In-Medium Spectral Functions and Transport Coefficients of Hadrons

Ralf-Arno Tripolt¹, Lorenz von Smekal², Jochen Wambach¹

¹ ECT*, Trento, Italy
 ² Justus-Liebig-Universität Gießen, Germany

International School of Nuclear Physics Nuclear matter under extreme conditions -Relativistic heavy-ion collisions

Erice, Sicily, September 16 - 24, 2016

Outline

I) Theoretical setup

- Functional Renormalization Group (FRG)
- quark-meson model
- analytic continuation procedure

II) Results

- mesonic spectral functions
- ▶ mesonic shear viscosity and η/s

III) Summary and outlook

I) Theoretical setup

[courtesy L. Holicki]

Euclidean partition function for a scalar field:

$$Z[J] = \int \mathcal{D}\varphi \, \exp\left(-S[\varphi] + \int d^4x \, J(x)\varphi(x)\right)$$

Wilson's coarse-graining: split φ into low- and high-frequency modes

$$\varphi(x) = \varphi_{q \le k}(x) + \varphi_{q > k}(x)$$

only include fluctuations with q > k

$$Z[J] = \int \mathcal{D}\varphi_{q \le k} \underbrace{\int \mathcal{D}\varphi_{q > k} \, \exp\left(-S[\varphi] + \int d^4x J(x)\varphi(x)\right)}_{Z_k[J]}$$

Scale-dependent partition function can be defined as

$$Z_k[J] = \int \mathcal{D}\varphi \, \exp\left(-S[\varphi] - \Delta S_k[\varphi] + \int d^4x J(x)\varphi(x)\right)$$

by introducing a regulator term that suppresses IR modes

$$\Delta S_k[\varphi] = \frac{1}{2} \int \frac{d^4q}{(2\pi)^4} \,\varphi(-q) R_k(q) \varphi(q)$$

Switch to scale-dependent effective action ($\phi(x) = \langle \varphi(x) \rangle$):

$$\Gamma_k[\phi] = \sup_J \left(\int d^4x \, J(x)\phi(x) - \log Z_k[J] \right) - \Delta S_k[\phi]$$

[wikipedia.org/wiki/Functional_renormalization_group]

Flow equation for the effective average action Γ_k :

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left(\partial_k R_k \left[\Gamma_k^{(2)} + R_k \right]^{-1} \right)$$

[C. Wetterich, Phys. Lett. B 301 (1993) 90]

[wikipedia.org/wiki/Functional_renormalization_group]

- \blacktriangleright Γ_k interpolates between bare action S at $k=\Lambda$ and effective action Γ at k=0
- \blacktriangleright regulator R_k acts as a mass term and suppresses fluctuations with momenta smaller than k
- ▶ the use of 3D regulators allows for a simple analytic continuation procedure

Quark-meson model

Ansatz for the scale-dependent effective average action:

$$\Gamma_{k}[\,\overline{\psi},\psi,\phi] = \int d^{4}x \left\{ \overline{\psi}\left(\partial\!\!\!/ + h(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5}) - \mu\gamma_{0}\right)\psi + \frac{1}{2}(\partial_{\mu}\phi)^{2} + U_{k}(\phi^{2}) - c\sigma \right\}$$

- effective low-energy model for QCD with two flavors
- describes spontaneous and explicit chiral symmetry breaking
- flow equation for the effective average action:

$$\partial_k \Gamma_k = \frac{1}{2} \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$$

Flow of the Effective Potential at $\mu = 0$ and T = 0

- chiral order parameter σ₀
 decreases towards higher T and μ
- ► a crossover is observed at T ≈ 175 MeV and µ = 0
- critical endpoint (CEP) at $\mu \approx 292$ MeV and $T \approx 10$ MeV

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

S. Carignano, M. Buballa, B.-J. Schaefer, Phys. Rev. D 90, 014033 (2014) T. K. Herbst, J. M. Pawlowski, B.-J. Schaefer, Phys. Rev. D 88, 014007 (2013)

$$\frac{dT_c}{d\mu_c} = -\frac{\Delta n_\psi}{\Delta s}$$

Pion condensation for the QM model - Preliminary

R.-A. T., B.-J. Schaefer, L. von Smekal, J. Wambach in preparation

regime of pion condensation (FRG)

Flow equations for two-point functions

▶ quark-meson vertices are given by $\Gamma^{(3)}_{\bar{\psi}\psi\sigma} = h$, $\Gamma^{(3)}_{\bar{\psi}\psi\vec{\pi}} = ih\gamma^5\vec{\tau}$

▶ mesonic vertices from scale-dependent effective potential: $U_{k,\phi_i\phi_j\phi_m}^{(3)}$, $U_{k,\phi_i\phi_j\phi_m\phi_n}^{(4)}$

one-loop structure and 3D regulators allow for a simple analytic continuation!

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:

The analytic continuation problem

Analytic continuation problem: How to get back to real energies?

Two-step analytic continuation procedure

1) Use periodicity in external imaginary energy $ip_0 = i2n\pi T$:

$$n_{B,F}(E+ip_0) \to n_{B,F}(E)$$

2) Substitute p_0 by continuous real frequency ω :

$$\Gamma^{(2),R}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma^{(2),E}(ip_0 \to -\omega - i\epsilon,\vec{p})$$

Spectral function is then given by

$$\rho(\omega, \vec{p}) = -\mathrm{Im}(1/\Gamma^{(2),R}(\omega, \vec{p}))/\pi$$

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
 [J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)]
 [N. Landsman and C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

Why are spectral functions interesting?

Spectral functions determine both real-time and imaginary-time propagators,

$$D^{R}(\omega) = -\int d\omega' \frac{\rho(\omega')}{\omega' - \omega - i\varepsilon}$$
$$D^{A}(\omega) = -\int d\omega' \frac{\rho(\omega')}{\omega' - \omega + i\varepsilon}$$
$$D^{E}(p_{0}) = \int d\omega' \frac{\rho(\omega')}{\omega' + ip_{0}}$$

Spectral functions allow access to many observables, e.g. transport coefficients like the shear viscosity:

$$= \frac{1}{24} \lim_{\omega \to 0} \lim_{|\vec{p}| \to 0} \frac{1}{\omega} \int d^4 x \ e^{ipx} \left\langle \left[T_{ij}(x), T^{ij}(0) \right] \right\rangle$$

[B. Mueller, arXiv: 1309.7616]

II) Results

[courtesy L. Holicki]

- chiral order parameter σ₀
 decreases towards higher T and μ
- ► a crossover is observed at T ≈ 175 MeV and µ = 0
- critical endpoint (CEP) at $\mu \approx 292$ MeV and $T \approx 10$ MeV

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Decay channels of the sigma mesons

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Decay channels of the pions

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Flow of Sigma and Pion Spectral Function at $\mu = 0$, T = 0 and $\vec{p} = 0$

Sigma and Pion Spectral Function with increasing T at $\mu = 0$ and $\vec{p} = 0$

Sigma and Pion Spectral Function with increasing μ at $T\approx 10~{\rm MeV}$ and $\vec{p}=0$

Applying the Green-Kubo formula for the shear viscosity

$$\eta = \frac{1}{24} \lim_{\omega \to 0} \lim_{|\vec{p}| \to 0} \frac{1}{\omega} \int d^4x \ e^{ipx} \left\langle \left[T_{ij}(x), T^{ij}(0) \right] \right\rangle$$

to the quark-meson model with energy-momentum tensor

$$T^{ij}(x) = \frac{i}{2} \left(\overline{\psi} \gamma^i \partial^j \psi - \partial^j \, \overline{\psi} \gamma^i \psi \right) + \partial^j \sigma \partial^i \sigma + \partial^j \vec{\pi} \partial^i \vec{\pi}$$

gives (dominant contribution)

$$\eta_{\sigma,\pi} \propto \int \frac{d\omega}{2\pi} \int \frac{d^3p}{(2\pi)^3} \ p_x^2 \ p_y^2 \ n_B'(\omega) \ \rho_{\sigma,\pi}^2(\omega,\vec{p})$$

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. arXiv: 1605.00771]

Space-like processes of the sigma mesons

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Space-like processes of the pions

[[]R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Sigma Spectral Function vs. ω and \vec{p} at $\mu = 0$ and T = 0 MeV

Pion Spectral Function vs. ω and \vec{p} at $\mu = 0$ and T = 0 MeV

- time-like region
 (ω > p) is
 Lorentz-boosted to
 higher energies
- capture process $\pi^* + \pi \rightarrow \sigma$ is suppressed at large \vec{p}
- space-like region

 (ω < p) is non-zero at finite T due to space-like processes

T = 0 MeV

Sigma and Pion Spectral Function vs. ω and \vec{p} at $\mu = 0$ and increasing T

(Loading movie...)

Shear viscosity at $\mu = 0$

- ▶ $\eta_{\pi,\chi \text{PT}}$: result from chiral perturbation theory [Lang, Kaiser, Weise, EPJ A 48, 109 (2012)]
 - ► large shear viscosity at low temperatures due to small width of the pion peak → 4π processes missing

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. arXiv: 1605.00771]

Shear viscosity over entropy density η/s at $\mu = 0$

- η_{π,χPT}: result from chiral perturbation theory
- large shear viscosity at low temperatures due to small width of pion peak
 → 4π processes missing
- ▶ η/s is always larger than the AdS/CFT limiting value of $\eta/s \ge 1/4\pi$

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. arXiv: 1605.00771]

New method to obtain real-time quantities like spectral functions and transport coefficients at finite T and μ from the FRG:

- involves an analytic continuation from imaginary to real frequencies on the level of the flow equations
- thermodynamically consistent and symmetry-structure preserving
- \blacktriangleright feasibility of the method demonstrated by calculating meson spectral functions and η/s for the quark-meson model

Outlook:

- nucleon spectral function
- vector meson spectral functions