International School on Nuclear Physics, Erice-Sicily, Italy, 17 September, 2015

Two-photon exchange corrections in elastic lepton-proton scattering at small momentum transfer

> Oleksandr Tomalak, Marc Vanderhaeghen Johannes Gutenberg University, Mainz, Germany

Outline

Motivation

Elastic lepton-proton scattering
Forward limit of TPE. Corrections to HFS
Elastic contribution to TPE corrections. DR framework
Low-momentum transfer expansion

• Inelastic TPE contribution

Form factors in OPE approximation

OPE amplitude

 $T = \frac{e^2}{Q^2} (\bar{u}(k',h')\gamma_\mu u(k,h))(\bar{u}(p',\lambda')\Gamma^\mu(Q^2)u(p,\lambda))$

Sachs form factors

 $G_E = F_1 - \tau F_2, \qquad G_M = F_1 + F_2$

Rosenbluth separation

momentum transfer kinematic variables

$$Q^{2} = -(k - k')^{2}$$
$$\tau = \frac{Q^{2}}{4M^{2}}, \qquad \epsilon = \frac{\nu^{2} - \tau(1 + \tau)}{\nu^{2} + \tau(1 + \tau)}$$

 $e \qquad \gamma \qquad e \qquad p \qquad p \qquad p$

photon-proton vertex $\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(Q^2)$

 $\frac{d\sigma^{unpol}}{d\Omega} \sim (\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2))$

Polarization transfer

$$\frac{P_T}{P_L} \sim \frac{G_E(Q^2)}{G_M(Q^2)}$$

A possible explanation - two-photon exchange

Proton radius puzzle

Interfaction puzzieelectric charge radius $< r_E^2 > = -\frac{1}{6} \frac{dG_E(Q^2)}{dQ^2}$ e hydrogen μ hydrogenLamb shift $r_E = 0.8758 \pm 0.0077 fm$ $r_E = 0.8409 \pm 0.0004 fm$

ep-elastic scattering $r_E = 0.879 \pm 0.008 fm$

4-7 σ difference !

TPE hadronic correction is dominant uncertainty in scattering experiments

 $\sigma^{exp} \equiv \sigma_{1\gamma} (1 + \delta_{soft} + \delta_{2\gamma})$

magnetic radius depends on TPE

TPE correction to hydrogen spectroscopy

Shift of S-levels energy

TPE blob - forward Compton scattering

Lamb shift through unpolarized structure functions F_1 , F_2

$$\Delta E_{n,S} \sim \int \mathrm{d}\nu_{\gamma} \mathrm{d}Q^2 \left\{ T_1(0,Q^2), \ F_1(\nu_{\gamma},Q^2), F_2(\nu_{\gamma},Q^2) \right\}$$

C. Carlson and M. Vanderhaeghen (2011)

Correction of order 10% of the radius puzzle

HFS correction through spin structure functions g_1, g_2 C. Carlson, V. Nazaryan, K. Griffioen (2011) $\Delta E_{n,S}^{HFS} \sim \int d\nu_{\gamma} dQ^2 \{g_1(\nu_{\gamma}, Q^2), g_2(\nu_{\gamma}, Q^2)\}$

A. Altonini et al. (2013)

Dispersion relation framework

Forward scattering amplitudes

Crossing symmetric variable $\nu = ME$ is related to lepton energy

Amplitudes has definite crossing properties with respect $E \rightarrow -E$

$$f_{+} = \frac{T_{1} + T_{3}}{2} \qquad \qquad g = \frac{T_{5}}{2} \qquad \qquad f_{-} = \frac{T_{1} - T_{3}}{2}$$

Optical theorem determines imaginary parts

$$\Im f_{+}(E) \sim \sigma_{++}(E) + \sigma_{+-}(E)$$

$$\Im f_{-}(E) \sim \sigma_{++}(E) - \sigma_{+-}(E)$$

$$\Im g(E) \sim \sigma_{\perp}(E) - \sigma_{\parallel}(E)$$

Dispersion relations. TPE HFS correction

$$\Re f_{+}^{2\gamma}(E) - \Re f_{+}^{2\gamma}(E_{0}) = \frac{4M(E^{2} - E_{0}^{2})}{\pi} \int_{m}^{\infty} \frac{E'\sqrt{E'^{2} - m^{2}} \cdot \sigma_{unpol}^{1\gamma}(E')}{(E'^{2} - E^{2})(E'^{2} - E_{0}^{2})} dE' \quad \checkmark$$
$$\Re f_{-}^{2\gamma}(E) = \frac{2ME}{\pi} \int_{m}^{\infty} \frac{\sqrt{E'^{2} - m^{2}}(\sigma_{++}^{1\gamma}(E') - \sigma_{+-}^{1\gamma}(E'))}{E'^{2} - E^{2}} dE' \quad \checkmark$$
$$\Re g^{2\gamma}(E) = \frac{4M}{\pi} \int_{m}^{\infty} \frac{E'\sqrt{E'^{2} - m^{2}}(\sigma_{-}^{1\gamma}(E') - \sigma_{||}^{1\gamma}(E'))}{E'^{2} - E^{2}} dE' \quad \checkmark$$

verified to one-loop level in QED O.Tomalak and V. Pascalutsa (in preparation)

Similar to light by light scattering except f_+

V. Pascalutsa and M. Vanderhaeghen (2010)

Interaction Hamiltonian

$$H = -f_+ - 4g\vec{s}\cdot\vec{S} - 4(f_- + g)(\vec{s}\cdot\hat{k})(\vec{S}\cdot\hat{p})$$

HFS correction $f_{-}^{2\gamma}(m), g^{2\gamma}(m) \longleftarrow g_1, g_2$

$$\mu_P e^2 \Delta^S = -g(m) + \frac{1}{2}f_-(m)$$

Zemach correction is reproduced

 $\Delta E_S = E_F (1 + \Delta^S)$

$$\Delta = \frac{8\alpha mM}{\pi (M+m)} \int_{0}^{\infty} \frac{\mathrm{d}Q}{Q^2} \left(\frac{G_M(Q^2)G_E(Q^2))}{\mu_P} - 1 \right)$$
A.C. Zemach (1956)

Recoil correction only with BC sum rule $\int_{\nu_{thr}}^{\infty} g_2(\nu_{\gamma}, Q^2) \frac{M d\nu_{\gamma}}{\nu_{\gamma}^2} = \frac{1}{4} F_2(Q^2) G_M(Q^2)$ $g^{2\gamma}(m) + f_-^{2\gamma}(m) = 0$

Structure amplitudes

Discrete symmetries

 ϵ

photon polarization parameter

Goldberger et al. (1957)

Electron scattering is described by 3 structure amplitudes $T^{non-flip} = \frac{e^2}{O^2} \bar{l}(k',h')\gamma_{\mu}l(k,h).\bar{N}(p',\lambda')[\mathcal{G}_M(\nu,t)\gamma^{\mu} - \mathcal{F}_2(\nu,t)\frac{P^{\mu}}{M} + \mathcal{F}_3(\nu,t)\frac{\hat{K}P^{\mu}}{M^2}]N(p,\lambda)$ P.A.M. Guichon and M. Vanderhaeghen (2003)

Muon scattering require lepton helicity-flip amplitudes

$$m_l \neq 0$$
 \longrightarrow T^{fl}

ip

$$P = \frac{e^2}{Q^2} \frac{m_l}{M} \bar{l}(k',h') l(k,h) \cdot \bar{N}(p',\lambda') [\mathcal{F}_4(\nu,t) + \mathcal{F}_5(\nu,t)\frac{\hat{K}}{M}] N(p,\lambda) + \frac{e^2}{Q^2} \frac{m_l}{M} \mathcal{F}_6(\nu,t) \bar{l}(k',h') \gamma_5 l(k,h) \cdot \bar{N}(p',\lambda') \gamma_5 N(p,\lambda)$$

M. Gorchtein, P.A.M. Guichon and M. Vanderhaeghen (2004)

Leading TPE contribution to cross section - interference term with OPE $\delta_{2\gamma} \sim \Re \mathcal{G}_M, \Re \mathcal{F}_2, \Re \mathcal{F}_3, \Re \mathcal{F}_4, \Re \mathcal{F}_5$

Fixed-t dispersion relation framework

 2γ corrections

D. Borisyuk, A. Kobushkin (2008)

Hadronic model

The one-photon exchange on-shell vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2)$$

P. G. Blunden, W. Melnitchouk, and J. A. Tjon (2003)

Hadronic model vs. dispersion relations

- Imaginary parts are the same
- Real parts are the same for

 $\begin{array}{ll} \text{all F1F1 amplitudes} & \textbf{F1F2 amplitudes} & \textbf{F2F2 amplitudes} \\ \mathcal{G}_M \quad \mathcal{F}_2 \quad \mathcal{F}_3 \quad \mathcal{F}_5 & \mathcal{F}_2 \quad \mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3 \quad \mathcal{F}_5 \end{array} \end{array}$

Fixed-t subtracted dispersion relation works **F2F2 amplitudes** $\mathcal{G}_M \quad \mathcal{F}_3 \quad \mathcal{F}_4 \quad \mathcal{F}_6$

• Calculation based on DR for ep scattering

- for amplitudes \mathcal{G}_1 , \mathcal{G}_2 unsubtracted DR can be used
- for amplitude \mathcal{F}_3 subtracted DR should be used
- subtraction point $\Re \mathcal{F}_3^{F_2F_2}(\nu_0,Q^2)$ fixed from $\delta_{2\gamma}(\nu_0,Q^2)$ data

 $egin{aligned} \mathcal{G}_1 &= \mathcal{G}_M + rac{
u}{M^2}\mathcal{F}_3 \ \mathcal{G}_2 &= \mathcal{G}_E + rac{
u}{M^2}\mathcal{F}_3 \end{aligned}$

2y in e⁻p elastic scattering

Near-forward inelastic TPE correction(e⁻p)

TPE blob - forward Compton scattering

perform the Wick rotation

 $\delta_{2\gamma} = \int \mathrm{d}\nu_{\gamma} \mathrm{d}\tilde{Q}^2(w_1(\nu_{\gamma}, \tilde{Q}^2) \cdot F_1(\nu_{\gamma}, \tilde{Q}^2) + w_2(\nu_{\gamma}, \tilde{Q}^2) \cdot F_2(\nu_{\gamma}, \tilde{Q}^2))$

• Q² ln Q² term for ep scattering reproduced, no hadronic scale

• Uncertain Q² region of applicability

O. Tomalak and M. Vanderhaeghen (2015)

no significant influence on electric charge radius

μ p experiment (MUSE) estimates

TPE correction in hadronic model

 $\delta_{2\gamma} \sim \Re \mathcal{G}_M, \Re \mathcal{F}_2, \Re \mathcal{F}_3, \Re \mathcal{F}_4, \Re \mathcal{F}_5$

F1F1 contribution dominates helicity flip lowers correction

T₁ subtraction function TPE correction

Amplitude T₁ reconstructed up to a function

 $T_1(\nu_{\gamma}, Q^2) = T_1(0, Q^2) + \frac{\nu_{\gamma}^2}{2\pi M} \int_{\nu_{thr}}^{\infty} \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu_{\gamma}^2)} d\nu' \qquad \text{with} \qquad T_1(0, Q^2) = \beta_M Q^2 F_{loop}(Q^2)$

Subtraction function contributes only to \mathcal{F}_4 amplitude In the limit of small electron mass TPE correction vanishes

$$\delta_{2\gamma,0}^{subt} \approx -\frac{\beta_M Q^2 m^2}{E} \int_0^\infty f\left(x, \frac{Q^2}{m^2}\right) F_{loop}\left(\frac{Q^2\left(x^2 - 1\right)}{4}\right) \mathrm{d}x^2$$

Valid only for small Q²

For enhanced at HE function

$$\delta_{2\gamma,0}^{subt} \approx -\frac{3\beta_M Q^2 m^2}{2\pi E} \int_0^\infty F_{loop} \left(\tilde{Q}^2\right) \frac{\mathrm{d}\tilde{Q}^2}{\tilde{Q}^2}$$

Near-forward inelastic TPE correction(µ⁻p)

TPE blob - forward Compton scattering

perform the Wick rotation

 $\delta_{2\gamma} = \int \mathrm{d}\nu_{\gamma} \mathrm{d}\tilde{Q}^2(w_1(\nu_{\gamma}, \tilde{Q}^2) \cdot F_1(\nu_{\gamma}, \tilde{Q}^2) + w_2(\nu_{\gamma}, \tilde{Q}^2) \cdot F_2(\nu_{\gamma}, \tilde{Q}^2))$

• No $Q^2 \ln Q^2$ term in limit $Q^2 \ll m^2$, M², ME

• Uncertain Q² region of applicability

small effect for MUSE kinematics

Conclusions

- Dispersive relations for lepton-proton scattering provide alternative method for HFS correction derivation
 - Subtracted DR formalism for ep scattering proposed
 - DR checked vs. hadronic model calculation (ep):
 F1F1, F1F2: agreement F2F2 : on-shell model violates DR
 DR checked vs. hadronic model calculation (μp):
 F1F1 : agreement F1F2, F2F2 : on-shell model violates DR
 T1 subtraction function TPE correction studied
- Theoretical estimates for elastic (ep and $\mu p)$ cross section
 - Low-Q expansion reproduced (ep) and obtained ($\mu p)$

Plans

- Inclusion of inelastic intermediate states (πN)

Thanks for your attention !!!