RMS-radii from electron scattering

Ingo Sick

Interest

R integral quantity describing size reference for isotope shifts from many sources comparison to radii from electronic+muonic atoms

Scope of talk

light nuclei, but emphasize proton lessons how (not) to determine R motivation: discrepancy (e,e) + H-atom $\Leftrightarrow \mu X$ 0.88 \Leftrightarrow 0.84fm

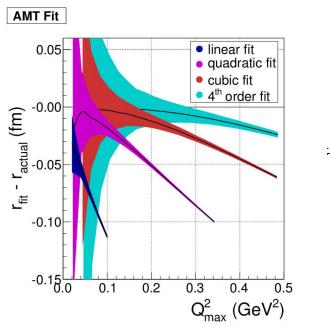
state right from outset: no solution to problem for p but: much more solid R's from (e,e)

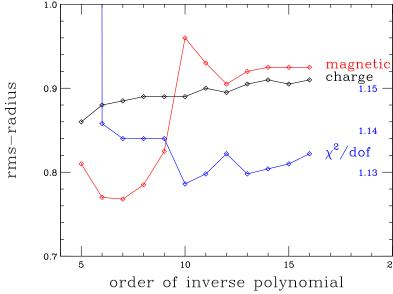
Determination of R a priori looks simple:

fit low-q data with some parameterization for $G_e(q)$, $G_m(q)$ q=0 slope of $G_e(q) \rightarrow rms$ -radius R

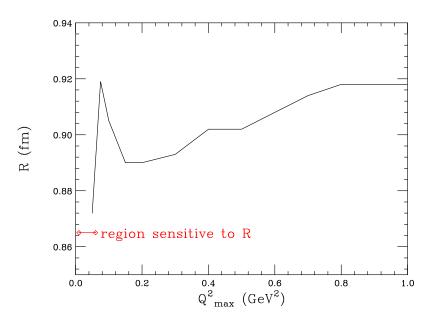
Problem: many not-understood results + discrepancies

- Power-expansion of G(q) always gives low R, depends on q_{max} Kraus et al.
- Inverse-polynomial fit: shows jump of R Bernauer et al.





ullet R from conformal mapping: unexplained q_{max} dependence, gives even larger R: 0.92fm Lee et al.



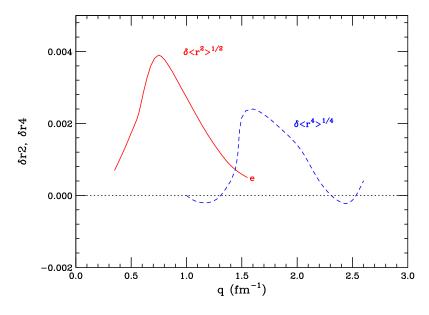
- \bullet various VDM-fits: give R around 0.84fm
- Own Pade-fit $(q_{max} = 2 \text{fm}^{-1})$: yields 1.48fm
- Bayesian interference: 0.899 ± 0.003 fm

Worrisome!

.... but explained by insights discussed below

Important consideration (most often ignored!) which q-region is sensitive to rms-radii?

Sensitivity to R: explored via notch-test



Region of sensitivity

$$egin{array}{ll} 0.5 \ < \ q \ < 1.3 \ fm^{-1} \ 0.01 \ < \ Q^2 < 0.06 \ GeV^2/c^2 \end{array}$$

lower q: $G(q) \sim 1 - q^2 R^2 / 6 + \dots$ measures only the "1" higher q: G(q) measures higher moments

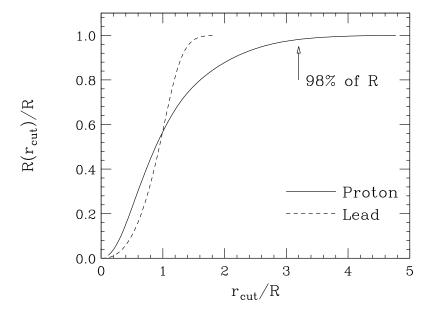
Recent data, all at $Q^2 > 0.06 GeV^2/c^2$ not relevant for R!

Second important point: need extrapolation to q = 0 particularly difficult for proton

form factor \sim dipole $\sim 1/(1+q^2c^2)^2$ for *qualitative* discussion ignore rel. corr., 2γ , ... $\Rightarrow \rho(r)$ =Fourier-transform of $G(q) \Rightarrow \rho \sim$ exponential $\sim e^{-r/c}$

Long tail of exp. density causes serious problems

Illustration: study $[\int_0^{r_{cut}} \rho(r) \ r^4 dr / \int_0^\infty \rho(r) \ r^4 dr]^{1/2}$ as function of cutoff r_{cut}

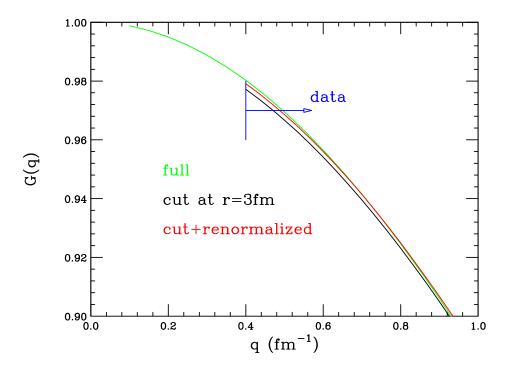


to get 98% of rms-radius R must integrate out to $r_{cut} \sim 3.2 \cdot R \sim 3 fm$

 $\Longrightarrow R$ sensitive to very large r where $\rho(r)$ poorly determined

 \implies large r affect G(q) at very low q, below $q_{min} \implies$ affects extrapolation to q=0 \implies model dependence of extrapolation

Large-r contribution not measurable in practice



→ uncertainties of order 2% not reachable

Even worse for deuteron

for 98% of R must know density for r > 7fm!!(r =distance to CM)

Problems with R of deuteron of past should have been a warning

Problem enhanced by peculiarity:

Traditional for proton, deuteron

parameterize G(q), fit to data, get slope

Standard for A>2

parameterize $\rho(r)$, calculate σ , fit data, get slope of G(q=0)

Not equivalent!

For A>2 use implicit constraint on ρ for large r

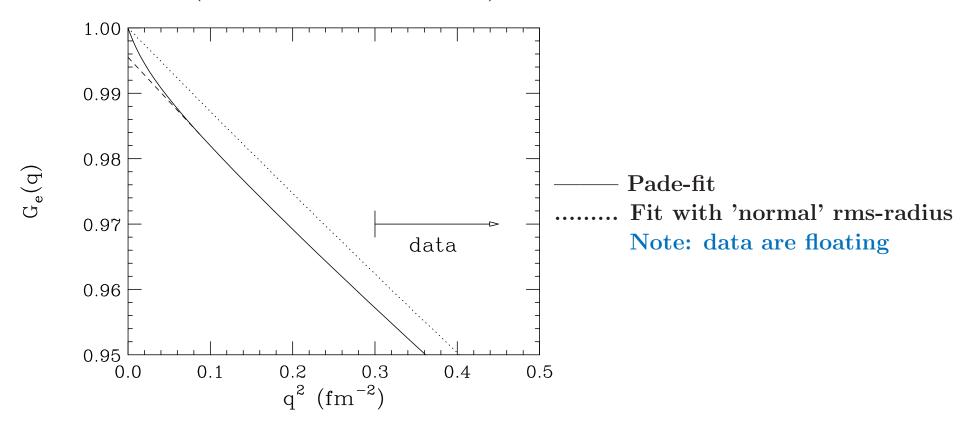
standard parameterizations have $\rho(r > R_{max}) = 0$ the more physical parameterizations use \pm exponential fall-off

For parameterized G(q) this physics is *not* enforced chosen G(q) can imply large ρ at large r large r strongly affect R can imply unphysical curvature of $G(q < q_{min})$

Most extreme demonstration case

own 4-parameter Pade-fit of Bernauer data, $q < 2fm^{-1}$ covers full region sensitive to R $G(q) = (1 + a_1q^2)/(1 + b_1q^2 + b_2q^4 + b_3q^6)$

Fit has excellent $\chi^2 \sim 1.06/dof$ (as good as Spline fit) no pole (a disease discussed below)



rms-radius = 1.49fm!!

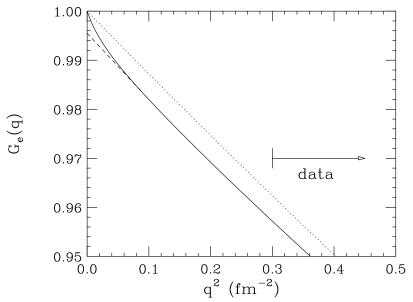
Pathology (?) visible by naked eye in G(q) at very low q

Understanding

split fit into two contributions $G_1 + G_2$:

 $G_1 = \text{Pade for } q^2 > 0.06 \text{ plus dashed line for } q^2 < 0.06$

 $G_2 = \text{Pade} - G_1$



 G_1 has 'normal' q=0 slope, norm of 0.995

 $G_2 \sim e^{-q^2/(0.02fm^2)}$ corresponds to $ho \sim e^{-r^2/(200fm^2)}$

 G_2 leads to large rms-radius despite small norm ~ 0.005

Note: data are floating, solid and dotted curve give both excellent χ^2

(illustrates that *absolute* cross sections are *much* more valuable)

Solution: 3 ingredients

1. Use parameterization accessible in both q- and r-space

SOG, Laguerre, MD (as in VDM fits) then can control behavior at large r can fit data + large-r constraint simultaneously

2. Constrain large-r behavior via physics knowledge

for multi-constituent systems $\rho(r>>)$ given by wave function of least-bound constituent shape (not absolute norm) given by removal energy can be imposed at asymptotic r where $\rho(r)<1\%$ of $\rho({\rm center})$

3. Fit data to largest q possible

full G(q) helps also to fix tail of $\rho(r)$ (to some degree)

See PRC 89 (14) 012201

Return below to above points

1. Importance of considering r-space

some q-space parameterizations have serious problems

example: inverse polynomial (Bernauer): has pole at $q>q_{max}$ leads to (oscillatory) ρ to extremely large r affects R

example: VDM fit of Lorenz et al.

G(q) has pronounced maximum at $q > q_{max}$ leads to structure of $\rho(r)$ at large raffects shape of $G(q < q_{min})$, affects extrapolation to q = 0

in addition: χ^2 factor 1.4 too large, does not really fit data

example: fit after conformal mapping (Lee et al.)

G(q) for $q \to \infty \sim 3!$ does not even correspond to density same problem as for popular power-series expansion in q^2

example: own Pade fit (discussed above)

disease only visible in r-space

2. Large-r constraint

consider Fock-component with smallest removal energy for case of proton: $\pi^+ + n$ configuration, dominates large r

Shape of wave function given by Whittaker function $W_{-\eta,3/2}(2\kappa r)/r$ κ given by removal energy

Potential complication: relativistic effects G(q) not simply Fourier transform of $\rho(r)$

Relativistic corrections:

- 1. Determine ho(r) in Breit-frame, to account for Lorentz contraction use as momentum transfer $\tilde{q}^2=q^2/(1+ au), \quad au=q^2/4M^2$
- 2. For composite systems boost operator depends on structure

various theoretical results (Licht, Mitra, Ji, Holzwarth,...), all of form $G_e(q) \to G_e(q)(1+\tau)^{\lambda}, \ \lambda = 1 \ \text{or} \ 2$

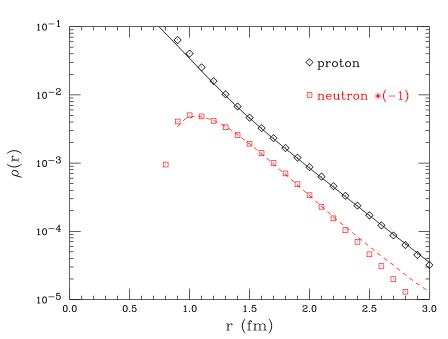
numerical test: $\lambda=1$ or 2 makes little difference for ρ at large r is as expected, because large $r \sim \text{low } k$, where rel. effects small aside: correction fixes unphysical behavior at $r \sim 0$!

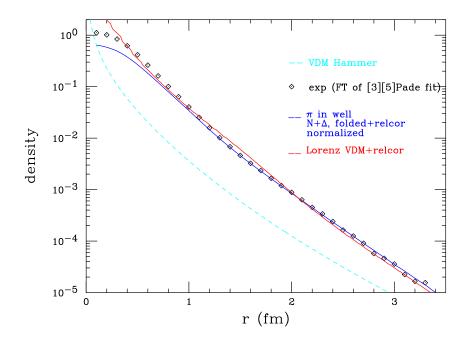
Allows for reliable calculation of shape of ρ at very large r

"Refinements" of model (not needed, nice consistency check)

allow also for $\Delta + \pi$ contribution coefficients of various terms from Dziembowski e al. include all states: $\pi^+ n$, $\pi^- p$, $\pi^- \Delta^{++}$, $\pi^+ \Delta^0$, $\pi^- \Delta^+$, $\pi^+ \Delta^-$

effect on p-tail: small, tail even a bit closer to ρ_{exp} at small reffect on n-tail: larger, gets close to ρ_{exp} with same parameters nice consistency check will ignore a since components $\neq \pi^- p$ too important

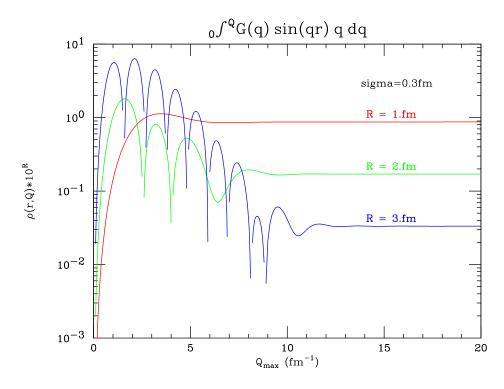




3. Fit data to maximum q

data up to $q_{max} = \infty$ would fix shape of entire ρ for finite q_{max} : ρ at large r better constrained when using larger q_{max}

Pedagogical example: integral $ho(r)=\int^{Q_{max}}G(q)....dq$ as function of Q_{max}



explains peculiar influence of large q on R (e.g. Lee et al., Kraus et al.) for low q_{max} parameterized G(q) implies strange ρ at medium r data at larger q enforce more realistic behavior

BUT: large q_{max} only helpful, does not replace large-r constraint!

Analysis respecting above rules

Data used

world (e,e) data up to $12~fm^{-1}$ both cross sections and polarization data, 605 data points in general w/o Bernauer (problems with background subtraction) two-photon exchange corrections needed to make G_{ep} from σ and P agree includes both soft+hard photons, Melnitchouk+Tjon (relative) tail density for r > 1.3fm

Parameterization for G_e and G_m

sum of Laguerre polynomials (in r-space), most efficient natural parameterization with quasi-exponential large-r fall-off equivalent results with SOG, VDM-type G(q)

Results

average over various combinations of data sets floating or not of normalization

$$R^{ch} = .886 \pm 0.008 \; fm$$
 $R^m = .858 \pm .024 \; fm$

Conclusion: disagreement with μ -H confirmed

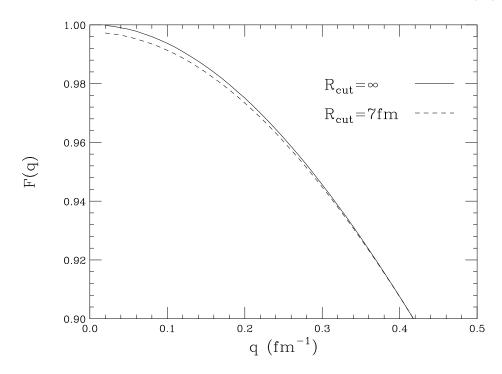
Deuteron

interest: comparison e- μ , exact calculations starting from V_{NN}

Problematic: large scatter of results in past main problem: large-r tail (see above)

last 2% of R come from r > 7 fm!

corresponding contribution in G(q) not measurable



Added complication: 3 form factors, need T_{20} data separation of C0 enhances uncertainty

Determination of R

use *world* data use tail constraint

(e,e)	$2.130\ \pm0.010\ fm$
μH	$2.1289 \pm 0.0012 fm \; ext{(prelim.)}$
a_{n-p}	2.131 fm

Find perfect agreement with μX data from Pohl et al. agreement within .01fm significant given .04fm discrepancy for proton

Helium 4

Interest: comparison e- μ , exact calculations starting from V_{NN}

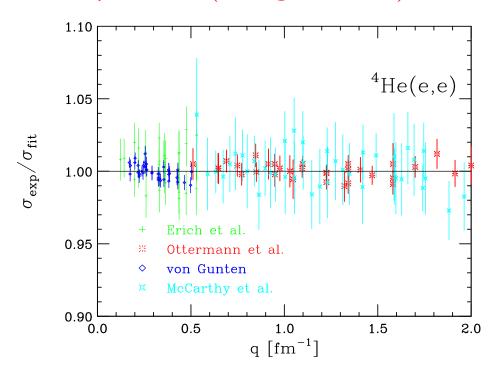
Great: ⁴He data most precise of all light nuclei

Simple-most case: only *one* form factor no error-enhancing separation needed

Most helpful: FDR analysis of world data on p - 4He scattering determines residuum of closest singularity corresponding to exchange scattering at 0° yields absolute normalization of tail to $\pm 10\%$

Consequence: get most precise rms-radius of all nuclei

R=1.681 \pm 0.004 fm μX value (Antognini et al.) well within error bar



Highly significant: difference (e,e)- $\mu X < 0.25\%$ as compared to 4% for proton

Conclude: problem is not (e,e) vs. μX , problem is with proton

Conclusions

Determination of R from (e,e)

more difficult than appreciated results more ambiguous than desirable

Source of problem

large-radius tail of density affects shape of G(q) below sensitivity range, affects extrapolation to q=0

Non-solutions

- ullet different mathematical/formal description data are compatible with large range of R shown by too many examples
- ullet more data at lower q with realistic experimental errors sensitivity to R too small

Real solution

add physics *i.e.* knowledge on large-r shape constrain shape of G(q) at low q \longrightarrow reliable extrapolation to q=0 where R extracted