September 14, 2015 /ropn/ericel5q.

RMS-radii from electron scattering

Ingo Sick

Interest
R integral quantity describing size
reference for isotope shifts from many sources
comparison to radii from electronic+muonic atoms

Scope of talk
light nuclei, but emphasize proton
lessons how (not) to determine R
motivation: discrepancy (e,e) + H-atom < pX 0.88 < 0.84fm

state right from outset: no solution to problem for p
but: much more solid R’s from (e,e)

Determination of R a priori looks simple:

fit low-q data with some parameterization for G.(q), G..(q)
q = 0 slope of G¢(q) — rms-radius R

Problem: many not-understood results + discrepancies



e Power-expansion of G(q)
always gives low R, depends on g,z
Kraus et al.

e Inverse-polynomial fit:
shows jump of R
Bernauer et al.
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e R from conformal mapping:
unexplained q,,,, dependence, gives even larger R: 0.92fm

Lee et al.
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e various VDM-fits: give R around 0.84fm

e Own Pade-fit (@mae = 2fm™1): yields 1.48fm
e Bayesian interference: 0.89940.003fm
Worrisome!

.... but explained by insights discussed below



Important consideration (most often ignored!)
which g-region is sensitive to rms-radii?

Sensitivity to R: explored via notch-test
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Region of sensitivity
0.5 < q <13 fm™!
0.01 < Q? < 0.06 GeV?/c?

lower q: G(q) ~ 1 — g*R?/6 + .... measures only the ”1”
higher q: G(q) measures higher moments

Recent data, all at Q% > 0.06GeV?/c? not relevant for R!



Second important point: need extrapolation to g = 0

particularly difficult for proton
form factor ~ dipole ~ 1/(1 + g*c?)?
for qualitative discussion ignore rel. corr., 2, ...

= p(r)=Fourier-transform of G(q) = p ~ exponential ~ e~ "/¢
Long tail of exp. density causes serious problems

Ilustration: study [ [, p(r) ridr/ [J° p(r) r*dr]'/? as function of cutoff re,.
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to get 98% of rms-radius R must integrate out to r. ~ 3.2- R ~ 3fm

—> R sensitive to very large r where p(r) poorly determined



—> large r affect G(q) at very low q, below q,,;,, = affects extrapolation to ¢ = 0
—> model dependence of extrapolation

Large-r contribution not measurable in practice
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— uncertainties of order 2% not reachable

Even worse for deuteron
for 98% of R must know density for » > 7fm/!!
(r = distance to CM)

Problems with R of deuteron of past should have been a warning



Problem enhanced by peculiarity:

Traditional for proton, deuteron
parameterize G(q), fit to data, get slope

Standard for A>2
parameterize p(r), calculate o, fit data, get slope of G(q = 0)

Not equivalent!
For A>2 use implicit constraint on p for large r

standard parameterizations have p(r > R,,4:) = 0
the more physical parameterizations use + exponential fall-off

For parameterized G(q) this physics is not enforced
chosen G(q) can imply large p at large r
large r strongly affect R
can imply unphysical curvature of G(q < gmin)

Most extreme demonstration case

own 4-parameter Pade-fit of Bernauer data, g < 2fm—!
covers full region sensitive to R

G(q) = (1 4+ a14®)/(1 + b1g® + bag* + b3q®)



Fit has excellent x* ~ 1.06/dof (as good as Spline fit)
no pole (a disease discussed below)
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Pathology (?) visible by naked eye in G(q) at very low q



Understanding

split fit into two contributions G; + Gs:
G:1 = Pade for g > 0.06 plus dashed line for ¢ < 0.06
G2 — Pade — Gl
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Note: data are floating, solid and dotted curve give both excellent x?

(illustrates that absolute cross sections are much more valuable)



Solution: 3 ingredients

1. Use parameterization accessible in both g- and r-space

SOG, Laguerre, MD (as in VDM fits)
then can control behavior at large r
can fit data + large-r constraint simultaneously

2. Constrain large-r behavior via physics knowledge

for multi-constituent systems p(r >>) given by wave function
of least-bound constituent

shape (not absolute norm) given by removal energy

can be imposed at asymptotic r
where p(r) < 1% of p(center)

3. Fit data to largest g possible
full G(q) helps also to fix tail of p(r) (to some degree)

See PRC 89 (14) 012201

Return below to above points



1. Importance of considering r-space
some g-space parameterizations have serious problems

example: inverse polynomial (Bernauer): has pole at ¢ > gmaa
leads to (oscillatory) p to extremely large r
affects R

example: VDM fit of Lorenz et al.
G(q) has pronounced maximum at ¢ > Qmaz
leads to structure of p(r) at large r
affects shape of G(q < qmin), affects extrapolation to g =0

in addition: x? factor 1.4 too large, does not really fit data

example: fit after conformal mapping (Lee et al.)
G(q) for g — oo ~ 3!
does not even correspond to density
same problem as for popular power-series expansion in g>

example: own Pade fit (discussed above)
disease only visible in r-space



2. Large-r constraint
consider Fock-component with smallest removal energy
for case of proton: 7wt + n configuration, dominates large r

Shape of wave function given by Whittaker function W_, 5/5(2kr) /7
Kk given by removal energy

Potential complication: relativistic effects
G(q) not simply Fourier transform of p(r)

Relativistic corrections:

1. Determine p(r) in Breit-frame, to account for Lorentz contraction
use as momentum transfer ¢> = ¢*/(1 + 1), 7T = q*/4M?

2. For composite systems boost operator depends on structure

various theoretical results (Licht, Mitra, Ji, Holzwarth,...), all of form
Ge(q) = Ge(@)(1+ 7)* A=1 or 2

numerical test: A=1 or 2 makes little difference for p at large r
is as expected, because large r ~ low k, where rel. effects small
aside: correction fixes unphysical behavior at r ~ 0!

Allows for reliable calculation of shape of p at very large r



”Refinements” of model (not needed, nice consistency check)
allow also for A + @ contribution
coeflicients of various terms from Dziembowski e al.

include all states: wtn, 7= p, m~ AT, #TA?, 7= AT, 7T A~

effect on p-tail: small, tail even a bit closer to pe;, at small r
effect on n-tail: larger, gets close to p.,, with same parameters
nice consistency check
will ignore n since components # 7~ p too important

o pp(r), © —pp(r), ——— shape talil, compares nicely to (new) VDM
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3. Fit data to maximum q

data up to gnq.. = o© would fix shape of entire p

for finite g4 p at large r better constrained when using larger g4z

Pedagogical example: integral p(r) = me“x G(q)....dq as function of Q44
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explains peculiar influence of large q¢ on R (e.g. Lee et al., Kraus et al.)

for low @4 parameterized G(q) implies strange p at medium r
data at larger g enforce more realistic behavior

BUT: large @,,.: only helpful, does not replace large-r constraint!



Analysis respecting above rules

Data used
world (e,e) data up to 12 fm™!
both cross sections and polarization data, 605 data points
in general w/o Bernauer (problems with background subtraction)
two-photon exchange corrections
needed to make G, from o and P agree
includes both soft+hard photons, Melnitchouk—+Tjon
(relative) tail density for » > 1.3 fm

Parameterization for G, and G,,

sum of Laguerre polynomials (in r-space), most efficient
natural parameterization with quasi-exponential large-r fall-off
equivalent results with SOG, VDM-type G(q)

Results

average over various combinations of data sets
floating or not of normalization

R = 886 £+ 0.008 fm R™ = .858 + .024 fm

Conclusion: disagreement with u-H confirmed



Deuteron
interest: comparison e-u, exact calculations starting from Vi

Problematic: large scatter of results in past
main problem: large-r tail (see above)
last 2% of R come from r» >7 fm!

corresponding contribution in G(q) not measurable
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Added complication: 3 form factors, need T3, data
separation of C0 enhances uncertainty



Determination of R
use world data
use tail constraint

(e, e) 2.130 £ 0.010 fm
pH 2.1289 =+ 0.0012fm (prelim.)
Gy 2.131fm

Find perfect agreement with X data from Pohl et al.
agreement within .01fm significant given .04fm discrepancy for proton

Helium 4
Interest: comparison e-u, exact calculations starting from Vi

Great: “He data most precise of all light nuclei

Simple-most case: only one form factor
no error-enhancing separation needed

Most helpful: FDR analysis of world data on p -*He scattering
determines residuum of closest singularity
corresponding to exchange scattering at 0°
yields absolute normalization of tail to +10%



Consequence: get most precise rms-radius of all nuclei

R=1.681+£0.004 fm
pX value (Antognini et al.) well within error bar
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Highly significant: difference (e,e)-uX < 0.25%
as compared to 4% for proton

Conclude: problem is not (e,e) vs. uX, problem is with proton



Conclusions

Determination of R from (e,e)
more difficult than appreciated
results more ambiguous than desirable

Source of problem
large-radius tail of density
affects shape of G(q) below sensitivity range, affects extrapolation to g = 0

Non-solutions
e different mathematical/formal description
data are compatible with large range of R
shown by too many examples
e more data at lower q
with realistic experimental errors sensitivity to R too small

Real solution
add physics i.e. knowledge on large-r shape
constrain shape of G(q) at low g

— reliable extrapolation to ¢ = 0 where R extracted



