

Construction of Wave Functions of Highly Excited Multiquark States; N(1440), N(1520), N(1535) and Pentaquarks

Yupeng Yan

School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000, Thailand

With Kai Xu, Narongrit Ritjoho, Sorakrai Srisubphaphon

< < >>

Introduction

- ${\scriptstyle \bullet}$ Construction of $q^4 \bar{q}$ states
- ${\, \bullet \,}$ Model results of q^3 excited state and $q^4 \bar{q}$ ground state masses
- Summary

- In the traditional q^3 picture, the Roper $N_{1/2+}(1440)$ usually gets a mass $\sim 100~{\rm MeV}$ above the $N_{1/2-}(1535),$ but not 100 MeV below it.
- ${\, \bullet \, }$ Roper resonance is usually blamed sitting at a wrong place or intruding the q^3 spectrum.
- It has been studied in any possible picture: normal q^3 first radial excitation, $q^4\bar{q}$ pentaquark, q^3g hybrid, $q^3(q\bar{q})$ resonance...
- Still an open question.

Helicity amplitudes for the $\gamma^* p \rightarrow N(1440)$ transition. The thick curves correspond to quark models assuming that N(1440) is a q^3 first radial excitation: dashed (Capstick and Keister, 1995), solid (Aznauryan, 2007). The thin dashed curves are obtained assuming that N(1440) is a q^3g hybrid state (Li et al., 1992). Figure courtesy to Rev. Mod. Phys. **82**, 1095.

• The sign change in the helicity amplitude as a function of Q^2 suggests a node in the wave function and thus a radially excited state.

Physics (SUT)

- This resonance is observed at a mass expected in quark models
- Large couplings to the $N\eta,~N\eta',~N\phi$ and $K\Lambda$ but small couplings to the $N\pi$ and $K\Sigma$ are claimed.
- A large $N\eta$ coupling invites speculation that it might be created dynamically as $N\eta \Sigma K$ coupled channel effect.
- A large $N\phi$ coupling leads to the proposal that the $N_{1/2-}(1535)$ may have a large component of $uuds\bar{s}$ pentaquark states.

Image: A match the second s

• That the pentaquark should be a color singlet demands that the color part of the pentaquark wave function must be a $[222]_1$ singlet.

$$\psi^c_{[222]}(q^4\overline{q}) = \boxed{\qquad} \tag{1}$$

 $\bullet\,$ The color part of the antiquark in pentaquark states is a $[11]_3\,$ antitriplet

$$\psi_{[11]}^c(\overline{q}) =$$

 $\bullet\,$ The color wave function of the four-quark configuration must be a $[211]_3\,$ triplet

$$\psi_{[211]_{\lambda}}^{c}(q^{4}) = \boxed{\begin{array}{c}1 & 2\\3\\4\end{array}} \quad \psi_{[211]_{\rho}}^{c}(q^{4}) = \boxed{\begin{array}{c}1 & 3\\2\\4\end{array}} \quad \psi_{[211]_{\eta}}^{c}(q^{4}) = \boxed{\begin{array}{c}1 & 4\\2\\3\\3\end{array}} \quad (3)$$

q^4 Color Wave Functions

• q^4 color wave functions can be derived by applying the λ -, ρ - and η -type projection operators of the $S_4~{\rm IR}[211]$ in Yamanouchi basis,

$$\begin{split} & \left| \begin{array}{c} 1 & 2 \\ \hline 3 \\ \hline 4 \\ \hline \end{array} \right\rangle, \left| \begin{array}{c} R \\ \hline G \\ \hline B \\ \hline \end{array} \right\rangle = P_{[211]_{\lambda}}(RRGB) \Longrightarrow \psi^{c}_{[211]_{\lambda}}(R) : \\ & \frac{1}{\sqrt{16}} (2|RRGB\rangle - 2|RRBG\rangle - |GRRB\rangle - |RGRB\rangle - |BRGR\rangle \\ & -|RBGR\rangle + |BRRG\rangle + |GRBR\rangle + |RBRG\rangle + |RGBR\rangle) \end{split}$$

$$\begin{array}{c} \boxed{1 \ 3} \\ \boxed{RR} \\ \boxed{G} \\ \boxed{G} \\ \boxed{B} \end{array} \end{array} \right\rangle = P_{[211]_{\rho}}(RGRB) \Longrightarrow \psi^{c}_{[211]_{\rho}}(R) : \\ \frac{1}{\sqrt{48}} (3|RGRB\rangle - 3|GRRB\rangle + 3|BRRG\rangle - 3|RBRG\rangle + 2|GBRR\rangle \\ -2|BGRR\rangle - |BRGR\rangle + |RBGR\rangle + |GRBR\rangle - |RGBR\rangle)$$

э

q^4 Color Wave Functions

$$\begin{vmatrix} 1 & 4 \\ 2 \\ \hline 3 \\ \hline 8 \\ \hline$$

The singlet color wave function $\Psi_{[211]_j}^c$ $(j=\lambda,\rho,\eta)$ of pentaquarks is given by

$$\Psi_{[211]_j}^c = \frac{1}{\sqrt{3}} \left[\psi_{[211]_j}^c(R) \,\bar{R} + \psi_{[211]_j}^c(G) \,\bar{G} + \psi_{[211]_j}^c(B) \,\bar{B} \right]. \tag{4}$$

æ

イロト イヨト イヨト イヨ

$$\psi = \sum_{i,j=\lambda,\rho,\eta} a_{ij} \ \psi^{c}_{[211]_i} \psi^{osf}_{[31]_j}$$
(5)

with

$$\begin{split} \psi^{osf}_{[31]} &= \sum_{i,j=S,A,\lambda,\rho,\eta} b_{ij} \; \psi^{o}_{[X]_i} \psi^{sf}_{[Y]_j} \\ \psi^{sf}_{[Z]} &= \sum_{i,j=S,A,\lambda,\rho,\eta} c_{ij} \; \phi^{f}_{[X]_i} \chi^{s}_{[Y]_j} \end{split}$$

• Possible configurations and the coefficients can be determined by applying the Yamanouchi-basis representations of the S_4 to the general forms.

Physics (SUT)

q^4 Spatial-Flavor-Spin States

 ${\, \bullet \,}$ Total wave function of q^4 systems

$$\psi = \frac{1}{\sqrt{3}} \left(\psi_{[211]_{\lambda}}^{c} \psi_{[31]_{\rho}}^{osf} - \psi_{[211]_{\rho}}^{c} \psi_{[31]_{\lambda}}^{osf} + \psi_{[211]_{\eta}}^{c} \psi_{[31]_{\eta}}^{osf} \right)$$
(6)

• Spatial-spin-flavor configurations:

$[31]_{OSF}$		
$[4]_{O}$	$[31]_{SF}$	
$[1111]_O$	$[211]_{SF}$	
$[22]_{O}$	$[31]_{SF}, [211]_{SF}$	
$[211]_O$	$[31]_{SF}, [211]_{SF}, [22]_{SF}$	
$[31]_{O}$	$[4]_{SF}, [31]_{SF}, [211]_{SF}, [22]_{SF}$	

< □ > < ^[] >

q^4 Spin-Flavor Configurations

	$[4]_{FS}$		
$[4]_{FS}[22]_F[22]_S$	$[4]_{FS}[31]_F[31]_S$	$[4]_{FS}[4]_{F}[4]_{S}$	
	$[31]_{FS}$		
$[31]_{FS}[31]_F[22]_S$	$[31]_{FS}[31]_F[31]_S$	$[31]_{FS}[31]_F[4]_S$	$[31]_{FS}[211]_F[22]_S$
$[31]_{FS}[211]_F[31]_S$	$[31]_{FS}[22]_F[31]_S$	$[31]_{FS}[4]_F[31]_S$	
	$[22]_{FS}$		
$[22]_{FS}[22]_F[22]_S$	$[22]_{FS}[22]_F[4]_S$	$[22]_{FS}[4]_F[22]_S$	$[22]_{FS}[211]_F[31]_S$
$[22]_{FS}[31]_F[31]_S$			
	$[211]_{FS}$		
$[211]_{FS}[211]_F[22]_S$	$[211]_{FS}[211]_F[31]_S$	$[211]_{FS}[211]_F[4]_S$	$[211]_{FS}[22]_F[31]_S$
$[211]_{FS}[31]_F[22]_S$	$[211]_{FS}[31]_F[31]_S$		
		< < >>< < < < < < < < < < < < < < < <	▶ < E > < E > E < O <

$q^3Qar{Q}$ configuration

$$\Psi_{Octet}(q^3) = \frac{1}{\sqrt{2}} \psi^c_{[111]} \psi^o_{[3]}(\phi_{[21]_\lambda} \chi_{[21]_\lambda} + \phi_{[21]_\rho} \chi_{[21]_\rho}),$$

$$\Psi_{Decuplet}(q^3) = \psi^c_{[111]} \psi^o_{[3]} \phi_{[3]} \chi_{[3]}$$
(7)

 \bullet Hidden color states, q^3 and $Q\bar{Q}$ in color [21] states:

$$\Psi(q^{3}) = \frac{1}{\sqrt{2}} (\psi^{c}_{[21]_{\lambda}} \psi^{sf}_{[21]_{\rho}} - \psi^{c}_{[21]_{\rho}} \psi^{sf}_{[21]_{\lambda}}),$$

$$\psi^{sf}(q^{3}) = \sum_{i,j} a_{ij} \psi^{s}_{[X]_{i}} \psi^{f}_{[Y]_{j}}$$
(8)

with

$$\psi_{[X]_i}^s = \{\psi_{[3]}^s, \psi_{[21]_{\lambda,\rho}}^s\}, \quad \psi_{[Y]_j}^f = \{\psi_{[3]}^f, \psi_{[21]_{\lambda,\rho}}^f\}$$
(9)

and color wave function,

$$\Psi_{[222]}^{c}(q^{3}Q\bar{Q}) = \frac{1}{\sqrt{8}} \sum_{i} \psi_{[21]_{i}}^{c}(q^{3})\psi_{[21]_{i}}^{c}(Q\bar{Q})$$
(10)

Spatial Wave Functions

- Harmonic oscillator wave functions may be considered as the first order approximation for pentaquark systems.
- A complete basis of certain permutation symmetry may be constructed from harmonic oscillator wave functions of the most simple *H*,

$$H = \frac{p_{\lambda}^2}{2m} + \frac{p_{\rho}^2}{2m} + \frac{p_{\eta}^2}{2m} + \frac{p_{\xi}^2}{2m} + \frac{1}{2}C\left(\lambda^2 + \rho^2 + \eta^2 + \xi^2\right)$$
(11)

where

$$\vec{\rho} = \frac{1}{\sqrt{2}}(\vec{r_1} - \vec{r_2})$$

$$\vec{\lambda} = \frac{1}{\sqrt{6}}(\vec{r_1} + \vec{r_2} - 2\vec{r_3})$$

$$\vec{\eta} = \frac{1}{\sqrt{12}}(\vec{r_1} + \vec{r_2} + \vec{r_3} - 3\vec{r_4})$$

$$\vec{\xi} = \frac{1}{\sqrt{20}}(\vec{r_1} + \vec{r_2} + \vec{r_3} + \vec{r_4} - 4\vec{r_5})$$
(12)

Spatial wave functions take the general form,

$$\Psi_{NLM}^{o} = \sum_{\substack{n_{\lambda}, n_{\rho}, n_{\eta}, n_{\xi}, l_{\lambda}, l_{\rho}, l_{\eta}, l_{\xi}}} A(n_{\lambda}, n_{\rho}, n_{\eta}, n_{\xi}, l_{\lambda}, l_{\rho}, l_{\eta}, l_{\xi})} \\ \cdot \Psi_{n_{\lambda} l_{\lambda} m_{\lambda}}(\vec{\lambda}) \Psi_{n_{\rho} l_{\rho} m_{\rho}}(\vec{\rho}) \Psi_{n_{\eta} l_{\eta} m_{\eta}}(\vec{\eta}) \Psi_{n_{\xi} l_{\xi} m_{\xi}}(\vec{\xi}) \\ \cdot C(l_{\lambda}, l_{\rho}, m_{\lambda}, m_{\rho}, l_{\lambda\rho}, m_{\lambda\rho}) \\ \cdot C(l_{\lambda\rho\eta}, l_{\eta}, m_{\lambda\rho}, m_{\eta}, l_{\lambda\rho\eta}, m_{\lambda\rho\eta}) \\ \cdot C(l_{\lambda\rho\eta}, l_{\xi}, m_{\lambda\rho\eta}, m_{\xi}, LM)$$
(13)

with $N=2(n_{\lambda}+n_{\rho}+n_{\eta}+n_{\xi})+l_{\lambda}+l_{\rho}+l_{\eta}+l_{\xi}$

• The coefficients A are determined by applying the Yamanouchi basis representations of the S_4 . Spatial wave functions with [4], [31], [22], [211] and [1111] symmetries can be derived easily.

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i^0} + C \sum_{i< j}^{N} (\vec{r_i} - \vec{r_j})^2 + \sum_{i=1}^{N} m_i^0 + H_{hyp}$$
(14)

$$H_{hyp}^{OGE} = -C_G \sum_{i < j} \frac{\lambda_i^C \cdot \lambda_j^C}{m_i m_j} \vec{\sigma}_i \cdot \vec{\sigma}_j$$
(15)

- m_i^0 stands for "bare" quark masses, m_i are dressed quark masses resulted from m_i^0 and the ground-state energy of harmonic oscillation.
- Model parameters determined by fitting theoretical results to 4 vector meson isospin states, 8 baryon isospin states, $J/\psi(1S)$ and $\Upsilon(1S)$: $m_u^0(m_u) = 53(362)~{\rm MeV}, \ m_s^0(m_s) = 361(532)~{\rm MeV} \ m_c^0(m_c) = 1480(1568)~{\rm MeV}, \ m_b^0(m_b) = 4689(4739)~{\rm MeV} \ w_0 = \sqrt{\frac{2C}{m_u}} = 138~{\rm MeV}, \ C_m = C_G/m_u^2 = 19.0~{\rm MeV}$

Mass of excited non-strange q^3 states

States $\Psi(N,L)$	J^P	$Mass~\mathrm{MeV}$
$\Psi_{ m Singlet}(1,1)$	$\frac{1}{2}^{-}$, $\frac{3}{2}^{-}$	1174
$ \begin{split} \Psi_{\mathrm{Octet}}^{(1)}(1,1) \\ \Psi_{\mathrm{Octet}}^{(2)}(1,1) \end{split} $	$\frac{\frac{1}{2}^{-}, \frac{3}{2}^{-}}{\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}}$	1174 1477
$\Psi_{ m Decuplet}(1,1)$	$\frac{1}{2}^{-}$, $\frac{3}{2}^{-}$	1174
$\Psi_{ m Singlet}(2,0)$	$\frac{1}{2}^+$	1413
$\Psi^{(1)}_{ m Octet}(2,0) \ \Psi^{(2)}_{ m Octet}(2,0) \ \Psi^{(3)}_{ m Octet}(2,0) \ \Psi^{(3)}_{ m Octet}(2,0)$	$\frac{\frac{1}{2}}{\frac{3}{2}} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	1413 1717 1413
$\Psi^{(1)}_{ ext{Decuplet}}(2,0) \ \Psi^{(2)}_{ ext{Decuplet}}(2,0)$	$\frac{\frac{1}{2}}{\frac{3}{2}} +$	1413 1717

æ

・ロト ・回ト ・ヨト ・ヨト

$q^4 ar q$ Configurations	Spin (or J)	$M(q^4\overline{q})$ (MeV)
$\Psi^{sf}_{[31]_{FS}[4]_F[31]_S}(q^4\overline{q})$	$\frac{1}{2}$, $\frac{3}{2}$	3024, 2720
$\Psi^{sf}_{[31]_{FS}[31]_{F}[4]_{S}}(q^{4}\overline{q})$	$\frac{3}{2}$, $\frac{5}{2}$	2467, 2720
$\Psi^{sf}_{[31]_{FS}[31]_{F}[31]_{S}}(q^{4}\overline{q})$	$\frac{1}{2}$, $\frac{3}{2}$	2568, 2493
$\Psi^{sf}_{[31]_{FS}[31]_{F}[22]_{S}}(q^{4}\overline{q})$	$\frac{1}{2}$	2467
$\Psi^{sf}_{[31]_{FS}[22]_F[31]_S}(q^4\overline{q})$	$\frac{1}{2}$, $\frac{3}{2}$	2113, 2493

2

・ロト ・回ト ・ヨト ・ヨト

イロト 不得下 イヨト イヨト

Image: A math a math

Ground state pentaquarks $q^3 b ar{b}$ in $q^3 Q ar{Q}$ configuration

$q^3Qar{Q}$ Configurations	J^P	$M(q^3bar{b})({\sf MeV})$
$\Psi^{csf}_{[111]_C[21]_F[21]_S}(q^3b\bar{b})$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}$	10664, 10667
$\Psi^{csf}_{[111]_C[21]_F[3]_S}(q^3b\bar{b})$	$\frac{3}{2}^{-}$, $\frac{5}{2}^{-}$	10868,10971
$\Psi^{csf}_{[21]_C[21]_F[21]_S}(q^3b\bar{b})$	$\frac{1}{2}^{-}$, $\frac{3}{2}^{-}$	10780, 10782
$\Psi^{csf}_{[21]_C[3]_F[21]_S}(q^3b\bar{b})$	$\frac{1}{2}^{-}$, $\frac{3}{2}^{-}$	11008,11008
$\Psi^{csf}_{[21]_C[21]_F[3]_S}(q^3b\bar{b})$	$\frac{3}{2}^{-}, \frac{5}{2}^{-}$	10856, 10862

æ

- The work gives a mass about 1410 MeV for non-strange q^3 first radial excited states. It may imply that the Roper resonance is mainly a q^3 state.
- Assuming that N(1535) and N(1520) have a large $q^3s\bar{s}$ and $q^4\bar{q}$ component of the spin-flavor configuration $[22]_F[31]_S$, then we have from $M(q^3) = 1174$ MeV, $M(q^3s\bar{s})_{s=1/2} = 2441$ MeV and $M(q^4\bar{q})_{s=3/2} = 2493$ MeV,

States	J^P	$q^3\%$	$q^4 \overline{q}\%$
N(1535)	$\frac{1}{2}^{-}$	71.5	28.5
N(1520)	$\frac{3}{2}$ -	73.8	26.2

- The work gives masses of $4280 \sim 4640$ MeV for ground state pentaquarks $q^3 c \bar{c}$. It is consistent with the LHCb observation of $P_c^+(4380)$ and $P_c^+(4450)$ (Indeed, Kai did calculations half a year before we saw LHCb report).
- The work predicts that ground state $q^3 b \bar{b}$ may have masses around 11 GeV.

Image: A math a math

Thank you for your attention!

Physics (SUT)

baryon mass spectrum

Erice School, Sept. 17, 2015 22 / 29

2

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pentaquark Spatial Wave Function, NLM = 322

• Symmetric:

$$\Psi^{S} = \frac{1}{3} \left[-\Psi_{021}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{011}(\xi) + \sqrt{2}\Psi_{022}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{010}(\xi) \right. \\ \left. -\Psi_{000}(\lambda)\Psi_{021}(\rho)\Psi_{000}(\eta)\Psi_{011}(\xi) + \sqrt{2}\Psi_{000}(\lambda)\Psi_{022}(\rho)\Psi_{000}(\eta)\Psi_{010}(\xi) \right. \\ \left. -\Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{021}(\eta)\Psi_{011}(\xi) + \sqrt{2}\Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{022}(\eta)\Psi_{010}(\xi) \right]$$

- Antisymmetric: Non
- λ and ρ types of [22]: Non
- $\lambda,\,\rho$ and η types of [211]: Non

Image: A math a math

Pentaquark Spatial Wave Function, NLM = 322

First Set of λ , ρ and η types of [31]:

$$\Psi^{\lambda[31]} = \frac{1}{\sqrt{6}} [\sqrt{2}\Psi_{010}(\lambda)\Psi_{022}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) - \Psi_{011}(\lambda)\Psi_{021}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) + \sqrt{2}\Psi_{010}(\lambda)\Psi_{000}(\rho)\Psi_{022}(\eta)\Psi_{000}(\xi) - \Psi_{011}(\lambda)\Psi_{000}(\rho)\Psi_{021}(\eta)\Psi_{000}(\xi)]$$

$$\Psi^{\rho[31]} = \frac{1}{\sqrt{6}} [\sqrt{2}\Psi_{022}(\lambda)\Psi_{010}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) - \Psi_{021}(\lambda)\Psi_{011}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) + \sqrt{2}\Psi_{000}(\lambda)\Psi_{010}(\rho)\Psi_{022}(\eta)\Psi_{000}(\xi) - \Psi_{000}(\lambda)\Psi_{011}(\rho)\Psi_{021}(\eta)\Psi_{000}(\xi)]$$

$$\Psi^{\eta[31]} = \frac{1}{\sqrt{6}} [\sqrt{2} \Psi_{022}(\lambda) \Psi_{000}(\rho) \Psi_{010}(\eta) \Psi_{000}(\xi) - \Psi_{021}(\lambda) \Psi_{000}(\rho) \Psi_{011}(\eta) \Psi_{000}(\xi) + \sqrt{2} \Psi_{000}(\lambda) \Psi_{022}(\rho) \Psi_{010}(\eta) \Psi_{000}(\Xi) - \Psi_{000}(\lambda) \Psi_{021}(\rho) \Psi_{011}(\eta) \Psi_{000}(\Xi)]$$

2

メロト メポト メヨト メ

Pentaquark Spatial Wave Function, NLM = 322

Second Set of $\lambda,~\rho$ and η types of [31]:

$$\Psi^{\lambda[31]} = \frac{1}{\sqrt{3}} \left[\sqrt{2} \Psi_{010}(\lambda) \Psi_{000}(\rho) \Psi_{000}(\eta) \Psi_{022}(\xi) - \Psi_{011}(\lambda) \Psi_{000}(\rho) \Psi_{000}(\eta) \Psi_{021}(\xi) \right]$$

$$\Psi^{\rho[31]} = \frac{1}{\sqrt{3}} \left[\sqrt{2} \Psi_{000}(\lambda) \Psi_{010}(\rho) \Psi_{000}(\eta) \Psi_{022}(\xi) - \Psi_{000}(\lambda) \Psi_{011}(\rho) \Psi_{000}(\eta) \Psi_{021}(\xi) \right]$$

$$\Psi^{\eta[31]} = \frac{1}{\sqrt{3}} \left[\sqrt{2} \Psi_{000}(\lambda) \Psi_{000}(\rho) \Psi_{010}(\eta) \Psi_{022}(\xi) - \Psi_{000}(\lambda) \Psi_{000}(\rho) \Psi_{011}(\eta) \Psi_{021}(\xi) \right]$$

æ

イロト イヨト イヨト イ

$$\begin{split} \Psi_{1}^{S} &= \Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{044}(\xi) \\ \Psi_{2}^{S} &= \frac{1}{\sqrt{3}}[\Psi_{022}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{022}(\xi) + \Psi_{000}(\lambda)\Psi_{022}(\rho)\Psi_{000}(\eta)\Psi_{022}(\xi) \\ &+ \Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{002}(\eta)\Psi_{022}(\xi)] \\ \Psi_{3}^{S} &= \sqrt{\frac{1}{17}}[\Psi_{033}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{011}(\xi) - \sqrt{7}\Psi_{011}(\lambda)\Psi_{022}(\rho)\Psi_{000}(\eta)\Psi_{011}(\xi) \\ &+ \sqrt{2}\Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{033}(\eta)\Psi_{011}(\xi) - \sqrt{\frac{7}{2}}\Psi_{022}(\lambda)\Psi_{000}(\rho)\Psi_{011}(\eta)\Psi_{011}(\xi) \\ &- \sqrt{\frac{7}{2}}\Psi_{000}(\lambda)\Psi_{022}(\rho)\Psi_{011}(\eta)\Psi_{011}(\xi)] \\ \Psi_{4}^{S} &= \sqrt{\frac{5}{57}}[\Psi_{044}(\lambda)\Psi_{000}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) + \Psi_{000}(\lambda)\Psi_{044}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) \\ &+ \Psi_{000}(\lambda)\Psi_{000}(\rho)\Psi_{044}(\eta)\Psi_{000}(\xi) + \sqrt{\frac{14}{5}}\Psi_{022}(\lambda)\Psi_{022}(\rho)\Psi_{000}(\eta)\Psi_{000}(\xi) \\ &+ \sqrt{\frac{14}{5}}\Psi_{022}(\lambda)\Psi_{000}(\rho)\Psi_{022}(\eta)\Psi_{000}(\xi) + \sqrt{\frac{14}{5}}\Psi_{000}(\lambda)\Psi_{022}(\rho)\Psi_{022}(\eta)\Psi_{000}(\xi)] \\ &= \sqrt{\frac{14}{5}}\Psi_{022}(\lambda)\Psi_{022}(\mu)\Psi_{$$

Physics (SUT)

Matrix Representations of S_4

• S_4 [211]

$$D^{[211]}(12) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, D^{[211]}(23) = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$D^{[211]}(34) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1/3 & 2\sqrt{2}/3 \\ 0 & 2\sqrt{2}/3 & 1/3 \end{pmatrix}$$

• S₄ [31]

$$D^{[31]}(12) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, D^{[31]}(23) = \begin{pmatrix} -1/2 & \sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$D^{[31]}(34) = \begin{pmatrix} 1/3 & 0 & 2\sqrt{2}/3 \\ 0 & 1 & 0 \\ 2\sqrt{2}/3 & 0 & -1/3 \end{pmatrix}$$

2

・ロト ・回ト ・ヨト ・ヨト

 $q^{3}\ \mathrm{Baryon}\ \mathrm{Excited}\ \mathrm{States}:$

(1) N, L = 1, 1:

$$\Psi_{Singlet}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \Phi_A(\phi_{1m\lambda}^1 \chi_\rho - \phi_{1m\rho}^1 \chi_\lambda), \\
\Psi_{Octet1}^{(q^3)} = \frac{1}{2} \psi_{[111]}^c [\phi_{1m\rho}^1 (\Phi_\lambda \chi_\rho + \Phi_\rho \chi_\lambda) \\
+ \phi_{1m\lambda}^1 (\Phi_\rho \chi_\rho - \Phi_\lambda \chi_\lambda)], \\
\Psi_{Octet2}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \chi_S(\phi_{1m\lambda}^1 \Phi_\lambda + \phi_{1m\rho}^1 \Phi_\rho), \\
\Psi_{Decuplet}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \Phi_S(\phi_{1m\lambda}^1 \chi_\lambda + \phi_{1m\rho}^1 \chi_\rho)$$
(17)

2

・ロト ・回ト ・ヨト ・ヨト

(2) N, L = 2, 0 (spatial part symmetric):

$$\Psi_{Octet}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \phi_{00S}^2 (\Phi_{\rho} \chi_{\rho} + \Phi_{\lambda} \chi_{\lambda}),$$

$$\Psi_{Decuplet}^{(q^3)} = \psi_{[111]}^c \phi_{00S}^2 \Phi_S \chi_S$$
(18)

(3) N, L = 2, 0 (spatial part mixed symmetric):

$$\Psi_{Singlet}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \Phi_A(\phi_{00\lambda}^2 \chi_\rho - \phi_{00\rho}^2 \chi_\lambda), \\
\Psi_{Octet1}^{(q^3)} = \frac{1}{2} \psi_{[111]}^c [\phi_{00\rho}^2 (\Phi_\lambda \chi_\rho + \Phi_\rho \chi_\lambda) \\
+ \phi_{00\lambda}^2 (\Phi_\rho \chi_\rho - \Phi_\lambda \chi_\lambda)], \\
\Psi_{Octet2}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \chi_S(\phi_{00\lambda}^2 \Phi_\lambda + \phi_{00\rho}^2 \Phi_\rho), \\
\Psi_{Decuplet}^{(q^3)} = \frac{1}{\sqrt{2}} \psi_{[111]}^c \Phi_S(\phi_{00\lambda}^2 \chi_\lambda + \phi_{00\rho}^2 \chi_\rho)$$
(19)

æ

メロト メポト メヨト メヨト