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QCD phase diagram

a well-known possibility
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Lattice QCD at nonzero chemical potential

partition function/euclidean path integral

Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SYM detM

fermion determinant is complex

[detM(µ)]∗ = detM(−µ∗) ∈ C

no positive weight in path integral

standard numerical methods based on importance
sampling not applicable

⇒ sign problem

⇒ phase diagram not yet determined
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Many QCD phase diagrams
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Outline

lattice QCD and chemical potential

sign problem

some recent advances

density of states

into the complex plane

complex Langevin dynamics

Lefschetz thimbles

QCD with heavy quarks

for review and references (and exercises!), see

Introductory lectures on lattice QCD at nonzero baryon number

J. Phys. Conf. Ser. 706 (2016) 022004 [arXiv:1512.05145 [hep-lat]]
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Lattice QCD

nonperturbative regularisation of QCD

Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SYM detM

define partition function on spacetime lattice

gluons (U ) live on links, quarks (ψ, ψ̄) on vertices

Wick rotation to euclidean time iS → −S

SU(3) gauge symmetry at finite lattice spacing

recover Lorentz invariance in continuum limit
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Lattice QCD

nonperturbative regularisation of QCD

Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SYM detM

define partition function on spacetime lattice

gluons (U ) live on links, quarks (ψ, ψ̄) on vertices

Wick rotation to euclidean time iS → −S

SU(3) gauge symmetry at finite lattice spacing

recover Lorentz invariance in continuum limit

integrate out fermions by hand: determinant

‘solve’ remaining gluonic integral

amenable to numerical computation
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Lattice QCD

nonperturbative regularisation of QCD

Z =

∫

DUDψ̄Dψ e−S =

∫

DU e−SYM detM

amenable to numerical computation

finite volume: N3
s ×Nτ with T = 1/aNτ

real and positive weight

0 < e−SYM detM <∞

use importance sampling to approximate integral

requires use of large scale numerical facilities

well-controlled approach to thermodynamics
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Chemical potential

phase diagram: introduce chemical potential µ

couples to conserved charge (baryon number)

n ∼ ψ†ψ = ψ̄γ4ψ = j4

temporal component of current jν = ψ̄γνψ

on the lattice: fermion hopping terms jν ∼ κψ̄xγνψx+ν

modify temporal hopping terms:

forward hopping: κeµ

backward hopping: κe−µ

⇒ exactly conserved (Noether) charge at finite lattice
spacing Hasenfratz & Karsch 83
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Chemical potential on the lattice

chemical potential introduces an imbalance between
forward and backward hopping

forward hopping (quark)
⇒ favoured as eµnτ

backward hopping (anti-quark)

⇒ disfavoured as e−µnτ

closed worldline
⇒ µ dependence cancels

exactly

µ dependence only remains when worldline wraps around
time direction

eµNτ = eµ/T e−µNτ = e−µ/T

Erice, September 2016 – p. 9



Chemical potential on the lattice

imbalance leads to fundamental issue: sign problem!

at µ = 0: quark matrix M

detM † = det (γ5Mγ5) = detM = (detM)∗

real determinant

at µ 6= 0:

detM †(µ) = det γ5M(−µ∗)γ5 = detM(−µ∗) = [detM(µ)]∗

complex determinant

no real weight: numerical methods break down

note: real determinant for imaginary chemical potential

Roberge & Weiss 86, Lombardo 00, de Forcrand & Philipsen 03-12
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Sign problem

complex weight is a hard problem: cannot be ignored

detM(µ) = | detM(µ)|eiθ

correct physics easily destroyed
(e.g. by ignoring the phase)

dominant configurations
in the path integral? x

R
e 

ρ(
x)
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Sign problem

sign problem not specific for QCD

appears generically in theories with imbalance

in both fermionic and bosonic theories
i.e. not due to anti-commuting nature of fermions

also in condensed-matter models, e.g. Hubbard model
away from half-filling

understanding of sign problem relevant across physics

generic solution to sign problem not expected: NP hard

Troyer & Wiese 04

more and more solutions to specific theories available

SIGN 2017, INT Seattle, March 20-24 2107
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Evading the sign problem

a (personal) selection of solutions to various theories:

density of states

complex excursions

complex Langevin (CL) dynamics

Lefschetz thimbles

application of complex Langevin to heavy dense QCD
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Density of states
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Density of states

basic idea:

do path integral Z =
∫

DU w(U) in two steps, using

constrained simulations

density of states for operator x

ρ(x) =

∫

DU w(U)δ [x− x(U)]

observables depending on x can be constructed

〈O(x)〉 =

∫

dx ρ(x)O(x)
∫

dx ρ(x)

histogram method, factorisation, Wang-Landau, . . .
Goksch 1988, Anagnostopoulos & Nishimura 02

Fodor, Katz & Schmidt 07, Ejiri 08, . . .
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Density of states

main issues:

constrained integral should have positive weight

ρ(x) computable to very high relative precision
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Density of states

main issues:

constrained integral should have positive weight

ρ(x) computable to very high relative precision

theories with a sign problem: w(U) = |w(U)|eiθ

assume θ(n) depends only on net density n(U)

positive density of states

ρ(x) =

∫

DU |w(U)| δ [x− n(U)]

observables and partition function

〈O(n)〉 =
1

Z

∫

dx ρ(x)eiθ(x)O(x) Z =

∫

dx ρ(x)eiθ(x)
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Density of states

〈O(n)〉 =
1

Z

∫

dx ρ(x)eiθ(x)O(x) Z =

∫

dx ρ(x)eiθ(x)

if ρ(x) can be determined to very high precision:

sign problem isolated in remaining single integral

cancelations under better control

precise integration over oscillating function ρ(x)eiθ(x)

la prova è nel pudding

promising reincarnation: Local Linear Relaxation (LLR)

Langfeld, Lucini & Rago 12

Z(3) spin model Lucini & Langfeld 14

heavy dense QCD Garron & Langfeld 16
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Density of states
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histogram
density of states

histogram vs. density of states (x = N+ −N−)

density of states extends over more than 60 orders of magnitude
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Density of states

comparison with alternative approach: dual formulation

Gattringer et al 12

extreme precision needed
to carry out remaining
oscillatory integral

agrees with dual method

potential problems at large
µ or at the transition

under investigation

improvement on older histogram methods

extension to gauge theories Langfeld (Lattice 2016)

Lucini (XQCD 2016)
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Complex excursions
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Complex measure

complex weight

detM(µ) = | detM(µ)|eiθ

cancelation between configurations with ‘positive’ and
‘negative’ weight

dominant configurations
in the path integral? x

 x)Reρ(  

take the complexity seriously!
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): complex Langevin

Parisi 83, Klauder 83

deformation of integration contour: Lefschetz thimbles

Airy 1838, Witten 10
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Complex Langevin dynamics

with Nucu Stamatescu, Erhard Seiler, Dénes Sexty

Benjamin Jäger, Pietro Giudice, Jan Pawlowski

Lorenzo Bongiovanni, Felipe Attanasio, Frank James, . . .

since 2008
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Complex Langevin dynamics

main idea:

generate field configurations using stochastic process

ż = −∂zS + η 〈η(t)η(t′)〉 = 2δ(t− t′)

reach equilibrium distribution à la Brownian motion

no importance sampling required

Langevin drift K = −∂zS derived from complex weight:

explore complexified configurations

one degree of freedom: z → x+ iy

real scalar field: φ(x) → φR(x) + iφI(x)

gauge link U : SU(3) ⇒ SL(3,C)

rely on holomorphicity
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Complex Langevin dynamics

applicability for holomorphic actions:

check criteria a posteriori GA, Seiler & Stamatescu 09

gauge cooling essential Seiler, Sexty & Stamatescu 12

successful applications to various models, including with
phase transitions and severe sign problems

but success not guaranteed (criteria)

open question: meromorphic drift

with weight detM : drift contains TrM−1

poles: problems may appear Mollgaard & Splittorff 13

ongoing work GA, Seiler, Sexty & Stamatescu

Nagata, Nishimura & Shimasaki 16, . . .
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Lefschetz thimbles
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Lefschetz thimbles

explore complexified field configurations with more
analytical control

Lefschetz thimbles: generalised saddle point expansion

integrate along lines of steepest descent

keep sign problem under control

implemented in various models

Christoforetti, di Renzo, Mukherjee, Scorzato, Schmidt et al 12-16

Fujii, Kikukawa, Tanizaki et al 13-16

comparison with complex Langevin dynamics

GA 13, GA, Bongiovanni, Seiler & Sexty 14

relax conditions of strict thimble integration

Alexandru, Bedaque et al 15-16
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Example: Quartic model

Z =

∫ ∞

−∞

dx e−S S(x) =
σ

2
x2 +

λ

4
x4

complex mass parameter σ = A+ iB, λ ∈ R

often used toy model Ambjorn & Yang 85, Klauder & Petersen 85,

Okamoto et al 89, Duncan & Niedermaier 12

real and positive
distribution sampled
in CL dynamics

essentially analytical proof for CL: GA, Giudice & Seiler 13
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Example: Quartic model

Lefschetz thimbles: saddle point expansion through
stationary (critical) points

critical points:

z0 = 0

z± = ±i
√

σ/λ

thimbles can be
computed analytically

ImS(z0) = 0

ImS(z±) = −AB/2λ
-2 -1 0 1 2

x
-2

-1

0

1

2

y

stable thimble
unstable thimble
not contributing

σ = 1+i, λ = 1

for A > 0: only 1 thimble contributes

integrating along thimble gives correct result, with
inclusion of complex Jacobian
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Langevin versus Lefschetz

compare thimble and Langevin distribution

-1 -0.5 0 0.5 1
x

-0.3

-0.15

0

0.15

0.3

y

> 0.98 local saddle point of P(x,y) 
thimble

σ = 1+i, λ = 1

thimble and CL distribution follow each other

however, weight distribution quite different

intriguing result: going into the complex plane can evade
sign problem in several ways
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QCD with heavy quarks

Complex Langevin dynamics
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QCD phase structure

Columbia plot: order of thermal transition at µ = 0
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QCD with heavy quarks

heavy quark corner of Columbia plot

first order transition to deconfined phase

Polyakov loop order parameter

quark determinant simplifies considerably

hopping expansion (LO): only straight quark world lines

fermion determinant

detM =
∏

x

det
(

1 + heµ/TPx

)2 (

1 + he−µ/TP−1
x

)2

Px = untraced Polyakov loop h = (2κ)Nτ

determine phase diagram in heavy quark sector

widely used limit of QCD to test methods
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QCD with heavy quarks

expectations for phase diagram

two transitions:

full Wilson gauge action is included

thermal deconfinement transition (as in pure glue)

detM =
∏

x

det
(

1 + heµ/TPx

)2
det

(

1 + he−µ/TP−1
x

)2

µ-driven transition: 2κeµ ≷ 1

critical chemical potential for onset at µc = − ln(2κ)

determine phase diagram by direct simulation in T −µ plane

test case for full QCD
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Complex Langevin dynamics

QCD with static quarks or heavy dense QCD (HDQCD)

GA, Attanasio, Jäger, Seiler, Sexty & Stamatescu 08-16

GA, Attanasio, Jäger & Sexty, JHEP [arXiv:1606.05561 [hep-lat]]

simulation details

lattice coupling/spacing: β = 5.8 a ∼ 0.15 fm

hopping parameter: κ = 0.04 µ0c = − ln(2κ) = 2.53

spatial volume 63, 83, 103

Nτ = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 24 28

T ∼ 48 . . . 671 MeV

direct simulation in T − µ plane (∼ 880 parameter
combinations)

observables: Polyakov loop, quark density
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Heavy dense QCD

Polyakov loop

〈P 〉 = 0 at low T, µ: confinement

〈P 〉 6= 0 at high T, µ: deconfinement

µ > µ0c at T = 0: saturation, lattice artefact, unphysical
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Heavy dense QCD

density

〈n〉 = 0 at µ = 0

〈n〉 rises slowly at high T , onset at low T

µ > µ0c at T = 0: saturation, lattice artefact, unphysical
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Heavy dense QCD

attempt to determine the phase boundary

Polyakov loop susceptibility χP ∼ 〈P 2〉 − 〈P 〉2

signal not very clear
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Heavy dense QCD

better estimate of boundary: Binder cumulant B

for order parameter O

B = 1−
〈O4〉

3〈O2〉2

then

〈O〉 = 0 ⇔ B = 0 〈O〉 6= 0 ⇔ B =
2

3

(assume Gaussian fluctuations)
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Heavy dense QCD

Binder cumulant

B ∼ 0 at low T, µ

B ∼ 2/3 at high T, µ
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Heavy dense QCD

Binder cumulant: phase boundary

determine boundary by B = 1/3

fixed lattice spacing:
less resolution at higher temperature T ∼ 1/Nτ
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Heavy dense QCD phase diagram

use simple Ansätze for
phase boundary

x =
(

µ/µ0c
)2

A : Tc(µ) =
∑

k

akx
k

B : Tc(µ) =
∑

k

bk(1− x)k

C : Tc(µ) = B + c0(1− x)α

simple fits up to µ4 (2 parameters) are sufficient

no sign for nonanalyticity at T = 0 from data yet
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Heavy dense QCD phase diagram

possible to determine and parametrise boundary

many things to improve

fixed lattice spacing

affects thermal transition

order of transition

vary κ: critical endpoints

beyond LO Philipsen et al, 10-16

extension to dynamical quarks Sexty 13

GA, Seiler, Sexty & Stamatescu 14, + Attanasio, Jäger 14-16
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Complex Langevin dynamics: Full QCD

implementation of hopping parameter expansion to

high order O(κ50) and comparison with full QCD
Sexty 13 GA, Seiler, Sexty & Stamatescu 14

0 10 20 30 40 50
n, order of the expansion (including terms up to κn

)

0

0.02

0.04

0.06

de
ns

ity

full QCD
κ

s
 expansion

full QCD
κ

s
 expansion

µ=0.8

N
f
=2, κ=0.12

8
4
, β=5.9

µ=0.7

open questions re-
lated to Langevin:

drift with poles (lack
of holomorphicity)

stabilisation

more groups at Lattice2016: Kogut & Sinclair, Nagata,

Nishimura & Shimasaki, GA, Attanasio, Jäger, et al
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Outlook

towards the phase diagram of QCD from the lattice

various ideas under investigation

new algorithms: implementation in simpler models

for full QCD most promising avenues:

density of states

into complex plane

complex Langevin dynamics: first full QCD results

considerable activity in thimbles
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