Hypernuclear and Resonance Production in Heavy Ion Collisions

H. Lenske

Institut für Theoretische Physik

 \odot

Strangeness Production at "GSI"-Energies : The Giessen Resonance Model

Target emission

A $(p,K^+)_A B$

Projectile emission

Α (p,K⁺)_ΛB

A (π⁺,K⁺)_ΛB^{*}

R. Shyam, H.L., PRC77 (2008) 052201; NPA839 (2010) 51; PRC81 (2010) 015204; PRD90 (2014) 1, 014017; PRD 93 (2016) 034016.

GiM Nucleon Resonance Level Scheme

V. Shklyar, H.L.

- Fragmentation in Heavy Ion Collisions
- S=-1 Hypernuclear Production in Heavy Ion Collisions
- S=-2,-3 Multi-Strangeness Production
- Nucleon Resonance Excitation in Peripheral Heavy Ion

Collisions

Fragmentation Reactions

Scenario of a fragmentation reaction (T_{lab}>1AGeV)

GiBUU Transport Theory & SMM Grand Canonical Fragmentation Approach (Bondorf, Mishustin, Botvina)

Gaitanos, Lenske, Phys. Lett. B 675, 297 (2009); Phys. Lett. B 663, 197 (2008)... GiBUU: O. Buss, Th. Gaitanos, et al., Phys. Rept. 512 (2012) 1 6

Formation of a Hypernucleus through Capture of a Λ by a pre-formed Fragment F:

M. Wakai, H. Bando, M. Sano, Phys. Rev. C 38 (1988) 748.

Time Evolution of the System Au+Au@0.6AGeV

8

Production of Light Nuclei from ¹³⁶Xe+Pb by GiBUU+SMM (FOPI data)

Strangeness Production in Baryonic Matter

$e.g. N + N \to N^* + N \to Y + N + K$

$\rm NN ightarrow \rm N\Lambda K^+$	$NN \rightarrow N\Sigma K^+$	$NN \rightarrow \Delta \Lambda K^+$	$\rm NN ightarrow \Delta \Sigma K^+$
$N\Delta \rightarrow N\Lambda K^+$	$N\Delta \rightarrow N\Sigma K^+$	$N\Delta \rightarrow \Delta \Lambda K^+$	$N\Delta \rightarrow \Delta \Sigma K^+$
$\Delta \Delta \rightarrow N \Lambda K^+$	$\Delta \Delta \rightarrow N \Sigma K^+$	$\Delta \Delta \rightarrow \Delta \Lambda K^+$	$\Delta \Delta \rightarrow \Delta \Sigma \mathrm{K}^+$
$\pi N \rightarrow \Lambda K^+$	$\pi\mathrm{N} ightarrow\Sigma\mathrm{K}^+$	$\pi \Delta \rightarrow \Lambda \mathrm{K}^+$	$\pi \Delta \rightarrow \Sigma K^+$
$NN \rightarrow NNK^{+}K^{-}$	$N\Delta \rightarrow NNK^+K^-$	$N\Delta \rightarrow N\Delta K^+K^-$	$\Delta \Delta \rightarrow \text{NNK}^+\text{K}^-$
$\Delta\Delta \rightarrow \Delta\Delta K^+K^-$	$\pi N \rightarrow NK^+K^-$	$\pi\Delta \rightarrow \mathrm{NK^+K^-}$	

...see also:

Christoph Hartnack *et al.* Physics Reports 510 (2012) 119-

Production of Fragments and Hyperons in ⁶Li+¹²C@2AGeV (Experiments by HypHI Collaboration@(S)FRS)

- Fragment distributions from projectile and target
- Overlapping distributions of Λ hyperons and fragments
- Formation of hypernuclei by capture

Production of Hypernuclei in ¹²C+¹²C@2AGeV

Th. Gaitanos, HL et al., Phys. Lett. B 675, 297 (2009), NPA 914 (2013) 405; PLB 737 (2014) 256, NPA 954 (2016) 308; J.Mod.Phys. In print 12

Where do the Hyperons come from? • primary (resonance) production: $N+N \rightarrow N+N^* \rightarrow N+Y+K$ • secondary (pionic/mesonic) production: $\pi+N \rightarrow N^* \rightarrow Y+K$

Multistrange Hypernuclei from Antiproton-Annihilation

Time Evolution and Strangeness Yield

15

Fragment Rapidity Distributions

GiBUU + SMM calculations for the rapidity distributions of fragments with charge Z = 1, ..., 5 and hyperons with strangeness S = -1 (Λ) and S = -2 (Ξ), as indicated, for inclusive $\bar{p} + Cu@5$ GeV reactions.

Hypernuclei@PANDA $\Lambda\Lambda$ Nucleus Formation by Ξ secondary beams

The insert panel shows the Ξ -production cross section from \bar{p} -collisions on the first target, as indicated.

Hypernuclei@PANDA S=-1 and S=-2 Hypernuclear Yields in Antiproton Annihilation on a Nucleus

S=-3 $\Omega(1672)$ -Production in Antiproton-Proton Annihilation: Direct Production?

19

Secondary and Ternary Routes to Nuclear Ω^- - Production Dominance of Strangeness Accumulation:

NPA 954 (2016) 308; J.Mod.Phys. In print

Nucleon Resonance Excitation in Heavy Ion Collisions

The "Resonance Puzzle" ∆'s in Neutron Stars

Mass-Radius-relationship of Neutron stars for various couplings of the Δ resonances, starting from $r_v = 1$ (upper line) to 0.8 (lowest line). Also included are the 1- σ errorbars for measured neutron stars. The black diamond on each curve represents the maximum stable configuration

Schürhoff, Schramm, Dexheimer, 2010; A. Drago et al. (2014), HL, J. Wilhelm (2016),...

Nucleon Resonance Excitation in HI-SCE Reactions at the FRS@GSI

Data: J. Benlliure et al., JPS Conf. Proc. 6, 020039 (2015). (S363 collaboration)

Results for SCE Reaction of ¹¹²Sn on various Targets

I. Vidana, H. Lenske et al., EPJ WoC 107, 100030 (2016)

Higher Resonances In peripheral A+A Collisions: Dubna Synchrophasotron ¹²C+¹²C @ 4.2 AGeV (Krpic et al., EPJ A20 (2004) 351)

	$M \;({ m MeV}/c^2)$	$\Gamma ~({ m MeV}/c^2)$
N(1440)	1380 ± 10	130 ± 20
N(1520)	1550 ± 20	230 ± 30
The 3rd peak	1810 ± 30	510 ± 40

25

Summary and Outlook

- Strangeness production through baryon resonances
- Heavy Ion collisions and hypernuclear fragmentation
- Multi-Strangeness S=-2,-3 production by antiprotons
- Dominance of hadronic strangeness accumulation scenarios
- Nucleon resonance production in HI collisions
- Charmed mesons and hyperons (→ PRD (2015), PRD (2016))

...together with:

Madhumita Dhar, Theo Gaitanos, Alexei Larionov, Radhey Shyam,

Issac Vidana

Supported by BMBF, DFG, GSI, and HIC for FAIR