 · p3,4 = 0 , p1 · p2 = −p3 · p4

Auxiliary momenta:


pµA = (Λ + x1)pµ1 −

p4·k1⊥
p1·p2

pµ3 , pµ
A′ = Λpµ1 + p3·k1⊥

p1·p2
pµ4

pµB = (Λ + x2)pµ2 −
p3·k2⊥
p1·p2

pµ4 , pµ
B′ = Λpµ2 + p4·k2⊥

p1·p2
pµ3

For any Λ:


pµA − pµ

A′ = x1 p
µ
1 + kµ1⊥

pµB − pµ
B′ = x2 p

µ
2 + kµ2⊥

p2
A = p2

A′ = p2
B = p2

B′ = 0
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Including off-shell particles in a gauge invariant way

Prescription for off-shell gluons: derivation, 2

Momentum flowing through a propagator of an auxiliary quark line:

kµ = (Λ + xk )pµ1 + yk p
µ
2 + k⊥

Final step: remove complex components taking the Λ→∞ limit.

k/

k2 =
(Λ + xk )p/1 + yk p/2 + k/

2(Λ + xk )ykp1 · p2 + k2
⊥

Λ→∞−→
p/1

2 ykp1 · p2
=

p/1

2p1 · k

...and the factor x1
√
−k2
⊥/2 is to match the collinear limit.

In agreement with other approaches (e.g. Lipatov’s effective action)
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Including off-shell particles in a gauge invariant way

Prescription for off-shell quarks

... and second result:
2) for off-shell quarks: represent q∗ as coming from a γq̄q vertex, with a 0 momentum

and q̄ on shell (and vice-versa)

+ += + · · ·

qA γA

u

X
g g

γA

u

qA

u(k1)

g

qA γA

u

g

qA γA

u

embed the scattering of the quark with whatever set of particles in the scattering
of an auxiliary quark-photon pair, qA and γA carrying momenta
pµqA = kµ1 , p

µ
γA = 0

Let qA-propagators of momentum k be i p/1
p1·k

and assign the spinors |p1〉, |p1] to
the A-quark.
Assign the polarization vectors εµ+ = 〈q|γµ|p1]√

2〈p1q〉
, εµ− = 〈p1|γµ|q]√

2[p1q]
to the auxiliary

photon, with q a light-like auxiliary momentum.

Multiply the amplitude by x1

√
−k2

1⊥/2 and use ordinary Feynman rules
everywhere else.

K. Kutak, T. Salwa, A. van Hameren, Phys.Lett. B727 (2013) 226-233
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BCFW recursion relations

Reminds us of BCFW...

The analytical results derived with the mentioned trick are strikingly similar to the
ones obtained in the on-shell case via, for example, the BCFW recursion relation

(which does not require auxiliary particles).

Computing scattering amplitudes in Yang-Mills theories via ordinary Feynman
diagrams: soon overwhelming !

Number of Feynman diagrams at tree level on-shell:

# of gluons 4 5 6 7 8 9 10
# of diagrams 4 25 220 2485 34300 559405 10525900

And there are even more with the proposed method for amplitudes with off-shell
particles due to the gauge-restoring terms.

A method to efficiently compute helicity amplitudes: BCFW recursion relation

Britto, Cachazo, Feng, Nucl.Phys. B715 (2005) 499-522
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BCFW recursion relations

BCFW recursion relation

Two very simple ideas for tree level amplitudes:

1 Cauchy’s residue theorem: if the amplitude is formally treated as a function of a
complex variable z and if it is rational and vanishes for z →∞, then the integral
extended to an infinite contour enclosing all poles vanishes

lim
z→∞

A(z) = 0⇒
1
2πi

∮
dz
A(z)

z
= 0

implying that the value at z = 0 (physical amplitude) can be determined as a
sum of the residues at the poles:

A(0) = −
∑
i

limz→zi [(z − zi )A(z)]

zi

where zi is the location of the i-th pole

2 Unitarity: Poles in Yang-Mills tree level amplitudes can only be due to gluon
propagators dividing the n-point amplitude into two on-shell sub-amplitudes with
k + 1 and n − k + 1 gluons ⇒ it is all about finding the proper way to
"complexify" an amplitude.
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BCFW recursion relations

To properly "complexify" A: for helicities (h1, hn) = (−,+) (no loss of generality...)

|1] → |1̂] ≡ |1]− z |n]⇒ p1 → p̂1 = |1]〈1| − z|1]〈n|
|n〉 → |n̂〉 ≡ |n〉+ z|1〉 ⇒ pn → p̂n = |n]〈n|+ z|1]〈n|

With such a choice

On-shellness, gauge invariance and momentum conservation preserved
throughout.

then, in order to have limz→∞A(z) = 0, either shift (+,+) or (−,−), relying on
Cachazo,Svrcek and Witten JHEP 0409 (2004) 006

or shift always (−,+) and skip twistor-inspired proofs right away, Britto,
Cachazo, Feng, Witten, Phys.Rev.Lett. 94 (2005) 181602.
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BCFW recursion relations

The result is an amazingly simple recursive relation:
any tree-level color-ordered amplitude is the sum of residues of the poles it develops

when it is made dependent on a complex variable as above.
Such residues are simply products of color-ordered lower-point amplitudes evaluated at

the pole times an intermediate propagator.
Shifted particles are always on opposite sides of the propagator.

A(g1, . . . , gn) =

n−2∑
i=2

∑
h=+,−

A(g1, . . . , gi , P̂
h)

1
(p1 + · · ·+ pi )2

A(−P̂−h, gi+1, . . . , gn)

zi =
(p1 + · · ·+ pi )

2

[1|p1 + · · ·+ pi |n〉
location of the pole corresponding for the "i-th" partition

g1

g2

g3

gn

gn�1

gn�2

=
X

col. ord.

X

h=±

g1

gi

gn

gi+1

1

15 / 24



Calculation techniques for QCD final states at forward rapidity
BCFW recursion relations

The inclusion of fermions and MHV amplitudes

The BCFW recursion was promptly extended to Yang-Mills theories with fermions:
M. Luo, C. Wen, JHEP 0503 (2005) 004

q

g1

g2

q̄

gn

gn�1

⇠

X

col. ord.

X

h=±

q

gi

q̄

gi+1

+

q

gi

q̄

gi+1

1

A couple of MHV amplitudes:

A(g+
1 , g

+
2 , . . . , g

−
i , . . . , g

−
j , . . . , g

+
n ) =

〈ij〉4

〈12〉〈23〉 . . . 〈n − 1 n〉〈n1〉

A(q−, g−1 , g
+
2 , . . . , g

+
n , q̄

+) =
〈q1〉3〈q̄1〉

〈q̄q〉〈q1〉〈12〉 . . . 〈nq̄〉 16 / 24
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BCFW recursion relations

It is natural to ask whether something like a BCFW recursion relation exists with
off-shell particles. For off shell, gluons, the answer was first found in

A. van Hameren, JHEP 1407 (2014) 138

A(0) =
∑
s=g,f

∑
p

∑
h=+,−

As
p,h +

∑
i

Bs
i + Cs + Ds

 ,

Ag/f
p,h are due to the poles which appear in the original BCFW recursion for

on-shell amplitudes. The pole appears because one of the intermediate virtual
gluon, whose shifted momentum squared K2(z) goes on-shell.

Bg/f
i are due to the poles appearing in the propagator of auxiliary eikonal quarks.

This means pi · K̂(z) = 0 for z = − 2 pi ·K
2 pi ·e

. K̂ is the momentum flowing through
the eikonal propagator.

Cg/f and Dg/f show up us the first/last shifted particle is off-shell and their
external propagator develops a pole.
The external propagator for off-shell particles is necessary to ensure

lim
z→∞

A(z) = 0

17 / 24



Calculation techniques for QCD final states at forward rapidity
BCFW recursion relations

Classification of poles in the gluon case

h 1
K2 � h

ĝ1

gi

ĝn

gi+1

1

1
pi·K

ĝ1

gi�1

q̄A,i

ĝn

gi+1

qA,i

1

h

1

x1 1

ĝ1

g2

ĝn

gn�1

1

1

xn ⇤
n

g1

g2

ĝn

gn�1

1
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Classification of poles in the fermion case

h 1
K2 � h

ĝ1

q̄

ĝn

q

1

1
pi·K

ĝ1

gi�1

q̄A,i

ĝn

q

�A

1

h

1
p

xq̄ q̄

ˆ̄q

q

ĝn

gn�1

1

1
p

xq̄ ⇤
q̄

g1

g2

ˆ̄q

q

1
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BCFW recursion relations

Some simple amplitudes

Transverse momentum parameterization:



kµT i = −κi
2
〈pi |γµ|q]

[pi q]
− κ∗i

2
〈q|γµ|pi ]
〈qpi 〉

κi ≡ 〈q|k/i |pi ]〈qpi 〉
κ∗i ≡

〈pi |k/i |q]
[pi q]

q2 = 0 auxiliary momentum

Subleading contribution: this is zero in the on-shell case !

A(g+
1 , g

+
2 , . . . , g

+
n−1, q̄, q, g

+
n ) =

〈q̄q〉3

〈12〉〈23〉 . . . 〈q̄q〉〈qn〉〈n1〉

Structure of MHV amplitudes

A(g+
1 , g

+
2 , . . . , g

+
n−1, q̄

∗, q+, g−n ) =
1
κ∗q̄

〈q̄n〉3〈qn〉
〈12〉〈23〉 . . . 〈q̄q〉〈qn〉〈n1〉

A(g∗, q̄+, q−, g+
1 , g

+
2 , . . . , g

+
n ) =

1
κ∗g

〈gq〉3〈gq̄〉
〈gq̄〉〈q̄q〉 . . . 〈n − 1|n〉〈ng〉
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But not everything is so smooth...

ĝ⇤

q̄+

q�

ĝ�2

g+
1

=

1
xg⇤

g
⇥ ĝ�

q̄+

q�

ĝ�2

g+
1

+

� +

ĝ⇤

q̄+

ĝ�2

g+
1

q�

+

+ �

ĝ⇤

q̄+

q�

ĝ�2

g+
1

1

A(g∗, q̄+, q−, g+
1 , g

−
2 ) =

1
κ∗g

[q̄1]3〈2g〉4

[q̄q]〈g |p/2 + k/g |1]〈2|k/g (k/g + p/2) |g ]〈2|k/g |q̄]

+
1
κg

1
(kg + pq̄)2

[gq̄]2〈2q〉3〈2|k/g + p/q̄ |g ]

〈1q〉〈12〉 {(kg + pq̄)2[q̄g ]〈2q〉 − 〈2|k/g + p/q̄ |g ]〈q|k/g |q̄]}

+
〈gq〉3[g1]4

〈q̄q〉[12][g2]〈q|p/1 + p/2|g ]〈g |p/1 + p/2|g ]〈g |k/g + p/2|1]
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General outline of the results

It is necessary to understand which shifts are legitimate in the off-shell case, i.e.
for which choices limz→∞A(z) = 0. Full classification of the possible shifts.

All 4-point amplitudes are always MHV, just as in the on-shell case.

First calculation of 5-point amplitudes in the literature

Some amplitudes absent in the on-shell case do not vanish here

Cross-checked (numerically) ! Tests were performed cross checked with a
program implementing Berends-Giele recursion relation, A. van Hameren, M.
Bury, arXiv:1503.08612

Thorough technical discussion is found in

A. van Hameren, M.S. JHEP 1507 (2015) 010 .
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Conclusions and perspectives

High-energy factorisation requires gauge invariant scattering amplitudes with
off-shell partons.

BCFW construction was extended to Yang Mills with fermions with off-shell
particles. This implies identifying a new set of poles in the auxiliary complex
variable. To obtain the scattering amplitudes with more off-shel partons...just
some more work of the same kind.

we are working on automation...

Next natural step in phenomenology: applications of these results to multi-jet
production in HEF factorisation. 4 jets production in kT -factorisation is first.

Want to go for loops: next standard for on-shell QCD will be NNLO. For loops
there is no direct analogous of BCFW. In that case it would be useful to extend
Berends-Giele to NNLO starting from van Hameren, JHEP 0907 (2009) 088
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The end

THANK YOU FOR YOUR
ATTENTION
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