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Outline

Stochastic Quantization

NSPT
I Fermion contribution

Applications:
I Application: computation of critical mass with improved clover action.
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Stochastic Quantization

G. Parisi & Y.S. Wu, “Perturbation Theory without Gauge fixing” (1981).

Consider φ(x)

in Euclidean space-time
φ(x)←→ φ(x; t)

t is a fictitious time called “stochastic time”.

To get the equilibrium we evolve the fields (configurations) according to
Langevin equation

∂φ(x, t)
∂t

= − δS[φ]

δφ(x, t)
+ η(x, t)

where η(x, t) is a random noise s.t.

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t − t′)
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Stochastic Quantization

Solved the Langevin equation at some initial condition, the observables of
interest are obtained by means correlation functions

〈φ(x1, t1) . . . φ(xn, tn)〉η =∫
D[η] e−

1
4

∫
dx′ dt′ η2(x′,t′)φ(x1, t1) . . . φ(xn, tn)

The main assertion of stochastic quantization is

lim
t→∞
〈φ(x1, t) . . . φ(xn, t)〉η = 〈φ(x1) . . . φ(xn)〉
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Numerical Stochastic Perturbation Theory

F. Di Renzo, L. Scorzato, “Numerical Stochastic Perturbation Theory for full QCD” (2004).

Consider Lattice Gauge Theory and try to apply Stochastic Quantization to
the gauge fields

Uxµ −→ Uxµ(t; η)

put them into Langevin equation with i.c. Uxµ(0) = 1

∂Uxµ(t, η)

∂t
= [i∇xµS[U]− iηxµ(t)] Uxµ(t, η)

the stochastic time can be discretized t = nε. The solution can be found as

Uxµ(n + 1, η) = eFxµ[U,η]Uxµ(n, η)
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Numerical Stochastic Perturbation Theory

By expanding the link in a power series

Uxµ → 1 +
∑
k>0

gkU(k)
xµ

one gets a system of equations that can be truncated at any give order.
In fact U(k) only depends on fields of equal or lower perturbative order.

Then we convert differential equations into integral ones and perform the
integration numerically in a perturbative MonteCarlo simulation.
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Numerical Stochastic Perturbation Theory: Quark contributions

How to include quark contributions?

∇xµS −→ ∇xµSG +∇xµSeff

The Langevin equation receives a contribution

Tr
[
∇xµ(M)M−1]

The trace can be stochastically evaluated inserting a gaussian source ξ s.t.
〈ξiξj〉 = δij:

Tr
[
∇xµ(M)M−1] = Re〈ξ†∇xµ(M)M−1ξ〉ξ

The Lie derivative can be analytically computed for almost all the actions
while the inversion of M usually have to be evaluated by means numerical
inversion.
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Numerical Stochastic Perturbation Theory: Quark contributions

In NSPT the procedure for including fermions is the following

M =
∑
k=0

gkM(k)

The inversion of M−1 are iteratively constructed

M−1(0)
= M(0)−1

M−1(1)
= M(0)−1

M(1)M(0)−1

. . .

M−1(n)
= M(0)−1

(
n−1∑
m=0

M(n−m)M(m)−1

)
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Numerical Stochastic Perturbation Theory: Quark contributions

The algorithm is then :

compute ψ(0) = M(0)−1
ξ

ψ(n) = M(0)−1
[∑n−1

m=0 M(n−m)ψ(m)
]

find the solution via Euler integration

One has to face only with the inversion on M(0) which is analytically known
in some cases.

Even if there is no analytical solution the inversion of three level usually
requires only few steps.
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Applications

Which topics require the use of NSPT?

Matching perturbative results obtained in a continuum regularization
with the non-perturbative ones from the lattice;

Determination the so-called improvement coefficients for lattice actions
and operators;

Computation of perturbative renormalization factors of bare parameters
and operators.

In collaboration with Di Renzo, Brambilla and Guagnelli we want to calculate
the clover coefficient beyond 1-loop, but as a preliminary check one has to
control the efficiency of the program for the clover action.
Let’s see a simple application of NSPT for computation of the renormalized
critical mass of quark for 1-loop and 2-loop.
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Fermion action

H. B. Nielsen, M. Ninomiya, “A no-go theorem for regularizing chiral fermions” (1981).

One possible solution is to use Wilson fermions.

On the lattice one has to face with systematic errors regarding to lattice
spacing a

Gauge action SG with discretization errors ' O(a2)

Wilson fermion action SW with discretization errors ' O(a)

SW must be improved!
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Symanzik’s improvement - application

Seff = S0 + aS1 + a2S2 + . . .

S̃eff = Seff − aS1 = S0 + O(a2) + . . .

A possible choice for improving SW is to add

O = a5
∑

x

cSW ψ̄(x)
i
4
σµν F̂µν(x)ψ(x)

and obtain the Sheikholeslami-Wolhert action

S = SW + a5cSW

∑
x

ψ̄(x)
i
4
σµν F̂µν(x)ψ(x)
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Clover Coefficient

In PT the coefficient cSW can Taylor-expanded in power of the bare coupling

cSW = c(0)SW + c(1)SWg2
0 + c(2)SWg4

0 + . . .

NSPT could be the good choice to compute clover-improved observables.
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First check: computation of critical mass

The quark critical mass can be extracted from the propagator

S(q2,m, g0)−1 = i/p + m− Σ(q2,m, g0)

mcr = Σ(0,m, g0) ' g2
0Σ(1) + g4

0Σ(2) + . . .

Σ(1) → c(0)SW

Σ(2) → c(1)SW

δΣ
(k−loop)
c = Σ

(k−loop)
c − dm(k−loop)

In summary, simulations consisted in:

Generation of gauge configurations with NSPT in quenched
approximation considering two massless quark;

Computation of fermionic propagators;

Extrapolation of the critical mass (three extrapolation needed).
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Critical mass: linear extrapolation
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Linear lattice size L = 12, 16, 20, 24, 32

δΣ
(1−loop)
c = Σ

(1−loop)
c − dm(1−loop) = 0.0007(21)

δΣ
(2−loop)
c = Σ

(2−loop)
c − dm(2−loop) = 0.0004(76)
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Critical mass: linear extrapolation
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Linear lattice size L = 20, 24, 32

δΣ
(1−loop)
c = Σ

(1−loop)
c − dm(1−loop) = 0.0033(34)

δΣ
(2−loop)
c = Σ

(2−loop)
c − dm(2−loop) = 0.0058(133)
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Conclusion

In this talk I present basics of NSPT and show a simple application.

NSPT is an effective tool to perform lattice perturbative computations;
NSPT can be applied to other topics, such that

I matching between perturbative results obtained in a continuum
regolarization with non perturbative one;

I computing perturbative renormalization factors of bare parameters and
operators;

I Determination the so-called improvement coefficients for lattice actions
and operators;

Actually the improved clover fermions are (partially) available in NSPT:

the clover term is implemented;

2-loop computations are feasible since 1-loop cSW is known;

unquenched dynamic is almost ready.

Final goal of the project (in collaboration with F. Di Renzo, M. Brambilla and
M. Guagnelli) is the computation of cSW to higher orders.
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