Multi-Strange Matter

Chhanda Samanta Department of Physics & Astronomy VMI, Lexington, VA, USA

10000

10000

UHU

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

Outline

- > What is a Hyperon?
- > What is a Strange-nucleus?
- > What is a multi- strange nucleus?
- How to find the the Binding energy and Relative yield of such Strange-nuclei ?
- What are the nucleon- and hyperon-drip points for a strange nucleus?
- Nuclei without any neutrons and protons.

Summary

What is a Hyperon?

An atomic nucleus consists of two types of **nucleons**: Protons and neutrons.

A **baryon** is a composite subatomic particle made up of three quarks.

A **Hyperon** is any **baryon** containing one or more strange quarks, but no charm, bottom, or top quark.

3

Properties of Baryons

	Nuc	leons	← Hyperons				\rightarrow	
Name	n	p	Λ^0	Σ^{-}	$\mathbf{\Sigma}^{0}$	Σ^+	 [1]	\mathbf{H}_0
Structure	udd	uud	ud <mark>s</mark>	dd <mark>s</mark>	ud <mark>s</mark>	uus	d <mark>ss</mark>	u <mark>ss</mark>
No. of S quark	0	0	1	1	1	1	2	2
Isospin I	1/2	1/2	0	1	1	1	1/2	1/2
I ₃	-1/2	+1/2	0	-1	0	+1	-1/2	+1/2
Hyper- charge Y	1	1	0	0	0	0	-1	-1
Baryon No. B	1	1	1	1	1	1	1	1
Strangeness S=Y-B	0	0	-1	-1	-1	-1	-2	-2
Mass (MeV)	939. 6	938.3	1115.6	1197.3	1192.5	1189.5	1321	1315

What is a Hypernucleus or, a Strange Nucleus?

Nucleus: consists of nucleons (n, p) Hypernucleus: consists of nucleons (n, p) + hyperons (Y) Total Charge of a Nucleus => Name of the element

Symbols:

Nucleus:

AZ $Z = Z_p$ =Total Charge of protons $N_n = No.$ of neutrons $N_p = No.$ of protons $A = N_n + N_p$

Hypernucleus:

Α_YΖ

- Y = Hyperon
- $N_{Y} = No.$ of Hyperons
- q_{Y} = Charge of a hyperon
- Z≠Z_p
- $Z = Z_p + (N_Y \cdot q_Y)$

 $\mathbf{A} = \mathbf{N}_{n} + \mathbf{N}_{p} + \mathbf{N}_{Y}$

A multi-strange nucleus has more than one hyperon (Y).

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

How many Strange Hypernuclei are discovered so far?

Can we theoretically suggest

the **Binding energy** and **Relative yield** of such Strange-nuclei?

7

Relativistic Mean Field Calculations & Mass Formula

Relativistic-mean-field (RMF) calculations have provided results for a limited number of medium heavy and heavy hypernuclei.

J. Schaffner J, C.B. Dover, A. Gal , C. Greiner, D.J. Millener and H. Stöcker, Ann. Phys. NY 235 (1994) 35

Microscopic calculations are difficult to pursue for all kinds on nuclei.

- A properly constructed mass formula can
- provide a quick check on the RMF calculations
- extrapolate to a wider mass region from light to heavy beyond the domain of RMF.

Two Mass Formulas

Here two Hypernuclear Mass Formulas are presented:

- 1. A liquid drop model by Botvina and Pochodzalla -applicable for Λ -hypernuclei only.
- 1. A generalized mass formula of Samanta et al.
 - applicable for all $(\Lambda, \Xi, \Sigma, ..)$ –hypernuclei
 - applicable to multi-strange hypernuclei.

Liquid-drop Mass formula (for Λ -hyernuclei only)

J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, Phys. Rep. 257, 133 (1995).

 $B(A,Z) = -16A + 18A^{2/3} + 0.72z^2/A^{1/3} + 25(N - z)^2/(A - n_Y) - (n_Y/A)$ [10.68A+ 21.27 $A^{2/3}$]

 $A = n + z_c + n_Y$: n = no. of neutrons, $z_c = no.$ of protons, $n_Y = no.$ of hyperons

Binding Energy: $B(A,Z) = m_A - z_c \cdot m_p - n \cdot m_n - n_Y \cdot m_Y = Negative$

> Does not depend on mass and strangeness of hyperons.

>Not valid for: $A = n_y$

No hyperon-asymmetry term

A Generalized Mass Formula for both Non-Strange normal & Strange hyper-nuclei

C. Samanta et al., J. Phys. G 32 (2006) 363

A systematic search using experimental separation energy (S_Y) for Λ^{o} , $\Lambda\Lambda$, Σ^{+} and Ξ^{-} -

 $(+n_Y) 0.0335(m_Y) - 26.7 - 48.7|S|A^{-2/3}],$

hypernuclei leads to a single generalized mass formula that is valid for Normal nuclei ($n_y=0$) as well as Hypernuclei ($n_y\neq 0$) of all kind, having different Mass and Strangeness.

 $B(A, Z) = 15.777A - 18.34A^{2/3} - 0.71\frac{Z(Z-1)}{A^{1/3}} - \frac{23.21(N-Z_c)^2}{[(1+e^{-A/17})A]} + (1-e^{-A/30})\delta$

 $\mathbf{n}_{\mathbf{Y}}$ = no. of hyperons in a nucleus

 $\mathbf{m}_{\mathbf{Y}}$ = mass of hyperon in MeV

 \mathbf{S} = strangeness no. of the hyperon,

 $\mathbf{A} = \mathbf{N} + \mathbf{Z}_{c} + \mathbf{n}_{Y} = \text{total no. of baryons}$

 $\mathbf{Z_c} = \text{no. of protons},$

 $\mathbf{Z} = Z_c + n_y q$ = net charge no.

 \mathbf{q} = charge no. with proper sign. (viz., q= -1, 0, 1)

Hyperon separation energy S_{Y} defined as:

 $S_{Y} = BE(A, Z)_{hyper} - BE(A - n_{Y}, Z_{c})_{core}$

Explicitly depends on

Strangeness (S), hyperon mass

 (m_{γ}) , number of hyperons (n_{γ})

Hyperon	S	m _Y	n _Y	
Λ^0	-1	1115.683	1	
ΛΛ	-2	1115.683	2	
Σ^0	-1	1192.642	1	
[I]	-2	1321.71	1	
Ξ	-2	1314.86		
Normal	0	-	0	

Hyperon-Separation Energies of Hypernuclei & Mass formula

C. Samanta et al., J. Phys. G 32 (2006) 363

368

Figure 1. Hyperon separation energy Sy versus mass number A for (a) single Λ (my = 1115.63 MeV) predicted by BWMH (solid), Dover et al [3] (topmost, dashed line) and Levai et al [20] (dotted) and experimental values [1, 2] (rhombus with error bars); and (b) double Λ predicted by BWMH (solid), and Levai et al [20] (dotted) and experimental values [1, 2] (rhombus with error bars). In the inset the three data points of double Λ are shown with predictions of BWMH. In all the figures, lines are added only as guides to the eyes.

Figure 2. Hyperon separation energy S_T versus mass number A for (a) single $\Xi^-(m_T = 1321.32 \text{ MeV})$ and experimental values [1], and (b) single $\Theta^+(m_T = 1540 \text{ MeV})$ separation and quark mean-field calculations of Shen and Toki [19].

So far no experimental data exists on the bound theta hypernuclei (uddus). The θ + separation energies are found to be close to the quark mean-field (QMF) calculations of Shen and Toki, 2005 *Phys. Rev* C **71** 065208

369

Generalized Mass Formula for Non-strange, Strange and Multiply-strange Nuclear Systems

C. Samanta, JPG 37 (2010) 075104

N= nucleon, Y= hyperon

 $A = n + z_c + n_y$: n = no. of neutrons, $z_c = no.$ of protons, $n_y = no.$ of hyperons

Binding Energy: $B(A,Z) = m_A - z_c \cdot m_p - n \cdot m_n - n_Y \cdot m_Y = Negative$

$$\begin{split} B(A,Z) &= 15.777A - 18.34A^{2/3} - 0.71Z(Z-1)/A^{1/3} - 23.21(n-z_c)^2/[(1+e^{-A/17})A] + (1-e^{-A/30})\delta \\ &+ \sum_Y n_Y [0.0335(m_Y) - 26.7 - 48.7 \mid S \mid /A^{2/3} \\ &- a_Y \{(n_\Lambda + n_{\Xi^o} + n_{\Xi^-} - z_c)^2 + (n_\Lambda + n_{\Xi^o} + n_{\Xi^-} - n)^2\}/\{(1+e^{-A/17})A\}]. \end{split}$$

 $\mathbf{m}_{\mathbf{Y}}$ = mass of hyperon in MeV $Z = \begin{vmatrix} z_c + \sum_Y n_Y q_Y \end{vmatrix}$ \mathbf{S} = strangeness no. of the hyperon $\mathbf{Z} = \mathbf{Net Charge}$ $\mathbf{q} = -1, 0, 1$ depending on the hyperon type

Note: the **net charge of a nucleus can be negative** if the hyperon number is larger than the proton number and the hyperon has a negative charge!!!!

Comparison between the generalized multi-strange mass formula and Microscopic calculations

C. Samanta, JPG 37 (2010) 075104

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

What do we learn from the neutron-separation energy (S_n) versus neutron number (N) plot?

★ Zero or, negative neutron-separation energy (S_n) means, unbound nucleus. ¹⁰Li (=3p+7n) is unbound (Sn<0), but ¹⁰_ALi (=3p+6n+1A) is bound (Sn >0). Experiment: $S_A(^{10}_A Li) \sim 10-12$ MeV [Ref: *P.K. Saha,PRL94(2005) 052502*] Mass Formula: CS1(10.2 MeV), CS2(11.4 MeV)

- ¹¹Li (Z=3, N=8) is the last bound normal nucleus, but, ¹²Li (Z=3, N=8, Λ=1) appears to be bound.
- Does this mean that addition of Λ can make very neutron-rich hypernuclei – far beyond the normal drip line?

Possible, provided the baryon (hyperon/nucleon) separation energy is not zero or, negative!

⁶_AH production experiment by FINUDA

M. Agnello et al., FINUDA Collaboration, PRL 108 (2012) 042501

 $1p+4n = {}^{5}H$ **Unbound** $1p+4n+1\Lambda = {}^{6}_{\Lambda}H$ predicted to be Bound. Hyperon acts like glue!

- ⁶Li(stopped K⁻,π⁺) reaction
 - Measured formation and weak decay in coincidence $K^- + {}^6Li \rightarrow (\pi^+) + {}^6_{\Lambda}H$

$$^{6}_{\Lambda}H \rightarrow \pi^{-} + ^{6}He$$

- cut on T(π⁺)+T(π⁻)
- 3 events of candidates found

$T_{ m tot}$	p_{π^+}	$p_{\pi^{-}}$	$M(^6_{\Lambda}{ m H})$	$M(^6_{\Lambda}{ m H})$	$M(^6_{\Lambda}{ m H})$	$\Delta M(^6_\Lambda {\rm H})$
(MeV)	$({\rm MeV/c})$	$\left(\mathrm{MeV/c}\right)$	prod. (MeV)	decay (MeV)	$\mathrm{mean}~(\mathrm{MeV})$	(MeV)
202.6 ± 1.3	251.3 ± 1.1	135.1 ± 1.2	5802.33 ± 0.96	5801.41 ± 0.84	5801.87 ± 0.96	0.92 ± 1.28
202.7 ± 1.3	250.1 ± 1.1	$136.9 {\pm} 1.2$	5803.45 ± 0.96	5802.73 ± 0.84	5803.09 ± 0.96	0.72 ± 1.28
202.1 ± 1.3	253.8 ± 1.1	131.2 ± 1.2	5799.97 ± 0.96	$5798.66 {\pm} 0.84$	5799.32 ± 0.96	1.31 ± 1.28

However...

Search for ${}^{6}_{\Lambda}$ H hypernucleus by the 6 Li(π^{-}, K^{+}) reaction at $p_{\pi^{-}} = 1.2 \text{ GeV}/c$

J-PARC E10 Collaboration

H. Sugimura^{a,b,*}, M. Agnello^{c,d}, J.K. Ahn^e, S. Ajimura^f, Y. Akazawa^g, N. Amano^a, K. Aoki^h, H.C. Bhangⁱ, N. Chiga^g, M. Endo^j, P. Evtoukhovitch^k, A. Feliciello^d, H. Fujioka^a, T. Fukuda¹, S. Hasegawa^b, S. Hayakawa^j, R. Honda^g, K. Hosomi^g, S.H. Hwang^b, Y. Ichikawa^{a,b}, Y. Igarashi^h, K. Imai^b, N. Ishibashi^j, R. Iwasaki^h, C.W. Jooⁱ, R. Kiuchi^{i,b}, J.K. Lee^e, J.Y. Leeⁱ, K. Matsuda^j, Y. Matsumoto^g, K. Matsuoka^j, K. Miwa^g, Y. Mizoi¹, M. Moritsu^f, T. Nagae^a, S. Nagamiya^b, M. Nakagawa^j, M. Naruki^a, H. Noumi^f, R. Ota^j, B.J. Roy^m, P.K. Saha^b, A. Sakaguchi^j, H. Sako^b, C. Samantaⁿ, V. Samoilov^k, Y. Sasaki^g, S. Sato^b, M. Sekimoto^h, Y. Shimizu¹, T. Shiozaki^g, K. Shirotori^f, T. Soyama^j, T. Takahashi^h, T.N. Takahashi^o, H. Tamura^g, K. Tanabe^g, T. Tanaka^j, K. Tanidaⁱ, A.O. Tokiyasu^f, Z. Tsamalaidze^k, M. Ukai^g, T.O. Yamamoto^g, Y. Yamamoto^g, S.B. Yangⁱ, K. Yoshida^j

ABSTRACT

We have carried out an experiment to search for a neutron-rich hypernucleus, ${}_{A}^{6}$ H, by the 6 Li(π^{-} , K^{+}) reaction at $p_{\pi^{-}} = 1.2$ GeV/c. The obtained missing-mass spectrum with an estimated energy resolution of 3.2 MeV (FWHM) showed no peak structure corresponding to the ${}_{A}^{6}$ H hypernucleus neither below nor above the ${}_{A}^{4}$ H + 2*n* particle decay threshold. An upper limit of the production cross section for the bound ${}_{A}^{6}$ H hypernucleus was estimated to be 1.2 nb/sr at 90% confidence level.

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

Effect of addition of a lambda (Λ) hyperon on neutron and proton drip-lines

J. Phys. G: Nucl. Part. Phys. 35 (2008) 065101

C Samanta et al

Table 1. One-nucleon separation energies (in MeV) on drip lines for each element with the lowest and highest numbers of bound neutrons in normal and Λ -hypernuclei.

Symbol Z	Normal p-drip ^A Z, S _p	Normal n-drip ${}^{A}Z, S_{n}$	Hyper p-drip ^A Z, S _p	Hyper n-drip $^{A}Z, S_{n}$	In general,
Li	⁵ Li, 3.36	¹¹ Li, 0.58	${}^{5}_{\Lambda}$ Li, 1.22	$^{12}_{\Lambda}$ Li, 1.87	• n-drip
ве в	⁸ B 0.74	¹⁷ B 0 00	⁹ B 2 30	$\frac{18}{18}$ B 1 73	line is
C	⁹ C, 0.17	²⁰ C, 1.01	$^{10}_{\Lambda}C$, 1.80	$^{\Lambda}_{\Lambda}$ D, 1.75 $^{21}_{\Lambda}$ C, 1.63	out
Ν	¹² N, 1.98	²³ N, 0.97	$^{12}_{\Lambda}$ N, 0.24	$^{24}_{\Lambda}$ N, 1.50	an drin
0	¹³ O, 1.98	²⁶ O, 0.94	$^{13}_{\Lambda}$ O, 0.44	$^{27}_{\Lambda}$ O, 1.40	• p-urip line is
F	¹⁵ F, 0.09	²⁹ F, 0.89	$^{16}_{\Lambda}$ F, 0.81	$^{32}_{\Lambda}$ F, 0.01	pulled in
Ne	¹⁶ Ne, 0.64	³² Ne, 0.87	$^{17}_{\Lambda}$ Ne, 1.39	$^{35}_{\Lambda}$ Ne, 0.04	P
Na	¹⁹ Na, 0.54	³⁵ Na, 0.84	$^{20}_{\Lambda}$ Na, 1.05	$^{38}_{\Lambda}$ Na, 0.08	Microscopic
Mg	²⁰ Mg, 1.37	³⁸ Mg, 0.84	$^{20}_{\Lambda}$ Mg, 0.05	$^{41}_{\Lambda}{ m Mg}, 0.13$	calculation is needed.

Neutron Drip-point of Mg and Mg+ Λ nuclei

Torsten Schürhof, Stefan Schramm, Chhanda Samanta, arXiv:1405.7211v1 [nucl-th]

Experimentally measured last neutron-rich Mg isotope is ⁴⁰Mg. (N=28).

• We investigated Neutron-drip point:

Normal Nuclei: ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Mg, ²⁸Mg, ²⁹Mg, ³⁰Mg, ³¹Mg, ³²Mg,?

Hyper-Nuclei: ${}^{25}_{\Lambda}Mg$, ${}^{26}_{\Lambda}Mg$, ${}^{27}_{\Lambda}Mg$, ${}^{28}_{\Lambda}Mg$, ${}^{29}_{\Lambda}Mg$, ${}^{30}_{\Lambda}Mg$, ${}^{31}_{\Lambda}Mg$, ${}^{32}_{\Lambda}Mg$, ${}^{33}_{L}Mg$?

- Used Relativistic Mean Field theory with TS2, NL3 and SPL-40 parameter sets.
- All 3 parameter sets successfully describes the existing experimental data on hypernuclei.
 - But, the results near the drip line is very much models dependent. If one-Lambda hyperon is added to the drip-line normal Magnesium nucleus:
 - NL3 suggests binding of no extra neutron.
 - TS2 suggests binding of 8 extra neutrons.
 - SPL-40 suggests ejection of existing 6 neutrons!

Experimental data are needed for confirmation.

Lambda Drip-Point for Multi-Lambda Hypernuclei

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

20

Production of multi-A hypernuclei in Heavy-Ion Collision

>Relativistic heavy-ion collisions offer the possibility of creating excited nuclear systems with lambda (Λ) -hyperons.

Some Λ –hyperons can be absorbed in the spectator part of the colliding nuclei.

>Then single- and multi-lambda hypernuclei can be produced after Multifragmentation of this spectator.

Production of hypernuclei in multifragmentation of nuclear spectator matter

A.S. Botvina, J. Pochodzalla, Phys. Rev. C76 (2007) 024909

FIG. 3. Comparison of SMM calculations with the liquid-drop and Samanta descriptions of hyper terms in the mass formula, for the same sources as in Fig. 2. Top panel – the strangeness chemical potential ξ versus temperature *T*. Middle panel – average number of Λ hyperons in fragments, and bottom panel – yields of fragments with two Λ , at *T* = 4 MeV.

At low A, the statistical multifragmentation model (SMM) shows a discrepancy between the two mass formulas.

The source of discrepancy is the difference between the Samanta formula (Red Line) and Botvina-Pochodzalla mass formula (Green line) at low A (the latter over-predicts Expt. $\Lambda\Lambda$ -separation energy).

Prediction of the Multi-Lambda Production Yield By the Statistical Multifragmentation Model (SMM)

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS, Erice-Sicily: September 16-24, 2015

Lightest Bound Multi-Strange Nuclei without any Neutrons and Protons!

C. Samanta, Jour. Phys. G: Nucl. Part. Phys. 37 (2010)075104

No bound pure-hyperonic matter is possible by Model-1

Summary

Hyperons are Baryons with Strange guark in addition to Up and Down guarks. A single generalized mass formula is prescribed (JPG 37 (2010) 075104) that gives a rough and quick estimation of the hyperon-separation energy for both strange and multi-strange hypernuclei. It reproduces experimental data as well as RMF calculations. *Addition of a Λ makes a nucleus more bound, and shifts neutron and proton drip lines. The ndrip point of Mg is n~30 (⁴²Mg) while the Λ -drip point of ²⁴Mg is found to be Λ ~ 20 (⁴⁴ Mg). Interestingly, RMF calculations show that the non-strange drip-nucleus may spit out 6 neutrons when a Λ -hyperon is added, thus pulling the drip line in, instead of pushing it out! Relative yields of multi-strange nuclei are calculated using Statistical Multifragmentation Model (SMM) and two different mass formulas (Botvina-Pochodzalla and Samanta et al.). SMM calculations indicate production yield of 2Λ , 3Λ and 4Λ -hypernuclei to be higher than normal nuclei at T=4 for fragments with larger mass number. There could be truly multi-strange nuclei without any neutrons and protons. A systematic study of hypernuclei needs to be carried out both theoretically and experimentally.

Thank you!