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RMS-radii from electron scattering

Ingo Sick

Interest

R integral quantity describing size

reference for isotope shifts from many sources

comparison to radii from electronic+muonic atoms

Scope of talk

light nuclei, but emphasize proton

lessons how (not) to determine R

motivation: discrepancy (e,e) + H-atom ⇔ µX 0.88 ⇔ 0.84fm

state right from outset: no solution to problem for p

but: much more solid R’s from (e,e)

Determination of R a priori looks simple:

fit low-q data with some parameterization for Ge(q), Gm(q)

q = 0 slope of Ge(q) → rms-radius R

Problem: many not-understood results + discrepancies



• Power-expansion of G(q)

always gives low R, depends on qmax

Kraus et al.

• Inverse-polynomial fit:

shows jump of R

Bernauer et al.



• R from conformal mapping:

unexplained qmax dependence, gives even larger R: 0.92fm

Lee et al.

• various VDM-fits: give R around 0.84fm

• Own Pade-fit (qmax = 2fm−1): yields 1.48fm

• Bayesian interference: 0.899±0.003fm

Worrisome!

.... but explained by insights discussed below



Important consideration (most often ignored!)

which q-region is sensitive to rms-radii?

Sensitivity to R: explored via notch-test

Region of sensitivity

0.5 < q < 1.3 fm−1

0.01 < Q2 < 0.06 GeV 2/c2

lower q: G(q) ∼ 1 − q2R2/6 + .... measures only the ”1”

higher q: G(q) measures higher moments

Recent data, all at Q2 > 0.06GeV 2/c2 not relevant for R!



Second important point: need extrapolation to q = 0

particularly difficult for proton

form factor ∼ dipole ∼ 1/(1 + q2c2)2

for qualitative discussion ignore rel. corr., 2γ, ...

⇒ ρ(r)=Fourier-transform of G(q) ⇒ ρ ∼ exponential ∼ e−r/c

Long tail of exp. density causes serious problems

Illustration: study [
∫ rcut
0 ρ(r) r4dr/

∫∞

0 ρ(r) r4dr]1/2 as function of cutoff rcut

to get 98% of rms-radius R must integrate out to rcut ∼ 3.2 · R ∼ 3fm

=⇒ R sensitive to very large r where ρ(r) poorly determined



=⇒ large r affect G(q) at very low q, below qmin =⇒ affects extrapolation to q = 0

=⇒ model dependence of extrapolation

Large-r contribution not measurable in practice

→ uncertainties of order 2% not reachable

Even worse for deuteron

for 98% of R must know density for r > 7fm!!

(r = distance to CM)

Problems with R of deuteron of past should have been a warning



Problem enhanced by peculiarity:

Traditional for proton, deuteron

parameterize G(q), fit to data, get slope

Standard for A>2

parameterize ρ(r), calculate σ, fit data, get slope of G(q = 0)

Not equivalent!

For A>2 use implicit constraint on ρ for large r

standard parameterizations have ρ(r > Rmax) = 0

the more physical parameterizations use ± exponential fall-off

For parameterized G(q) this physics is not enforced

chosen G(q) can imply large ρ at large r

large r strongly affect R

can imply unphysical curvature of G(q < qmin)

Most extreme demonstration case

own 4-parameter Pade-fit of Bernauer data, q < 2fm−1

covers full region sensitive to R

G(q) = (1 + a1q
2)/(1 + b1q

2 + b2q
4 + b3q

6)



Fit has excellent χ2 ∼ 1.06/dof (as good as Spline fit)

no pole (a disease discussed below)

——– Pade-fit

......... Fit with ’normal’ rms-radius

Note: data are floating

rms-radius = 1.49fm!!

Pathology (?) visible by naked eye in G(q) at very low q



Understanding

split fit into two contributions G1 + G2:

G1 = Pade for q2 > 0.06 plus dashed line for q2 < 0.06

G2 = Pade – G1

G1 has ’normal’ q=0 slope, norm of 0.995

G2 ∼ e−q2/(0.02fm2)

corresponds to ρ ∼ e−r2/(200fm2)

G2 leads to large rms-radius despite small norm ∼ 0.005

Note: data are floating, solid and dotted curve give both excellent χ2

(illustrates that absolute cross sections are much more valuable)



Solution: 3 ingredients

1. Use parameterization accessible in both q- and r-space

SOG, Laguerre, MD (as in VDM fits)

then can control behavior at large r

can fit data + large-r constraint simultaneously

2. Constrain large-r behavior via physics knowledge

for multi-constituent systems ρ(r >>) given by wave function

of least-bound constituent

shape (not absolute norm) given by removal energy

can be imposed at asymptotic r

where ρ(r) < 1% of ρ(center)

3. Fit data to largest q possible

full G(q) helps also to fix tail of ρ(r) (to some degree)

See PRC 89 (14) 012201

Return below to above points



1. Importance of considering r-space

some q-space parameterizations have serious problems

example: inverse polynomial (Bernauer): has pole at q > qmax

leads to (oscillatory) ρ to extremely large r

affects R

example: VDM fit of Lorenz et al.

G(q) has pronounced maximum at q > qmax

leads to structure of ρ(r) at large r

affects shape of G(q < qmin), affects extrapolation to q = 0

in addition: χ2 factor 1.4 too large, does not really fit data

example: fit after conformal mapping (Lee et al.)

G(q) for q → ∞ ∼ 3!

does not even correspond to density

same problem as for popular power-series expansion in q2

example: own Pade fit (discussed above)

disease only visible in r-space



2. Large-r constraint

consider Fock-component with smallest removal energy

for case of proton: π+ + n configuration, dominates large r

Shape of wave function given by Whittaker function W−η,3/2(2κr)/r

κ given by removal energy

Potential complication: relativistic effects

G(q) not simply Fourier transform of ρ(r)

Relativistic corrections:

1. Determine ρ(r) in Breit-frame, to account for Lorentz contraction

use as momentum transfer q̃2 = q2/(1 + τ ), τ = q2/4M2

2. For composite systems boost operator depends on structure

various theoretical results (Licht, Mitra, Ji, Holzwarth,...), all of form

Ge(q) → Ge(q)(1 + τ )λ, λ=1 or 2

numerical test: λ=1 or 2 makes little difference for ρ at large r

is as expected, because large r ∼ low k, where rel. effects small

aside: correction fixes unphysical behavior at r ∼ 0!

Allows for reliable calculation of shape of ρ at very large r



”Refinements” of model (not needed, nice consistency check)

allow also for ∆ + π contribution

coefficients of various terms from Dziembowski e al.

include all states: π+n, π−p, π−∆++, π+∆0, π−∆+, π+∆−

effect on p-tail: small, tail even a bit closer to ρexp at small r

effect on n-tail: larger, gets close to ρexp with same parameters

nice consistency check

will ignore n since components 6= π−p too important

⋄ ρp(r), ⋄ –ρn(r), shape tail, compares nicely to (new) VDM



3. Fit data to maximum q

data up to qmax = ∞ would fix shape of entire ρ

for finite qmax: ρ at large r better constrained when using larger qmax

Pedagogical example: integral ρ(r) =
∫ Qmax G(q)....dq as function of Qmax

explains peculiar influence of large q on R (e.g. Lee et al., Kraus et al.)

for low qmax parameterized G(q) implies strange ρ at medium r

data at larger q enforce more realistic behavior

BUT: large qmax only helpful, does not replace large-r constraint!



Analysis respecting above rules

Data used

world (e,e) data up to 12 fm−1

both cross sections and polarization data, 605 data points

in general w/o Bernauer (problems with background subtraction)

two-photon exchange corrections

needed to make Gep from σ and P agree

includes both soft+hard photons, Melnitchouk+Tjon

(relative) tail density for r > 1.3fm

Parameterization for Ge and Gm

sum of Laguerre polynomials (in r-space), most efficient

natural parameterization with quasi-exponential large-r fall-off

equivalent results with SOG, VDM-type G(q)

Results

average over various combinations of data sets

floating or not of normalization

Rch = .886 ± 0.008 fm Rm = .858 ± .024 fm

Conclusion: disagreement with µ-H confirmed



Deuteron

interest: comparison e-µ, exact calculations starting from VNN

Problematic: large scatter of results in past

main problem: large-r tail (see above)

last 2% of R come from r >7 fm!

corresponding contribution in G(q) not measurable

Added complication: 3 form factors, need T20 data

separation of C0 enhances uncertainty



Determination of R

use world data

use tail constraint

(e, e) 2.130 ± 0.010 fm

µH 2.1289± 0.0012fm (prelim.)

an−p 2.131fm

Find perfect agreement with µX data from Pohl et al.

agreement within .01fm significant given .04fm discrepancy for proton

Helium 4

Interest: comparison e-µ, exact calculations starting from VNN

Great: 4He data most precise of all light nuclei

Simple-most case: only one form factor

no error-enhancing separation needed

Most helpful: FDR analysis of world data on p -4He scattering

determines residuum of closest singularity

corresponding to exchange scattering at 0◦

yields absolute normalization of tail to ±10%



Consequence: get most precise rms-radius of all nuclei

R=1.681±0.004 fm

µX value (Antognini et al.) well within error bar

Highly significant: difference (e,e)-µX < 0.25%

as compared to 4% for proton

Conclude: problem is not (e,e) vs. µX, problem is with proton



Conclusions

Determination of R from (e,e)

more difficult than appreciated

results more ambiguous than desirable

Source of problem

large-radius tail of density

affects shape of G(q) below sensitivity range, affects extrapolation to q = 0

Non-solutions

• different mathematical/formal description

data are compatible with large range of R

shown by too many examples

• more data at lower q

with realistic experimental errors sensitivity to R too small

Real solution

add physics i.e. knowledge on large-r shape

constrain shape of G(q) at low q

−→ reliable extrapolation to q = 0 where R extracted


