Decays of heavy mesons in the framework of covariant quark model

<u>A. Liptaj</u>	Institute of physics, SAS, Bratislava, Slovakia
S. Dubnička	Institute of physics, SAS, Bratislava, Slovakia
A. Z. Dubničková	Faculty of mathematics, physics and informatics, CU, Bratislava, Slovakia
M. A. Ivanov	Bogoliubov Laboratory of Theoretical Physics. JINR. Dubna. Russia

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS IN ERICE, SICILY 37th COURSE

Overview

Motivation

- → New high-luminosity machines, new measurements.
- → New physics?

Covariant quark model for mesons

- → Lagrangian.
- → Compositeness condition.
- → Confinement.

Processes and results

- → $B_s \rightarrow J/\Psi + \eta^{(i)}$.
- $\label{eq:alpha} \bullet \ B \to K^{(\star)} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}, \ B \to K^{(\star)} \overline{\nu} \nu, \ B \to K^{\star} \gamma.$
- → Short mention of other meson, baryons and tetraquark results.

Conclusion

- → Summary.
- → Outlook.

Motivation

• Experiment & theory

- New high-luminosity machines: rare flavor-changing processes observed & measured.
- Some heavy meson (baryon) decays: sensitiveness to hypothetical new heavy particles in Feynman diagrams for many NP scenarios.
- → Increasing experimental information, for $B \rightarrow K^* \mu^+ \mu^-$ (BABAR, Belle, CDF, LHCb) angular distributions measured.
- Standard model confirmed with some tensions ($\sim 3\sigma$).

Covariant quark model

- → Model dependence (form factors) cannot be fully eliminated even with smartly defined observables (asymmetries, ratios) ⇒ CQM.
- Fully relativistic Lagrangian-based approach to hadronic interactions with a non-local quark current definition.
- Standard QFT techniques and limited number of parameters.
- → Nice agreement with experimental data.

Covariant quark model

• Lagrangian (mesons) $L_{int} = g_H \cdot H(x) \cdot J_H(x)$

$$J_M(x) = \int dx_1 \int dx_2 F_M(x, x_1, x_2) \cdot \bar{q}_{f_1}^a(x_1) \Gamma_M q_{f_2}^a(x_2)$$

$$F_H(x, x_1, \dots, x_n) = \delta \left(x - \sum_{i=1}^n w_i x_i \right) \Phi_H \left(\sum_{i < j} ((x_i - x_j)^2) \right)$$

$$w_i = m_i / \sum_{j=1}^n m_j \qquad \bar{\Phi}_H(-k^2) = \exp\left(k^2 / \Lambda_H^2\right)$$

- Free parameters
 - Constituent quark masses [4], hadron-size related parameters [N] and universal cutoff [1] (N+5 in total). Numerical values from fits to data.

In GeV: $m_{u,d} = 0.235$, $m_s = 0.424$, $m_c = 2.16$, $m_b = 5.09$, $\lambda_{cut-off} = 0.181$, $\Lambda_{\pi} = 0.87$, $\Lambda_{\kappa} = 1.04$, ...

Compositeness condition

→ Hadrons are made up of quarks → renormalization constant $Z_{H}^{\frac{1}{2}}$ can be interpreted as the matrix element between the physical state and the corresponding bare state. $Z_{H}^{\frac{1}{2}} = 0 \rightarrow$ physical state does not contain bare state and is properly described as a bound state. Couplings g_{H} are eliminated as free parameters.

[A. Salam, Nuovo Cim. 25, 224 (1962), S. Weinberg, Phys. Rev. 130, 776 (1963)]

$$m Z_{H}=1-rac{3g_{H}^{2}}{4\pi^{2}} \tilde{\Pi}_{H}^{'}\left(m_{H}^{2}
ight)=0$$
 ($\Pi_{_{H}}$ – meson mass operator

Computation techniques & infrared confinement

Feynman graph evaluation

→ General form
$$\Pi(p_1, ..., p_j) = \int [d^4k]^{\ell} \prod_{i_1=1}^m \Phi_{i_1+n} \left(-K_{i_1+n}^2\right) \prod_{i_3=1}^n S_{i_3}(\tilde{k}_{i_3} + \tilde{p}_{i_3})$$
j external momenta
j external momenta
j loop integrations
m vertices
n quark propagators
*k*_i-linear combination of loop momenta k,
*p*_i-linear combination of external momenta p,

Schwinger representation and integration (over loops and Schwinger parameters)

$$\begin{split} \tilde{S}_{q}(k) &= \left(m + \hat{k}\right) \int_{0}^{\infty} d\alpha \ e^{\left[-\alpha \left(m^{2} - k^{2}\right)\right]} \\ &\int d^{4}k \ P(k)e^{2kr} = \int d^{4}k \ P\left(\frac{1}{2}\frac{\partial}{\partial r}\right) e^{2kr} = P\left(\frac{1}{2}\frac{\partial}{\partial r}\right) \int d^{4}k \ e^{2kr} \\ &\int_{0}^{\infty} d^{n}\alpha \ P\left(\frac{1}{2}\frac{\partial}{\partial r}\right) e^{-\frac{r^{2}}{a}} = \int_{0}^{\infty} d^{n}\alpha \ e^{-\frac{r^{2}}{a}} P\left(\frac{1}{2}\frac{\partial}{\partial r} - \frac{r}{a}\right), \ r = r\left(\alpha_{i}\right), \ a = a\left(\Lambda_{H}, \alpha_{i}\right) \\ \bullet \ \text{Infrared cut-off} \\ &\Pi = \int_{0}^{\infty} d^{n}\alpha \ F\left(\alpha_{1}, \cdots, \alpha_{n}\right) = \int_{0}^{\infty} dt \ t^{n-1} \int_{0}^{1} d^{n}\alpha \ \delta\left(1 - \sum_{i=1}^{n} \alpha_{i}\right) F(t\alpha_{1}, \dots, t\alpha_{n}) \end{split}$$

→ П becomes smooth function, thresholds in quark loop diagrams and corresponding branch points removed. Universal value $\lambda_{cut-off} = 0.181$, numerical integration.

Form factors and weak decays

Observables expressed via form factors

 $\left\langle P_{[\bar{q}_{3},q_{2}]}^{\prime}(p_{2}) \left| \bar{q}_{2} O^{\mu} q_{1} \right| P_{[\bar{q}_{3},q_{1}]}^{\prime}(p_{1}) \right\rangle = \mathbf{F}_{+} \left(q^{2} \right) P^{\mu} + \mathbf{F}_{-} \left(q^{2} \right) q^{\mu}$

$$\begin{split} \left\langle P_{\left[\bar{q}_{3},q_{2}\right]}^{\prime}\left(p_{2}\right)\left|\bar{q}_{2}\left(\sigma^{\mu\nu}q_{\nu}\right)q_{1}\right|P_{\left[\bar{q}_{3},q_{1}\right]}^{\prime}\left(p_{1}\right)\right\rangle &=\frac{i}{m_{1}+m_{2}}\left(q^{2}P^{\mu}-q\cdot Pq^{\mu}\right)\mathbf{F_{T}}\left(q^{2}\right)\\ \left\langle V_{\left[\bar{q}_{3},q_{2}\right]}\left(p_{2},\epsilon_{2}\right)\left|\bar{q}_{2}O^{\mu}q_{1}\right|P_{\left[\bar{q}_{3},q_{1}\right]}\left(p_{1}\right)\right\rangle &=\frac{\epsilon_{\nu}^{\dagger}}{m_{1}+m_{2}}\left[-g^{\mu\nu}P\cdot q\mathbf{A_{0}}\left(q^{2}\right)+P^{\mu}P^{\nu}\mathbf{A_{+}}\left(q^{2}\right)\right.\\ \left.\left.+q^{\mu}P^{\nu}\mathbf{A_{-}}\left(q^{2}\right)+i\varepsilon^{\mu\nu\alpha\beta}P_{\alpha}q_{\beta}\mathbf{V}\left(q^{2}\right)\right]\right]\\ \left\langle V_{\left[\bar{q}_{3},q_{2}\right]}\left(p_{2},\epsilon_{2}\right)\left|\bar{q}_{2}\left[\sigma^{\mu\nu}q_{\nu}\left(1+\gamma^{5}\right)\right]q_{1}\right|P_{\left[\bar{q}_{3},q_{1}\right]}\left(p_{1}\right)\right\rangle &=\epsilon_{\nu}^{\dagger}\left[-\left(g^{\mu\nu}-\frac{q_{\mu}q_{\nu}}{q^{2}}\right)P\cdot q\mathbf{a}_{0}\left(q^{2}\right)\right.\\ \left.+\left(P^{\mu}P^{\nu}-q^{\mu}P^{\nu}\frac{p\cdot q}{q^{2}}\right)\mathbf{a}_{+}\left(q^{2}\right)+i\varepsilon^{\mu\nu\alpha\beta}P_{\alpha}q_{\beta}\mathbf{g}\left(q^{2}\right)\right] \end{split}$$

Flavor transitions

- → Effective theory (Wilson coefficients) used to describe quark flavor transition
- Factorization: convolution of form factor and expression proportional to decay constant

 $B_s \rightarrow J/\psi + \eta^{(')}$

•
$$B_{\gamma} \rightarrow J/\psi + \eta$$
 and $B_{\gamma} \rightarrow J/\psi + \eta'$:

- → Measured by Belle [PRL 108, 181808 (2012)] and LHCb [Nucl. Phys. B867 (2013)547]
- ➤ Light-strange quark mixing

$$B_{\rm S}^0: \, {\rm s}\bar{{\rm b}} \qquad \eta: \, \frac{1}{\sqrt{2}} \sin\delta({\rm u}\bar{{\rm u}} + {\rm d}\bar{{\rm d}}) - \cos\delta({\rm s}\bar{{\rm s}}) \qquad \eta'$$

':
$$\frac{1}{\sqrt{2}}\cos\delta(u\bar{u}+d\bar{d})+\sin\delta(s\bar{s})$$

$$\mathcal{L}_{\eta}\left(\mathbf{x}\right) = g_{\eta}\eta\left(\mathbf{x}\right) \iint d\mathbf{x}_{1}d\mathbf{x}_{2}\delta\left(\mathbf{x} - \frac{1}{2}\mathbf{x}_{1} - \frac{1}{2}\mathbf{x}_{2}\right)\phi_{\eta}\left[\left(\mathbf{x}_{1} - \mathbf{x}_{2}\right)^{2}\right] \\ \times \left\{\frac{1}{\sqrt{2}}\cos\left(\delta\right)\left[\bar{\mathbf{u}}\left(\mathbf{x}_{1}\right)i\gamma^{5}\mathbf{u}\left(\mathbf{x}_{2}\right) + \bar{\mathbf{d}}\left(\mathbf{x}_{1}\right)i\gamma^{5}\mathbf{d}\left(\mathbf{x}_{2}\right)\right] - \sin\left(\delta\right)\left[\bar{\mathbf{s}}\left(\mathbf{x}_{1}\right)i\gamma^{5}\mathbf{s}\left(\mathbf{x}_{2}\right)\right]\right\}$$

$$\mathcal{L}_{eff} = \frac{G_{F}}{\sqrt{2}} V_{cb} V_{cs}^{*} \sum_{i} C_{i} Q_{i} \qquad Q_{1} = (\bar{c}_{a_{1}} b_{a_{2}})_{V-A} (\bar{s}_{a_{2}} c_{a_{1}})_{V-A} \qquad Q_{2} = \dots$$
$$(\bar{\psi}\psi)_{V-A} = \bar{\psi}O^{\mu}\psi, \ O^{\mu} = \gamma^{\mu} (1-\gamma^{5}) \qquad (\bar{\psi}\psi)_{V+A} = \bar{\psi}O^{\mu}_{+}\psi, \ O^{\mu}_{+} = \gamma^{\mu} (1+\gamma^{5})$$

$$B_s \rightarrow J/\psi + \eta^{(')}$$

Model over-constrained

$$\begin{array}{lll} \eta \to \gamma \gamma & \eta' \to \gamma \gamma & \rho \to \eta \gamma & \varphi \to \eta \gamma & \varphi \to \eta' \gamma \\ \mathrm{B}_{\mathrm{d}} \to \mathrm{J}/\psi \ \eta & \mathrm{B}_{\mathrm{d}} \to \mathrm{J}/\psi \ \eta' & \omega \to \eta \gamma & \eta' \to \omega \gamma \end{array}$$

◆ Results (x10⁻⁴)

$$\begin{aligned} \mathcal{B}_{\text{CQM}} \left(J/\psi \ \eta \right) &= 4.67 \\ \mathcal{B}_{\text{Belle}} \left(J/\psi \ \eta \right) &= 5.10 \pm 1.12 \end{aligned} \qquad \begin{aligned} R &= \frac{\Gamma(J/\psi + \eta')}{\Gamma(J/\psi + \eta)} = \begin{cases} 0.73 \pm 0.14 \pm 0.02 & \text{Belle} \\ 0.90 \pm 0.09^{+0.06}_{-0.02} & \text{LHCb} \end{cases} \\ \mathcal{B}_{\text{CQM}} \left(J/\psi \ \eta' \right) &= 4.04 \\ \mathcal{B}_{\text{Belle}} \left(J/\psi \ \eta' \right) &= 3.71 \pm 0.95 \end{aligned} \qquad \begin{aligned} R^{\text{theor}} &= \underbrace{\frac{|\mathbf{q}_{\eta'}|^3}{|\mathbf{q}_{\eta}|^3} \tan^2 \delta}_{\approx 1.04} \times \underbrace{\left(\frac{F_+^{B_s \eta'}}{F_+^{B_s \eta}} \right)^2}_{\approx 0.83} \approx 0.86. \end{aligned}$$

 ${\bf q}$ - momentum of the outgoing particles in the rest frame of the decaying particle.

[S. Dubnička, A. Z. Dubničková, M. A. Ivanov and A. Liptaj Phys. Rev. D 87, 074201 (2013)]

$B \to K^{(*)}\bar{I}I$

Erice school of nuclear physics, on 22/9/15 A. Liptaj: Heavy hadron decays in Covariant Quark Model

Kinematics

Amplitude calculation

- Helicity basis hadronic and leptonic tensor evaluated in different frames
- Hadronic tensor parametrized through form factors

$$\begin{split} L^{(k)}(m,n) &= \epsilon^{\mu}(m) \epsilon^{\dagger\nu}(n) L^{(k)}_{\mu\nu} \\ H^{ij}(m,n) &= \epsilon^{\dagger\mu}(m) \epsilon^{\nu}(n) H^{ij}_{\mu\nu} \\ H^{ij}(m,n) &= H^{i}(m) H^{\dagger j}(n) \end{split}$$

.....

• scalar (K)

$$H^{i}(t) = \frac{1}{\sqrt{q^{2}}} \left[Pq\mathcal{F}_{+}^{i} + q^{2}\mathcal{F}_{-}^{i} \right]$$

 $H^{i}(\pm) = 0$
 $H^{i}(0) = \frac{1}{m_{1} + m_{2}} \frac{1}{2m_{2}\sqrt{q^{2}}}$

• vector (K*)
$$H^{i}(t) = \frac{1}{m_{1} + m_{2}} \frac{m_{1}}{m_{2}} \frac{|\mathbf{p}_{2}|}{\sqrt{q^{2}}} \left[Pq(-A_{0}^{i} + A_{+}^{i}) + q^{2}A_{-}^{i} \right]$$

$$H^{i}(\pm) = \frac{1}{m_{1} + m_{2}} \left(-PqA_{0}^{i} \pm 2m_{1} |\mathbf{p_{2}}|V^{i} \right)$$

$$H^{i}(0) = \frac{1}{m_{1} + m_{2}} \frac{1}{2m_{2}\sqrt{q^{2}}} \times \left[-Pq(m_{1}^{2} - m_{2}^{2} - q^{2})A_{0}^{i} + 4m_{1}^{2}|\mathbf{p}_{2}|^{2}A_{+}^{i}\right]$$

Erice school of nuclear physics, on 22/9/15

Full differential distribution $B \rightarrow K^* (\rightarrow K\pi) \mu^+ \mu^-$

$$\begin{split} \frac{d\Gamma(B \to K^* (\to K\pi)\bar{\mu}\mu)}{dq^2 d(\cos\theta) (d\chi/2\pi) d(\cos\theta^*)} &= \operatorname{Br}(K^* \to K\pi) \times \left\{ \frac{3}{8} \left(1 + \cos^2\theta \right) \cdot \frac{3}{4} \sin^2\theta^* \cdot \frac{1}{2} \left(\frac{d\Gamma_{U_{11}}}{dq^2} + \frac{d\Gamma_{U_{22}}}{dq^2} \right) \right. \\ &+ \frac{3}{4} \sin^2\theta \cdot \frac{3}{2} \cos^2\theta^* \cdot \frac{1}{2} \left(\frac{d\Gamma_{L_{11}}}{dq^2} + \frac{d\Gamma_{L_{22}}}{dq^2} \right) - \frac{3}{4} \sin^2\theta \cdot \cos 2\chi \cdot \frac{3}{4} \sin^2\theta^* \cdot \frac{1}{2} \left(\frac{d\Gamma_{I_{11}}}{dq^2} + \frac{d\Gamma_{I_{22}}}{dq^2} \right) \right. \\ &- \frac{9}{16} \sin 2\theta \cdot \cos \chi \cdot \sin 2\theta^* \cdot \frac{1}{2} \left(\frac{d\Gamma_{A_{12}}}{dq^2} + \frac{d\Gamma_{A_{22}}}{dq^2} \right) + v \cdot \left[-\frac{3}{4} \cos\theta \cdot \frac{3}{4} \sin^2\theta^* \cdot \frac{d\Gamma_{P_{12}}}{dq^2} \right. \\ &+ \frac{9}{8} \sin\theta \cdot \cos\chi \cdot \sin 2\theta^* \cdot \frac{1}{2} \left(\frac{d\Gamma_{A_{12}}}{dq^2} + \frac{d\Gamma_{A_{21}}}{dq^2} \right) - \frac{9}{16} \sin\theta \cdot \sin\chi \cdot \sin 2\theta^* \cdot \left(\frac{d\Gamma_{I_{12}}}{dq^2} + \frac{d\Gamma_{I_{22}}}{dq^2} \right) \right] \\ &+ \frac{9}{32} \sin 2\theta \cdot \sin\chi \cdot \sin 2\theta^* \cdot \left(\frac{d\Gamma_{A_{11}}}{dq^2} + \frac{d\Gamma_{A_{22}}}{dq^2} \right) - \frac{9}{16} \sin\theta \cdot \sin2\chi \cdot \sin^2\theta^* \cdot \left(\frac{d\Gamma_{I_{12}}}{dq^2} + \frac{d\Gamma_{I_{22}}}{dq^2} \right) \right] \\ &+ \frac{3}{4} \sin^2\theta \cdot \frac{3}{4} \sin^2\theta^* \cdot \frac{1}{2} \cdot \frac{d\bar{\Gamma}_{U_{11}}}{dq^2} - \frac{3}{8} \left(1 + \cos^2\theta \right) \cdot \frac{3}{4} \sin^2\theta^* \cdot \frac{d\bar{\Gamma}_{U_{22}}}{dq^2} \\ &+ \frac{3}{4} \sin^2\theta \cdot \cos2\chi \cdot \frac{3}{4} \sin^2\theta^* \cdot \left(\frac{d\bar{\Gamma}_{I_{11}}}{dq^2} - \frac{3}{4} \sin^2\theta \cdot \frac{3}{2} \cos^2\theta^* \cdot \frac{d\bar{\Gamma}_{U_{22}}}{dq^2} \right) \\ &+ \frac{3}{4} \sin^2\theta \cdot \cos2\chi \cdot \frac{3}{4} \sin^2\theta^* \cdot \left(\frac{d\bar{\Gamma}_{I_{11}}}{dq^2} - \frac{3}{4} \sin^2\theta \cdot \frac{3}{2} \cos^2\theta^* \cdot \frac{d\bar{\Gamma}_{L_{22}}}{dq^2} \right) \\ &+ \frac{3}{2} \cos^2\theta^* \cdot \frac{1}{4} \frac{d\bar{\Gamma}_{S_{22}}}{dq^2} - \frac{9}{16} \sin^2\theta \cdot \sin\chi \cdot \sin2\theta^* \cdot \left(\frac{d\Gamma_{I_{11}}}{dq^2} + \frac{d\bar{\Gamma}_{I_{22}}}{dq^2} \right) \\ &+ \frac{3}{2} \cos^2\theta^* \cdot \frac{1}{4} \frac{d\bar{\Gamma}_{S_{22}}}{dq^2} - \frac{9}{16} \sin^2\theta \cdot \sin\chi \cdot \sin2\theta^* \cdot \left(\frac{d\Gamma_{I_{11}}}{dq^2} + \frac{d\Gamma_{I_{22}}}{dq^2} \right) \\ &- \frac{9}{16} \sin^2\theta \cdot \sin2\chi \cdot \sin^2\theta^* \cdot \left(\frac{d\Gamma_{I_{11}}}}{dq^2} + \frac{d\Gamma_{I_{22}}}{dq^2} \right) \right\} \\ \\ \frac{d\tilde{\Gamma}_X^{ij}}{dq^2} &= \frac{2m_\mu^2}{q^2} \frac{d\Gamma_X^{ij}}{dq^2} \quad \frac{d\Gamma_X^{ij}}{dq^2} = \frac{G_F^2}{(2\pi)^3} \left(\frac{\alpha|\lambda_t|}{2\pi} \right)^2 \frac{|\mathbf{P}_2|q^2v}{12m_1^2} H_X^{ij} \\ H_X^{ij} \to \text{Bilinear combination of H^i} \end{aligned}$$

Observables

Searching for

- Small model dependence (on hadronic physics, form factors).
- → Sensitivity to new physics (at short distance).
- → Experimental accessibility (clear signature, high cross-section, small backgrounds).
- ➤ Ratios, asymmetries, asymmetry ratios...

• Chosen observables ($B \rightarrow K^* \mu^* \mu^-$)

Separate integration (numerator/denominator) over relevant q² range (bin size).

$$\frac{d\Gamma}{dq^2} = \frac{1}{2} \left(\frac{d\Gamma_U^{11}}{dq^2} + \frac{d\Gamma_U^{22}}{dq^2} + \frac{d\Gamma_L^{11}}{dq^2} + \frac{d\Gamma_L^{22}}{dq^2} \right) + \frac{1}{2} \frac{d\tilde{\Gamma}_U^{11}}{dq^2} - \frac{d\tilde{\Gamma}_U^{22}}{dq^2} + \frac{1}{2} \frac{d\tilde{\Gamma}_L^{11}}{dq^2} - \frac{d\tilde{\Gamma}_L^{22}}{dq^2} + \frac{3}{2} \frac{d\tilde{\Gamma}_S^{22}}{dq^2}$$

$$F_L = \frac{\int dq^2 \quad H_L^{11} + H_L^{22}}{\int dq^2 \quad H_L^{11} + H_L^{22} + H_U^{11} + H_U^{22}} \qquad A_{FB} = -\frac{3}{2} \frac{\int dq^2 \quad H_P^{12}}{\int dq^2 \quad H_L^{11} + H_L^{22} + H_U^{11} + H_U^{22}}$$

$$P_{1} = -2\frac{\int dq^{2} \quad \beta_{l}^{2}[dT^{11} + dT^{22}]}{\int dq^{2} \quad \beta_{l}^{2}[dU^{11} + dU^{22}]} \qquad P_{2} = -\frac{\int dq^{2} \quad \beta_{l}dP^{12}}{\int dq^{2} \quad \beta_{l}^{2}[dU^{11} + dU^{22}]} \qquad P_{3} = -\frac{\int dq^{2} \quad \beta_{l}^{2}[dT^{11} + dT^{22}]}{\int dq^{2} \quad \beta_{l}^{2}[dU^{11} + dU^{22}]} \qquad P_{3} = -\frac{\int dq^{2} \quad \beta_{l}^{2}[dT^{11} + dT^{22}]}{\int dq^{2} \quad \beta_{l}^{2}[dU^{11} + dU^{22}]}$$

$$P_4' = 2\frac{\int dq^2 \quad \beta_l^2 [dI^{11} + dI^{22}]}{N} \qquad P_5' = -2\frac{\int dq^2 \quad \beta_l [dA^{12} + dA^{21}]}{N} \quad P_8 = 2\frac{\int dq^2 \quad \beta_l^2 [dIA^{11} + dIA^{22}]}{N}$$

$$dX^{ij} = \frac{d\Gamma_X^{ij}}{dq^2} \qquad \qquad N = \sqrt{\int dq^2 \beta_l^2 [dU^{11} + dU^{22}]} \cdot \int dq^2 \beta_l^2 [dL^{11} + dL^{22}]} \qquad \qquad \beta_l = \sqrt{\frac{1 - 4m_\mu^2}{q^2}}$$

Erice school of nuclear physics, on 22/9/15 A. Liptaj: Heavy hadron decays in Covariant Quark Model

Results

• Branching fractions

		\mathbf{CQM}	Data [PDG]	
$\mathcal{B}\left[B\rightarrow\right.$	$K^*\mu^+\mu^-$]	1.27×10^{-6}	$(1.05 \pm 0.10) \times 10^{-6}$	
$\mathcal{B}\left[B\rightarrow\right.$	$K\mu^+\mu^-$]	7.18×10^{-7}	$(3.4 \pm 0.5) \times 10^{-7}$	A _{FB}
$\mathcal{B}\left[B\rightarrow\right.$	$K^* u ar{ u}]$	1.36×10^{-5}	$< 5.5 \times 10^{-5}$	0.2
$\mathcal{B}\left[B\rightarrow\right.$	$K \nu \bar{\nu}]$	0.60×10^{-5}	$< 4.9 \times 10^{-5}$	0.1
$\mathcal{B}\left[B\rightarrow\right.$	$K^*\gamma]$	3.74×10^{-5}	$(4.21 \pm 0.18) \times 10^{-5}$	$\frac{1}{5}$ $\frac{10}{15}$ $\alpha^2 [GeV^2]$
• A_{FB} ar	nd F _L		[HFAG coll.]	
in the	$1 \mathrm{GeV}^2 < \mathrm{q}^2$	2 < 6 GeV ² reg	ion (B → $K^*\mu^+\mu^-$ only)	1 12
	$\langle A_{FB}$	\rangle	$\langle F_L \rangle$	$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_1 da^2} =$
[1]	$0.26\substack{+0.27 \\ -0.30}$	± 0.07 0.6	$7\pm0.23\pm0.05$	$\frac{3}{5}$
[2]	$-0.06^{+0.13}_{-0.14}$	± 0.04 0.5	$5\pm0.10\pm0.03$	$= -\frac{1}{4}F_L(1 - \cos^2\theta_l)$
[3]	$0.29^{+0.20}_{-0.23}$:	± 0.07 0.6	$9^{+0.19}_{-0.21} \pm 0.08$	$+rac{3}{8}(1-F_L)(1+cos^2 heta_l)$
CQM	0.022		0.75	$+A_{FB}cos\theta_l$

[1] Belle Coll., Phys. Rev. Lett. 103, 171801 (2009)[2] LHCb Coll., Phys. Rev. Lett. 108, 181806 (2012)[3] CDF Coll., Phys. Rev. Lett. 108, 081807 (2012)[4] S. Descotes-Genon *et al.*, JHEP 1305, 137 (2013)

Binned results

			F_L		
Bin (GeV^2)	[1]	[2]	[3]	[4]	CQM
1.00 - 2.00	-	-	-	$0.605^{+0.179+0.021}_{-0.229-0.024}$	0.782623
0.00 - 2.00	$0.29^{+0.21}_{-0.18} \pm 0.02$	$0.00 \ ^{+0.13}_{-0.00} \pm 0.02$	$0.30^{+0.16}_{-0.16} \pm 0.02$	$0.323^{+0.198+0.019}_{-0.178-0.020}$	0.53665
2.00 - 4.30	$0.71^{+0.24}_{-0.24} \pm 0.05$	$0.77 \pm 0.15 \pm 0.03$	$0.37^{+0.25}_{-0.24} \pm 0.10$	$0.754_{-0.198-0.018}^{+0.128+0.015}$	0.790552
4.30 - 8.68	$0.64^{+0.23}_{-0.24}\pm 0.07$	$0.60 \ ^{+0.06}_{-0.07} \pm 0.01$	$0.68^{+0.15}_{-0.17} \pm 0.09$	$0.634^{+0.175+0.022}_{-0.216-0.022}$	0.602306
10.09 - 12.89	$0.17^{+0.17}_{-0.15} \pm 0.03$	$0.41 \pm 0.11 \pm 0.03$	$0.47^{+0.14}_{-0.14} \pm 0.03$	$0.482^{+0.163+0.014}_{-0.208-0.013}$	0.424467
14.18 - 16.00	$-0.15^{+0.27}_{-0.23}\pm0.07$	$0.37 \pm 0.09 \pm 0.05$	$0.29^{+0.14}_{-0.13} \pm 0.05$	$0.396^{+0.141+0.004}_{-0.241-0.004}$	0.359567
>16.00	$0.12^{+0.15}_{-0.13} \pm 0.02$	$0.26 \ ^{+0.10}_{-0.08} \ \pm \ 0.03$	$0.20^{+0.19}_{-0.17} \pm 0.05$	$0.357^{+0.074+0.003}_{-0.133-0.003}$	0.338756
1.00 - 6.00	$0.67^{+0.23}_{-0.23} \pm 0.05$	$0.55 \pm 0.10 \pm 0.03$	$0.69^{+0.19}_{-0.21} \pm 0.08$	$0.703^{+0.149+0.017}_{-0.212-0.019}$	0.747141
			A_{FB}		
1.00 - 2.00	-	-	-	$-0.212^{+0.11+0.014}_{-0.144-0.015}$	-0.146603
0.00 - 2.00	$0.47^{+0.26}_{-0.32}\pm0.03$	$-0.15 \pm 0.20 \pm 0.06$	$-0.35^{+0.26}_{-0.23} \pm 0.10$	$-0.136^{+0.048+0.016}_{-0.045-0.016}$	-0.122687
2.00 - 4.30	$0.37^{+0.25}_{-0.24} \pm 0.10$	$0.05 \ ^{+0.16}_{-0.20} \pm 0.04$	$0.29^{+0.32}_{-0.35} \pm 0.15$	$-0.081^{+0.054+0.008}_{-0.068-0.009}$	-0.00593019
4.30 - 8.68	$0.45^{+0.15}_{-0.21}\pm0.15$	$0.27 \ ^{+0.06}_{-0.08} \pm 0.02$	$0.01^{+0.20}_{-0.20} \pm 0.09$	$0.220^{+0.138+0.014}_{-0.112-0.016}$	0.219059
10.09 - 12.89	$0.43^{+0.18}_{-0.20}\pm0.03$	$0.27 \ ^{+0.11}_{-0.13} \pm 0.02$	$0.38^{+0.16}_{-0.19} \pm 0.09$	$0.371_{-0.164-0.011}^{+0.150+0.010}$	0.356071
14.18 - 16.00	$0.70^{+0.16}_{-0.22} \pm 0.10$	$0.47 \ ^{+0.06}_{-0.08} \pm 0.03$	$0.44^{+0.18}_{-0.21} \pm 0.10$	$0.404^{+0.199+0.005}_{-0.191-0.005}$	0.362603
>16.00	$0.66^{+0.11}_{-0.16} \pm 0.04$	$0.16 \ ^{+0.11}_{-0.13} \pm 0.06$	$0.65^{+0.17}_{-0.18} \pm 0.16$	$0.360^{+0.205+0.004}_{-0.172-0.005}$	0.293887
1.00 - 6.00	$0.26^{+0.27}_{-0.30} \pm 0.07$	$-0.06 \ ^{+0.13}_{-0.14} \pm 0.04$	$0.29^{+0.20}_{-0.23} \pm 0.07$	$-0.035^{+0.036+0.008}_{-0.033-0.009}$	0.0222029
			${\cal B}(10^{-7})$		
1.00 - 2.00	-	-	-	$0.437^{+0.345+0.026}_{-0.148-0.023}$	0.510043
0.00 - 2.00	$1.46^{+0.40}_{-0.35}\pm0.11$	$0.61 \pm 0.12 \pm 0.06$	-	$1.446^{+1.537+0.057}_{-0.561-0.054}$	1.39569
2.00 - 4.30	$0.86^{+0.31}_{-0.27} \pm 0.07$	$0.34 \pm 0.09 \pm 0.02$	-	$0.904^{+0.664+0.061}_{-0.314-0.055}$	1.12945
4.30 - 8.68	$1.37^{+0.47}_{-0.42} \pm 0.39$	$0.69 \pm 0.08 \pm 0.05$	-	$2.674_{-0.973-0.145}^{+2.326+0.156}$	2.66943
10.09 - 12.89	$2.24^{+0.44}_{-0.40}\pm 0.19$	$0.55 \pm 0.09 \pm 0.07$	-	$2.344^{+2.814+0.069}_{-1.100-0.063}$	2.1427
14.18 - 16.00	$1.05^{+0.29}_{-0.26} \pm 0.08$	$0.63 \pm 0.11 \pm 0.05$	-	$1.290^{+2.122+0.013}_{-0.815-0.013}$	1.38883
> 16.00	$2.04^{+0.27}_{-0.24}\pm 0.16$	$0.50 \pm 0.08 \pm 0.05$	-	$1.450^{+2.333+0.015}_{-0.922-0.015}$	1.71453
1.00 - 6.00	$1.49^{+0.45}_{-0.40} \pm 0.12$	$0.42 \pm 0.06 \pm 0.03$	-	$2.155^{+1.646+0.138}_{-0.742-0.123}$	2.58066

Binned results

Bin (GeV^2)	$\langle P_1 \rangle$ [4]	$\langle P_1 \rangle$ CQM	$\langle P_2 \rangle [4]$	$\langle P_2 \rangle$ CQM
	(-/ ()	, - <i>i</i> -	· -/ · · J	(=/ C
1 - 2	$0.007^{+0.008+0.054}_{-0.005-0.051}$	-0.0115773	$0.399^{+0.022+0.006}_{-0.022}$	0.46981
0.1 - 2	$0.007^{+0.007+0.043}_{-0.001+0.044}$	0.0108792	$0.172^{+0.009+0.018}_{-0.009+0.018}$	0.219029
2.00 - 4.30	$-0.051^{+0.010+0.045}_{-0.021}$	-0.266563	$0.234^{+0.058+0.015}_{-0.015}$	0.0192036
4.30-8.68	$-0.117^{+0.002+0.056}$	-0.372456	$-0.407^{+0.048+0.008}$	-0.369719
10.09-12.89	$-0.181^{+0.278+0.032}$	-0.470412	$-0.481^{+0.037-0.006}$	-0.413794
14 18-16 00	$-0.352^{+0.696+0.014}$	-0.614669	$-0.449^{+0.136+0.004}$	-0.37829
16.00-19	$-0.603^{+0.589+0.009}$	-0.777736	$-0.374^{+0.151+0.004}$	-0.296817
1.00-6.00	$-0.055^{+0.009+0.040}$	-0.26338	$0.074_{-0.126-0.004}$ $0.084^{+0.057+0.019}$	-0.0596227
1.00 0.00	$0.000_{-0.008-0.042}$	0.20000	$0.004_{-0.076-0.019}$	0.0050221
Bin (GeV^2)	$\langle P_3 \rangle$ [4]	$\langle P_3 \rangle$ COM	$\langle P_4' \rangle$ [4]	$\langle P_4' \rangle$ COM
	(- 3/ [-]	(- 3/ 0 4)	\-4/[-]	(- 4/
1-2	$-0.003^{+0.001+0.027}_{-0.002}$	0.00435836	$-0.160^{+0.040+0.013}_{-0.021}$	0.141964
0.1-2	$-0.002^{+0.001+0.02}_{-0.001}$	0.00159832	$-0.342^{+0.026+0.018}_{-0.012}$	-0.153449
2.00 - 4.30	$-0.004^{+0.001+0.022}$	0.00454996	$0.569^{+0.070+0.020}_{-0.019}$	0.892132
4.30-8.68	$-0.001^{+0.003-0.022}_{-0.021}$	0.00224737	$1.003^{+0.014+0.024}_{-0.015}$	1.13376
10.09-12.89	$0.003^{+0.001-0.027}_{-0.001-0.014}$	0.00151139	$1.080 \pm 0.015 \pm 0.029$ $1.082 \pm 0.140 \pm 0.014$	1 20871
14.18–16.00	$0.000 \pm 0.001 \pm 0.015$ $0.004 \pm 0.000 \pm 0.002$	0.00101528	$1.161^{+0.190+0.007}_{-0.007}$	1.26991
16.00-19	$0.003^{+0.001-0.002}_{-0.001}$	0.00068909	$1.263^{+0.119+0.004}_{-0.004}$	1.33254
1.00-6.00	$-0.003^{+0.001+0.020}_{-0.001+0.020}$	0.00355465	$0.555^{+0.065+0.018}_{-0.018}$	0.832529
1.00 0.00	-0.002 - 0.022	0.000000100	-0.055 - 0.019	0.002020
Bin (GeV^2)	$\langle P_5' \rangle [4]$	$\langle P_5' \rangle$ CQM	$\langle P_8 \rangle$	$\langle P_8 \rangle$ CQM
	10/11	(0/	()	(0/ •
1-2	$0.387^{+0.047+0.014}_{-0.063-0.015}$	0.258474	-	-0.0388866
0.1 - 2	$0.533^{+0.028+0.017}_{-0.036-0.020}$	0.495414	-	-0.0327505
2.00 - 4.30	$-0.334_{-0.111-0.019}^{+0.095+0.02}$	-0.423802	-	-0.025576
4.30 - 8.68	$-0.872^{+0.043+0.03}_{-0.029-0.029}$	-0.704599	-	-0.0113325
10.09 - 12.89	$-0.893^{+0.223}_{-0.110}^{+0.023}_{-0.017}$	-0.697185	-	-0.00595051
14.18 - 16.00	$-0.779_{-0.363-0.000}^{+0.328+0.010}$	-0.600105	-	-0.00285195
16.00 - 19	$-0.601^{+0.282+0.008}_{-0.367-0.007}$	-0.449369	-	-0.0014646
1.00 - 6.00	$-0.349^{+0.086+0.019}_{-0.098-0.017}$	-0.394563	-	-0.0228404
	0.000 0.011			

Erice school of nuclear physics, on 22/9/15 A. Liptaj: Heavy hadron decays in Covariant Quark Model

Other meson-related results

• **B** nonleptonic decays

→ Branching ratios (%) [M. A. Ivanov, et. al., Phys. Rev., D85:034004, 2012.]

Process	CQM	PDG
$B_s \to D_s^- D_s^+$	1.65	$1.04\substack{+0.29\\-0.26}$
$B_s \to D_s^- D_s^{*+} + D_s^{*-} D_s^+$	2.40	2.8 ± 1.0
$B_s \rightarrow D_s^{*-} D_s^{*+}$	3.18	3.1 ± 1.4
$B_s \to J/\psi\phi$	0.16	0.14 ± 0.05

Summary of selected baryon and tetraquark results

Lagrangians

$$J_{B}(x) = \int dx_{1} \int dx_{2} \int dx_{3} F_{B}(x, x_{1}, x_{2}, x_{3}) \times \Gamma_{1} q_{f_{1}}^{a_{1}}(x_{1}) \left(q_{f_{2}}^{a_{2}}(x_{2})C \Gamma_{2} q_{f_{3}}^{a_{3}}(x_{3})\right) \cdot \varepsilon^{a_{1}a_{2}a_{3}}$$

$$J_{T}(x) = \int dx_{1} \dots \int dx_{4} F_{T}(x, x_{1}, \dots, x_{4}) \times \left(q_{f_{1}}^{a_{1}}(x_{1}) C \Gamma_{1} q_{f_{2}}^{a_{2}}(x_{2})\right) \cdot \left(\bar{q}_{f_{3}}^{a_{3}}(x_{3}) \Gamma_{2}C \bar{q}_{f_{4}}^{a_{4}}(x_{4})\right) \cdot \varepsilon^{a_{1}a_{2}c} \varepsilon^{a_{3}a_{4}c}$$
arvons

Quantity

Barvons

Nucleons

[T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 87, 074031 (2013)]

→ Rare baryon decays $\Lambda_{h} \rightarrow \Lambda \ell^{+} \ell^{-}$ $B(\Lambda_{h} \rightarrow \Lambda \mu^{+} \mu^{-}) = 1.0 \times 10^{-6}$ CDF (1.73±0.69)×10⁻⁶ LHCb (0.96±0.25)×10⁻⁶

[T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, P. Santorelli, Phys. Rev. D 87 074031 (2013)]

Tetraquark X(3872)

Molecule interpretation

CQM 2.962.793 μ_n (in n.m.) -1.83 -1.913 μ_n (in n.m.) $r^{\overline{p}}$ (fm)0.805 0.8768 ± 0.0069 $< r_E^2 >^n (\text{fm}^2)$ -0.121 -0.1161 ± 0.0022 r_M^p (fm) 0.688 $0.777 \pm 0.013 \pm 0.010$ $0.862^{+0.009}_{-0.008}$ r_M^n (fm) 0.685

$$\frac{\Gamma(X_l \to \gamma J/\psi)}{\Gamma(X_l \to J/\psi + \pi\pi)}\Big|_{\rm CQM} = 0.15 \pm 0.03$$

PDG

$$\frac{\Gamma(X \to \gamma J/\psi)}{\Gamma(X \to 2\pi)} = \begin{cases} 0.14 \pm 0.05 & \text{Belle} \\ 0.22 \pm 0.06 & \text{BaBar} \end{cases}$$

[M. A. Ivanov et. al., Phys. Rev. D 84, 014006 (2011)] [S. Dubnička, A. Z. Dubničková, M. A. Ivanov and J. G. Körner, Phys. Rev. D 81, 114007 (2010)]

Conclusion

Summary

- → Heavy particle decays: active field with discovery potential, data quantity increasing.
- → Effort to minimize hadronic uncertainty by a clever choice of observables.
- → Yet, hadronic effect cannot be fully removed \Rightarrow CQM.
- CQM relativistic, Lagrangian-based with limited number of free parameters, well suited for heavy hadron decays.
- → Model results roughly agree with experimental data.

Outlook

- → Further processes can be evaluated and agreement with the SM checked.
 - $[B \to \mu^+ \mu^-, B^0_s \to K^0_S K^* (892)^0]$

Thank for your attention!