Vacuum-fluctuation effects on inhomogeneous chiral condensates

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

International School of Nuclear Physics $38^{\text {th }}$ Course
"Nuclear matter under extreme conditions - Relativistic heavy-ion collisions"
Erice, Sicily, September 16-24, 2016

Motivation

- QCD phase diagram (standard picture):

Motivation

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space

Motivation

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- How about non-uniform phases ?

NJL-model studies

[D. Nickel, PRD (2009)]

NJL-model studies

[D. Nickel, PRD (2009)]

NJL-model studies

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
[D. Nickel, PRD (2009)]

NJL-model studies

including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations:
- vector interactions
- Polyakov-loop dynamics
- including strange quarks
- isospin imbalance
- magnetic fields
[MB, S. Carignano, PPNP (2015)]

Model limitations and open questions

- The NJL model is non-renormalizable. Are there cutoff artifacts?

Model limitations and open questions

- The NJL model is non-renormalizable.

Are there cutoff artifacts?

- example: "inhomogeneous continent"

Model limitations and open questions

- The NJL model is non-renormalizable.

Are there cutoff artifacts?

- example: "inhomogeneous continent"
= second inhomogeneous phase at large μ
[S. Carignano, MB, Acta Phys. Polon. Supp. (2012)]

Model limitations and open questions

- The NJL model is non-renormalizable.

Are there cutoff artifacts?

- example: "inhomogeneous continent"
= second inhomogeneous phase at large μ
[S. Carignano, MB, Acta Phys. Polon. Supp. (2012)]
It this caused by the cutoff?

Model limitations and open questions

- The NJL model is non-renormalizable.

Are there cutoff artifacts?

- example: "inhomogeneous continent"
= second inhomogeneous phase at large μ
[S. Carignano, MB, Acta Phys. Polon. Supp. (2012)]
It this caused by the cutoff?

\Rightarrow use renormalizable model: QM model

Model limitations and open questions

- The NJL model is non-renormalizable.

Are there cutoff artifacts?

- example: "inhomogeneous continent"
= second inhomogeneous phase at large μ
[S. Carignano, MB, Acta Phys. Polon. Supp. (2012)]
It this caused by the cutoff?

\Rightarrow use renormalizable model: QM model
- Long-term goal:

Study role of fluctuations beyond mean field (FRG)

Quark-meson model

- Lagrangian: $\mathcal{L}_{\mathrm{QM}}=\mathcal{L}_{\text {mes }}+\mathcal{L}_{q}$
- $\mathcal{L}_{\text {mes }}=\frac{1}{2}\left(\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi}\right)-U(\sigma, \vec{\pi})$,
$U(\sigma, \vec{\pi})=\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}-v^{2}\right)^{2}-h \sigma, \quad$ chiral limit: $h=0$
- $\mathcal{L}_{q}=\bar{\psi}\left(i \not \partial-g\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi$

Quark-meson model

- Lagrangian: $\mathcal{L}_{\mathrm{QM}}=\mathcal{L}_{\text {mes }}+\mathcal{L}_{q}$
- $\mathcal{L}_{\text {mes }}=\frac{1}{2}\left(\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi}\right)-U(\sigma, \vec{\pi})$,
$U(\sigma, \vec{\pi})=\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}-v^{2}\right)^{2}-h \sigma, \quad$ chiral limit: $h=0$
- $\mathcal{L}_{q}=\bar{\psi}\left(i \not \partial-g\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi$
- Thermodynamic potential:

$$
\Omega(T, \mu)=-\frac{T}{V} \log \int \mathcal{D} \sigma \mathcal{D} \vec{\pi} \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{\left[0, \frac{1}{T}\right] \times V} d^{4} x_{E}\left(\mathcal{L}_{\mathrm{QM}}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

Quark-meson model

- Lagrangian: $\mathcal{L}_{\mathrm{QM}}=\mathcal{L}_{\text {mes }}+\mathcal{L}_{q}$
- $\mathcal{L}_{\text {mes }}=\frac{1}{2}\left(\partial_{\mu} \sigma \partial^{\mu} \sigma+\partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi}\right)-U(\sigma, \vec{\pi})$, $U(\sigma, \vec{\pi})=\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}-v^{2}\right)^{2}-h \sigma, \quad$ chiral limit: $h=0$
- $\mathcal{L}_{q}=\bar{\psi}\left(i \not \partial-g\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi$
- Thermodynamic potential:

$$
\Omega(T, \mu)=-\frac{T}{V} \log \int \mathcal{D} \sigma \mathcal{D} \vec{\pi} \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{\left[0, \frac{1}{T}\right] \times V} d^{4} x_{E}\left(\mathcal{L}_{\mathrm{QM}}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

- Mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- Retain space dependence!

Mean-Field Approximation

- Mean-field Lagrangian: $\mathcal{L}_{M F}=\mathcal{L}_{\text {mes }}^{M F}+\bar{\psi} \mathcal{S}^{-1} \psi$
- mesonic part: $\quad \mathcal{L}_{\text {mes }}^{M F}=-\frac{1}{2}\left((\vec{\nabla} S)^{2}+(\vec{\nabla} P)^{2}\right)-U(S, P) \quad$ (entirely classical)
- quark part bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed quark propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-g\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-H_{M F}[S, P]\right)
$$

Mean-Field Approximation

- Mean-field Lagrangian: $\mathcal{L}_{M F}=\mathcal{L}_{\text {mes }}^{M F}+\bar{\psi} \mathcal{S}^{-1} \psi$
- mesonic part: $\quad \mathcal{L}_{\text {mes }}^{M F}=-\frac{1}{2}\left((\vec{\nabla} S)^{2}+(\vec{\nabla} P)^{2}\right)-U(S, P) \quad$ (entirely classical)
- quark part bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed quark propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-g\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-H_{M F}[S, P]\right)
$$

- Thermodynamic potential: $\Omega_{M F}=\Omega_{\text {mes }}+\Omega_{q}$
- $\Omega_{\text {mes }}=\frac{1}{V} \int_{V} d^{3} x\left(\frac{1}{2}\left((\vec{\nabla} \sigma)^{2}+(\vec{\nabla} \vec{\pi})^{2}\right)+U(\sigma, \vec{\pi})\right) \quad$ straightforward
- $\Omega_{q}=-\frac{T}{V} \operatorname{Tr} \log \left[\frac{1}{T}\left(i \partial_{0}-H_{M F}+\mu\right)\right]$

$$
=-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \log \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right],
$$

$E_{\lambda}=$ eigenvalues of $H_{M F}[S, P] \Rightarrow$ in general difficult

Condensate modulations

- Difficulty: $H_{Q M}$ is nondiagonal in momentum space
\rightarrow has been diagonalized only for certain condensate functions so far
- Generalized constituent quark mass functions: $M(\vec{x}):=g(S(\vec{x})+i P(\vec{x}))$
- Modulations with analytically known eigenvalues:
- homogeneous matter: $M=$ const.
- chiral density wave (CDW): $M(z)=\Delta e^{i q z}$
- real kink crystal (RKC): $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu)$

Condensate modulations

- Difficulty: $H_{Q M}$ is nondiagonal in momentum space
\rightarrow has been diagonalized only for certain condensate functions so far
- Generalized constituent quark mass functions: $M(\vec{x}):=g(S(\vec{x})+i P(\vec{x}))$
- Modulations with analytically known eigenvalues:
- homogeneous matter: $M=$ const.
- chiral density wave (CDW): $M(z)=\Delta e^{i q z}$
- real kink crystal (RKC): $\quad M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu)$
- With this one gets:
$\Omega_{q}=-\int_{0}^{\infty} d E \rho(E ;\{S, P\})\left\{E+T \log \left[1+e^{-\frac{E-\mu}{T}}\right]+T \log \left[1+e^{-\frac{E+\mu}{T}}\right]\right\}$
- $\rho(E ;\{S, P\})$: analytically known density of states

Standard and extended MFA

- $\Omega_{q}=-\int_{0}^{\infty} d E \rho(E ; \sigma, \vec{\pi})\left\{E+T \log \left[1+e^{-\frac{E-\mu}{T}}\right]+T \log \left[1+e^{-\frac{E+\mu}{T}}\right]\right\}$
- separates into vacuum ($\sim E$) and medium ($\sim T \log [\ldots]$) parts
- vacuum contribution ("Dirac sea") divergent

Standard and extended MFA

- $\Omega_{q}=-\int_{0}^{\infty} d E \rho(E ; \sigma, \vec{\pi})\left\{E+T \log \left[1+e^{-\frac{E-\mu}{T}}\right]+T \log \left[1+e^{-\frac{E+\mu}{T}}\right]\right\}$
- separates into vacuum ($\sim E$) and medium ($\sim T \log [\ldots]$) parts
- vacuum contribution ("Dirac sea") divergent
- standard mean-field approximation (sMFA): neglect the vacuum part completely ("no-sea approximation")
- standard procedure for a long time
- hope: Dirac-sea effects can be absorbed in the meson-potential
- but: artifacts for the phase diagram [Skokov et al., PRD (2010)]

Standard and extended MFA

- $\Omega_{q}=-\int_{0}^{\infty} d E \rho(E ; \sigma, \vec{\pi})\left\{E+T \log \left[1+e^{-\frac{E-\mu}{T}}\right]+T \log \left[1+e^{-\frac{E+\mu}{T}}\right]\right\}$
- separates into vacuum ($\sim E$) and medium ($\sim T \log [\ldots]$) parts
- vacuum contribution ("Dirac sea") divergent
- standard mean-field approximation (sMFA): neglect the vacuum part completely ("no-sea approximation")
- standard procedure for a long time
- hope: Dirac-sea effects can be absorbed in the meson-potential
- but: artifacts for the phase diagram [Skokov et al., PRD (2010)]
- extended mean-field approximation (eMFA): include the Dirac sea

Standard and extended MFA

- $\Omega_{q}=-\int_{0}^{\infty} d E \rho(E ; \sigma, \vec{\pi})\left\{E+T \log \left[1+e^{-\frac{E-\mu}{T}}\right]+T \log \left[1+e^{-\frac{E+\mu}{T}}\right]\right\}$
- separates into vacuum ($\sim E$) and medium ($\sim T \log [\ldots]$) parts
- vacuum contribution ("Dirac sea") divergent
- standard mean-field approximation (sMFA): neglect the vacuum part completely ("no-sea approximation")
- standard procedure for a long time
- hope: Dirac-sea effects can be absorbed in the meson-potential
- but: artifacts for the phase diagram [Skokov et al., PRD (2010)]
- extended mean-field approximation (eMFA): include the Dirac sea
- This talk: eMFA study of inhomogeneous (and homogeneous) phases [S. Carignano, MB, B.-J. Schaefer, PRD (2014); S. Carignano, MB, W. Elkamhawy, PRD (2016)]

Fixing the parameters

- Fit g, λ, and v to three vacuum "observables" : $M_{v a c}=g\langle\sigma\rangle, m_{\sigma}, f_{\pi}$

Fixing the parameters

- Fit g, λ, and v to three vacuum "observables" : $M_{v a c}=g\langle\sigma\rangle, m_{\sigma}, f_{\pi}$
- sMFA: $m_{\sigma}^{2}=\left.\frac{\partial^{2} U}{\partial \sigma^{2}}\right|_{\sigma=\langle\sigma\rangle, \vec{\pi}=\overrightarrow{0}} \equiv m_{\sigma, \text { tree }}^{2}$,

$$
f_{\pi}=\langle\sigma\rangle
$$

(Goldberger-Treiman: $M_{v a c}=g_{\pi} f_{\pi}$)

Fixing the parameters

- Fit g, λ, and v to three vacuum "observables" : $M_{\text {vac }}=g\langle\sigma\rangle, m_{\sigma}, f_{\pi}$
- sMFA: $m_{\sigma}^{2}=\left.\frac{\partial^{2} U}{\partial \sigma^{2}}\right|_{\sigma=\langle\sigma\rangle, \vec{\pi}=\overrightarrow{0}} \equiv m_{\sigma, \text { tree }}^{2}, \quad f_{\pi}=\langle\sigma\rangle$
(Goldberger-Treiman: $M_{\text {vac }}=g_{\pi} f_{\pi}$)
- Including the Dirac sea (usual identification):

$$
m_{\sigma}^{2}=\left.\frac{\partial^{2} \Omega}{\partial \sigma^{2}}\right|_{\sigma=\langle\sigma\rangle, \vec{\pi}=\overrightarrow{0}} \equiv m_{\sigma, \text { curv }}^{2}, \quad f_{\pi}=\langle\sigma\rangle
$$

Fixing the parameters

- Fit g, λ, and v to three vacuum "observables" : $M_{\text {vac }}=g\langle\sigma\rangle, m_{\sigma}, f_{\pi}$
- sMFA: $m_{\sigma}^{2}=\left.\frac{\partial^{2} U}{\partial \sigma^{2}}\right|_{\sigma=\langle\sigma\rangle, \vec{\pi}=\overrightarrow{0}} \equiv m_{\sigma, \text { tree }}^{2}, \quad f_{\pi}=\langle\sigma\rangle$
(Goldberger-Treiman: $M_{\text {vac }}=g_{\pi} f_{\pi}$)
- Including the Dirac sea (usual identification):

$$
m_{\sigma}^{2}=\left.\frac{\partial^{2} \Omega}{\partial \sigma^{2}}\right|_{\sigma=\langle\sigma\rangle, \vec{\pi}=0} \equiv m_{\sigma, \text { curv }}^{2}, \quad f_{\pi}=\langle\sigma\rangle
$$

- Correct procedure meson propagator with loop corrections:

$$
\begin{aligned}
& D_{j}\left(q^{2}\right)=\frac{1}{q^{2}-m_{j, t r e e}^{2}+g^{2} \Pi_{j}\left(q^{2}\right)+i \epsilon}=\frac{z_{j}}{q^{2}-m_{j, j o l e}^{2}+i \epsilon}+\text { reg. terms, } \quad j=\sigma, \pi \\
\rightarrow \quad & m_{\sigma} \equiv m_{\sigma, p o l e}, \quad f_{\pi}=\frac{M_{v a c}}{g_{\pi, \text { een }}}=\frac{1}{\sqrt{Z_{\pi}}}\langle\sigma\rangle
\end{aligned}
$$

Fixing the parameters

- $g^{2}=\frac{M_{v a c}^{2}}{f_{\pi}^{2}+\frac{1}{2} M_{\text {vac }}^{2} L_{2}(0)}, \quad \lambda=2 g^{2} \frac{m_{\sigma}^{2}}{4 M_{\text {vac }}^{2}}\left[1-\frac{1}{2} g^{2}\left(1-\frac{4 M_{v a c}^{2}}{m_{\sigma}^{2}}\right) L_{2}\left(m_{\sigma}^{2}\right)\right], \quad v^{2}=\frac{M_{v a c}^{2}}{g^{2}}-\frac{g^{2} L_{1}}{\lambda}$;
$L_{1}=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-M_{\text {vac }}^{2}+i \epsilon}, \quad L_{2}\left(q^{2}\right)=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{\left[(p+q)^{2}-M_{\text {vac }}^{2}+i \epsilon\left[\left[p^{2}-M^{2}+i \epsilon\right]\right.\right.}$

Fixing the parameters

- $g^{2}=\frac{M_{v a c}^{2}}{f_{\pi}^{2}+\frac{1}{2} M_{\text {vac }}^{2} L_{2}(0)}, \quad \lambda=2 g^{2} \frac{m_{\sigma}^{2}}{4 M_{\text {vac }}^{2}}\left[1-\frac{1}{2} g^{2}\left(1-\frac{4 M_{v a c}^{2}}{m_{\sigma}^{2}}\right) L_{2}\left(m_{\sigma}^{2}\right)\right], \quad v^{2}=\frac{M_{v a c}^{2}}{g^{2}}-\frac{g^{2} L_{1}}{\lambda}$;

$$
L_{1}=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-M_{\text {vac }}^{2}+i \epsilon}, \quad L_{2}\left(q^{2}\right)=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{\left[(p+q)^{2}-M_{\text {vac }}^{2}+i \epsilon\left[\left[p^{2}-M^{2}+i \epsilon\right]\right.\right.}
$$

- "Hands-on renormalization":
- Regularize L_{1} and L_{2} (here: Pauli-Villars).
- Increase cutoff Λ, keeping $M_{\text {vac }}, m_{\sigma}$, and f_{π} fixed.

Fixing the parameters

- $g^{2}=\frac{M_{v a c}^{2}}{f_{\pi}^{2}+\frac{1}{2} M_{\text {vac }}^{2} L_{2}(0)}, \quad \lambda=2 g^{2} \frac{m_{\sigma}^{2}}{4 M_{v a c}^{2}}\left[1-\frac{1}{2} g^{2}\left(1-\frac{4 M_{v a c}^{2}}{m_{\sigma}^{2}}\right) L_{2}\left(m_{\sigma}^{2}\right)\right], \quad v^{2}=\frac{M_{v a c}^{2}}{g^{2}}-\frac{g^{2} L_{1}}{\lambda}$;
$L_{1}=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-M_{\text {vac }}^{2}+i \epsilon}, \quad L_{2}\left(q^{2}\right)=4 i N_{f} N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{\left[(p+q)^{2}-M_{\text {vac }}^{2}+i \epsilon\left[\left[p^{2}-M^{2}+i \epsilon\right]\right.\right.}$
- "Hands-on renormalization":
- Regularize L_{1} and L_{2} (here: Pauli-Villars).
- Increase cutoff Λ, keeping $M_{\text {vac }}, m_{\sigma}$, and f_{π} fixed.
- Results for $M_{\text {vac }}=300 \mathrm{MeV}, f_{\pi}=88 \mathrm{MeV}, m_{\sigma}=600 \mathrm{MeV}$:

Phase diagram for homogeneous matter

Phase diagram for homogeneous matter

Phase diagram for homogeneous matter

Phase diagram for homogeneous matter

Phase diagram for homogeneous matter

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE UNIVERSITATT DARMSTADT

Phase diagram for homogeneous matter

TECHNISCHE

- Convergence reached at $\Lambda \approx 2 \mathrm{GeV}$.

Phase diagram for inhomogeneous matter

- CDW modeluation: $M(\vec{x}) \equiv g(S(\vec{x})+i P(\vec{x}))=\Delta e^{i q z}$

Phase diagram for inhomogeneous matter

- CDW modeluation: $M(\vec{x}) \equiv g(S(\vec{x})+i P(\vec{x}))=\Delta e^{i q z}$

Phase diagram for inhomogeneous matter

- CDW modeluation: $M(\vec{x}) \equiv g(S(\vec{x})+i P(\vec{x}))=\Delta e^{i q z}$

Phase diagram for inhomogeneous matter

- CDW modeluation: $M(\vec{x}) \equiv g(S(\vec{x})+i P(\vec{x}))=\Delta e^{i q z}$

Phase diagram for inhomogeneous matter

- CDW modeluation: $M(\vec{x}) \equiv g(S(\vec{x})+i P(\vec{x}))=\Delta e^{i q z}$

- inhomogeneous island gets smaller but survives.
- Lifshitz point $\hat{=}$ critical point

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\Omega(M)=\Omega(0)+\frac{1}{V} \int d^{3} x\left\{\frac{1}{2} \gamma_{2}|M(\vec{x})|^{2}+\frac{1}{4} \gamma_{4, a}|M(\vec{x})|^{4}+\frac{1}{4} \gamma_{4, b}|\nabla M(\vec{x})|^{2}+\ldots\right\},
$$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\begin{array}{ll}
\Omega(M)=\Omega(0)+\frac{1}{V} \int d^{3} x & \left\{\frac{1}{2} \gamma_{2}|M(\vec{x})|^{2}+\frac{1}{4} \gamma_{4, a}|M(\vec{x})|^{4}+\frac{1}{4} \gamma_{4, b}|\nabla M(\vec{x})|^{2}+\ldots\right\}, \\
& \Rightarrow \gamma_{i}>0 \\
-\gamma_{2}<0, \gamma_{4 b}>0 & \Rightarrow \text { restored phase }(M \equiv 0) \\
& \Rightarrow \gamma_{4 b}<0
\end{array} \quad \Rightarrow \text { inhomogeneous broken phase }(M=\text { const. } \neq 0),
$$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\begin{array}{ll}
\Omega(M)=\Omega(0)+\frac{1}{V} \int d^{3} x & \left\{\frac{1}{2} \gamma_{2}|M(\vec{x})|^{2}+\frac{1}{4} \gamma_{4, a}|M(\vec{x})|^{4}+\frac{1}{4} \gamma_{4, b}|\nabla M(\vec{x})|^{2}+\ldots\right\}, \\
& \Rightarrow \gamma_{i}>0 \\
& \Rightarrow \gamma_{2}<0, \gamma_{4 b}>0
\end{array} \quad \Rightarrow \text { homogeneneous broken phase }(M=\text { const. } \neq 0),
$$

- Critical point: $\gamma_{2}=\gamma_{4, a}=0$

Lifshitz point: $\gamma_{2}=\gamma_{4, b}=0$

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\begin{array}{ll}
\Omega(M)=\Omega(0)+\frac{1}{V} \int d^{3} x & \left\{\frac{1}{2} \gamma_{2}|M(\vec{x})|^{2}+\frac{1}{4} \gamma_{4, a}|M(\vec{x})|^{4}+\frac{1}{4} \gamma_{4, b}|\nabla M(\vec{x})|^{2}+\ldots\right\}, \\
& \Rightarrow \gamma_{i}>0 \\
& \Rightarrow \gamma_{2}<0, \gamma_{4 b}>0
\end{array} \quad \Rightarrow \text { homogeneneous broken phase }(M=\text { const. } \neq 0),
$$

- Critical point: $\gamma_{2}=\gamma_{4, a}=0$

Lifshitz point: $\gamma_{2}=\gamma_{4, b}=0$

- NJL: $\quad \gamma_{4, a}=\gamma_{4, b} \Rightarrow$ CP $=\operatorname{LP} \quad$ [Nickel, PRL (2009)]

Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

$$
\begin{aligned}
\Omega(M)=\Omega(0)+\frac{1}{V} \int d^{3} x & \left\{\frac{1}{2} \gamma_{2}|M(\vec{x})|^{2}+\frac{1}{4} \gamma_{4, a}|M(\vec{x})|^{4}+\frac{1}{4} \gamma_{4, b}|\nabla M(\vec{x})|^{2}+\ldots\right\}, \\
& \Rightarrow \gamma_{i}>0 \\
\text { - } \gamma_{2}<0, \gamma_{4 b}>0 & \Rightarrow \text { homogtored phase }(M \equiv 0) \\
& \gamma_{4 b}<0
\end{aligned} \quad \Rightarrow \text { inhomogeneous broken phase }(M=\text { const. } \neq 0)
$$

- Critical point: $\gamma_{2}=\gamma_{4, a}=0$

Lifshitz point: $\gamma_{2}=\gamma_{4, b}=0$

- NJL: $\quad \gamma_{4, a}=\gamma_{4, b} \Rightarrow$ CP $=$ LP \quad [Nickel, PRL (2009)]
- QM-model: $\gamma_{4, a}=\gamma_{4, b}$ if $m_{\sigma}=2 M_{\text {vac }}$ (as always in NJL!), but in general CP and LP do not coincide.

Sigma-mass dependence

- GL results and phase diagrams for $m_{\sigma}=550,590,610,650 \mathrm{MeV}$:

- Size of the inhomogeneous phase very sensitive to m_{σ} !

Different parameter fixing

- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, p o l e}$
"BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, c u r v}$

Different parameter fixing

- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }} \quad$ "BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$
- Parameters:

Different parameter fixing

- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
"BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, c u r v}$
- Parameters: completely different

Different parameter fixing

- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
"BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$
- Parameters: completely different
- Homogeneous phase diagram:
- identical for $m_{\sigma}=2 M_{\text {vac }}$ (moderate differences for $m_{\sigma} \neq 2 M_{\text {vac }}$)
- reason: $\Omega_{\text {hom }}$ depends only on the ratio $\frac{\lambda}{g^{4}}$

Different parameter fixing

- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }} \quad$ "BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$
- Parameters: completely different
- Homogeneous phase diagram:
- identical for $m_{\sigma}=2 M_{\text {vac }}$ (moderate differences for $m_{\sigma} \neq 2 M_{\text {vac }}$)
- reason: $\Omega_{\text {hom }}$ depends only on the ratio $\frac{\lambda}{g^{4}}$
- Ginzburg-Landau:
- γ_{2} and $\gamma_{4, a}$ UV finite in both schemes
- $\gamma_{2}^{\mathrm{RP}}-\gamma_{2}^{\mathrm{BC}}=-M_{\text {vac }}^{2} \eta\left(m_{\sigma}^{2}\right), \quad \gamma_{4, a}^{\mathrm{RP}}-\gamma_{4, a}^{\mathrm{BC}}=\eta\left(m_{\sigma}^{2}\right)$.
- $\eta\left(m_{\sigma}^{2}\right)$ UV finite, vanishes for $m_{\sigma}=2 M_{\text {vac }}$

Different parameter fixing

- Inhomogeneous phase diagram: qualitatively different!

Different parameter fixing

- Inhomogeneous phase diagram: $\quad \Lambda=200 \mathrm{MeV}$

Different parameter fixing

- Inhomogeneous phase diagram: $\Lambda=300 \mathrm{MeV}$

Different parameter fixing

- Inhomogeneous phase diagram: $\Lambda=400 \mathrm{MeV}$

Different parameter fixing

- Inhomogeneous phase diagram:

qualitatively different!

Different parameter fixing

- Inhomogeneous phase diagram:
"RP"

qualitatively different!

- Ginzburg-Landau:
- $\gamma_{4, b}=\frac{2}{g^{2}}-\left.L_{2}(0)\right|_{M=0}+$ UV finite terms
- RP: $2 / g^{2}=L_{2}(0)+$ finite \Rightarrow UV divergences cancel
- BC: $g=$ const. \Rightarrow UV divergence persists

Different parameter fixing

- Inhomogeneous phase diagram:
"RP"

qualitatively different!

- Ginzburg-Landau:
- $\gamma_{4, b}=\frac{2}{g^{2}}-\left.L_{2}(0)\right|_{M=0}+$ UV finite terms
- RP: $2 / g^{2}=L_{2}(0)+$ finite \Rightarrow UV divergences cancel
- BC: $g=$ const. \Rightarrow UV divergence persists \Rightarrow no renormalized limit!

Different parameter fixing

- So far we discussed:
- "RP": $\quad f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
- "BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$

Different parameter fixing

- So far we discussed:
- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
- "BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$
- How about the two other possibilities?
- "BP": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
- "RC": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { curv }}$

Different parameter fixing

- So far we discussed:
- "RP": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
- "BC": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { curv }}$
- How about the two other possibilities?
- "BP": $f_{\pi}=\langle\sigma\rangle, \quad m_{\sigma}=m_{\sigma, \text { pole }}$
- "RC": $f_{\pi}=\frac{\langle\sigma\rangle}{\sqrt{Z_{\pi}}}, \quad m_{\sigma}=m_{\sigma, \text { curv }}$

Does not even work for homogeneous phases:

- $\gamma_{2}^{\mathrm{BP}}=\frac{m_{\sigma}^{2}}{4} L_{2}(0)+$ fiinite \Rightarrow chiral symmetry gets never restored
- $\gamma_{2}^{\mathrm{RC}}=-\frac{m_{\sigma}^{2}}{4} L_{2}(0)+$ fiinite \Rightarrow chiral symmetry is never broken

Fate of the inhomogeneous continent

NJL model

Fate of the inhomogeneous continent

NJL model

QM model, $\quad \Lambda=0$

- no continent

Fate of the inhomogeneous continent

NJL model

QM model, $\quad \Lambda=600 \mathrm{MeV}$

- The continent appears ...

Fate of the inhomogeneous continent

NJL model

QM model, $\quad \Lambda=5 \mathrm{GeV}$

- ... and melts away

Fate of the inhomogeneous continent

NJL model

QM model, $\quad \Lambda=5 \mathrm{GeV}$

- ... and melts away
- Problem: $\Omega_{\text {MF }}$ not bounded from below
- w.r.t. large amplitudes Δ when $\lambda<0$
- w.r.t. large wave numbers q when $g^{2}<0$

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$

$$
\Lambda=600 \mathrm{MeV}
$$

$\Lambda=5 \mathrm{GeV}$

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$
$\Lambda=600 \mathrm{MeV}$
$\Lambda=5 \mathrm{GeV}$

- known instability [Skokov et al., PRD 2010] "symptomatic of the renormalized one-loop approximation" [Coleman, Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem".

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$
$\Lambda=600 \mathrm{MeV}$
$\Lambda=5 \mathrm{GeV}$

- known instability [Skokov et al., PRD 2010] "symptomatic of the renormalized one-loop approximation" [Coleman, Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem".
- similar behavor in q direction [Broniowski, Kutschera, PLB (1990)]

Vacuum instabilities

- Thermodynamic potential for $T=\mu=0$
$\Lambda=600 \mathrm{MeV}$
$\Lambda=5 \mathrm{GeV}$

- known instability [Skokov et al., PRD 2010] "symptomatic of the renormalized one-loop approximation" [Coleman, Weinberg, PRD (1973)]. The inclusion of higher order loop contributions is known to cure this problem".
- similar behavor in q direction [Broniowski, Kutschera, PLB (1990)]
- Can the problem be cured by including bosonic fluctuations $(\rightarrow$ FRG)?

Summary

- Inhomogeneous phases in the QCD phase diagram should be considered!

Summary

- Inhomogeneous phases in the QCD phase diagram should be considered!
- Investigation of inhomogeneous phases in the QM model with fermionic vacuum fluctuations (Dirac sea):
- Increasing cutoff: Inhomogeneous phase shrinks, but generally survives
- High sensitivity to the sigma-meson mass;

$$
m_{\sigma}=2 M_{\text {vac }} \Rightarrow L P=C P
$$

- Consistent loop corrections to m_{σ} and f_{π} crucial
- Vacuum instabilities w.r.t. large amplitudes and wave numbers

Outlook

- Towards including bosonic fluctuations:
- Repeat present analysis of fermionic fluctuations within the FRG framework [Carignano, Schaefer, MB; work in progress]
- Identify phase boundary of the inhomogeneous phase as onset of p-wave pion condensation [\rightarrow talk by R.A. Tripolt]:

$$
D_{\pi}^{-1}(\omega=0,|\vec{p}|=q)=0
$$

- Analyze bosonic excitation spectrum in the inhomogeneous phase
[\rightarrow M. Schramm, next talk]

