Role of van der Waals interactions in hadron systems: from nuclear matter to lattice QCD

Volodymyr Vovchenko ${ }^{a, b, c}$
${ }^{a}$ Frankfurt Institute for Advanced Studies \square
${ }^{b}$ Institute for Theoretical Physics, University of Frankfurt \square
${ }^{c}$ Taras Shevchenko National University of Kiev

Collaborators: Paolo Alba, Dmitry Anchishkin, Mark Gorenstein, and Horst Stoecker

Erice School on Nuclear Physics 2016

Erice, Sicily, Italy September 19, 2016

HGS-HIRe for FAIR

Strongly interacting matter

- Theory of strong interactions: Quantum Chromodynamics (QCD)
- Basic degrees of freedom: quarks and gluons
- At smaller energies confined into hadrons (baryons and mesons)

Where is it relevant?

- Early universe
- Neutron stars
- Heavy-ion collisions

First principles of QCD are rather established, but direct calculations are problematic
Phenomenological tools are very useful
Experiment: heavy-ion collisions

QCD equation of state at $\mu=0$

Lattice simulations provide EoS at $\mu=0^{1}$

Common model for confined phase is ideal HRG: non-interacting gas of known hadrons and resonances

- Good description of thermodynamic functions up to 180 MeV
- Rapid breakdown in crossover region for description of susceptibilities ${ }^{2}$
- Often interpreted as clear signal of deconfinement...
- But what is the role of hadronic interactions beyond normal HRG?
${ }^{1}$ Bazavov et al., PRD 90, 094503 (2014); Borsanyi et al., PLB 730, 99 (2014)
${ }^{2}$ Ding, Karsch, Mukherjee, IJMPE 24, 1530007 (2015)

Van der Waals equation

Van der Waals equation

$$
P(T, V, N)=\frac{N T}{V-b N}-a \frac{N^{2}}{V^{2}}
$$

Formulated in 1873.

Simplest model which contains attractive and repulsive interactions

Contains 1st order phase transition and critical point

Can elucidate role of fluctuations in phase transitions

Nobel Prize in 1910.

Two ingredients:

1) Short-range repulsion: particles are hard spheres,
$V \rightarrow V-b N, \quad b=4 \frac{4 \pi r^{3}}{3}$
2) Attractive interactions in mean-field approximation,
$P \rightarrow P-a n^{2}$

Van der Waals equation

- VDW isotherms show irregular behavior below certain temperature T_{C}
- Below T_{C} isotherms are corrected by Maxwell's rule of equal areas
- Results in appearance of mixed phase

Critical point

$$
\begin{aligned}
& \frac{\partial p}{\partial v}=0, \quad \frac{\partial^{2} p}{\partial v^{2}}=0, \quad v=V / N \\
& p_{C}=\frac{a}{27 b^{2}}, n_{C}=\frac{1}{3 b}, \quad T_{C}=\frac{8 a}{27 b}
\end{aligned}
$$

Reduced variables

$$
\tilde{p}=\frac{p}{p_{C}}, \tilde{n}=\frac{n}{n_{C}}, \tilde{T}=\frac{T}{T_{C}}
$$

Nucleon-nucleon interaction

Nucleon-nucleon potential:

- Repulsive core at small distances
- Attraction at intermediate distances
- Suggestive similarity to VDW interactions
- Could nuclear matter described by VDW equation?

Standard VDW equation is for canonical ensemble and Boltzmann statistics Nucleons are fermions, obey Pauli exclusion principle
Unlike for classical fluids, quantum statistics is important

VDW equation originally formulated in canonical ensemble
How to transform CE pressure $P(T, n)$ into GCE pressure $P(T, \mu)$?

- Calculate $\mu(T, V, N)$ from standard TD relations
- Invert the relation to get $N(T, V, \mu)$ and put it back into $P(T, V, N)$
- Consistency due to thermodynamic equivalence of ensembles

Result: transcendental equation for $n(T, \mu)$

$$
\frac{N}{V} \equiv n(T, \mu)=\frac{n_{\mathrm{id}}\left(T, \mu^{*}\right)}{1+b n_{\mathrm{id}}\left(T, \mu^{*}\right)}, \quad \mu^{*}=\mu-b \frac{n T}{1-b n}+2 a n
$$

- Implicit equation in GCE, in CE it was explicit
- May have multiple solutions below T_{C}
- Choose one with largest pressure - equivalent to Maxwell rule in CE

Advantages of the GCE formulation

1) Hadronic physics applications: number of hadrons usually not conserved.
2) CE cannot describe particle number fluctuations. N-fluctuations in a small $\left(V \ll V_{0}\right)$ subsystem follow GCE results.
3) Good starting point to include effects of quantum statistics.

Scaled variance in VDW equation

New application from GCE formulation: particle number fluctuations
Scaled variance is an intensive measure of N -fluctuations

$$
\frac{\sigma^{2}}{N}=\omega[N] \equiv \frac{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}{\langle N\rangle}=\frac{T}{n}\left(\frac{\partial n}{\partial \mu}\right)_{T}=\frac{T}{n}\left(\frac{\partial^{2} P}{\partial \mu^{2}}\right)_{T}
$$

In ideal Boltzmann gas fluctuations are Poissonian and $\omega_{i d}[N]=1$.

$\omega[N]$ in VDW gas (pure phases)

$$
\omega[N]=\left[\frac{1}{(1-b n)^{2}}-\frac{2 a n}{T}\right]^{-1}
$$

- Repulsive interactions suppress N-fluctuations
- Attractive interactions enhance N -fluctuations

N -fluctuations are useful because they

- Carry information about finer details of EoS, e.g. phase transitions
- Measurable experimentally

Scaled variance

$$
\omega[N]=\frac{1}{9}\left[\frac{1}{(3-\tilde{n})^{2}}-\frac{\tilde{n}}{4 \widetilde{T}}\right]^{-1}
$$

- Deviations from unity signal effects of interaction
- Fluctuations grow rapidly near critical point

$$
\text { V. Vovchenko et al., J. Phys. A 305001, } 48 \text { (2015) }
$$

VDW equation with quantum statistics in GCE

Requirements for VDW equation with quantum statistics

1) Reduce to ideal quantum gas at $a=0$ and $b=0$
2) Reduce to classical VDW when quantum statistics are negligible
3) $s \geq 0$ and $s \rightarrow 0$ as $T \rightarrow 0$

Ansatz: Take pressure in the following form ${ }^{1,2}$

$$
p(T, \mu)=p^{\mathrm{id}}\left(T, \mu^{*}\right)-a n^{2}, \quad \mu^{*}=\mu-b p-a b n^{2}+2 a n
$$

where $p^{\text {id }}\left(T, \mu^{*}\right)$ is pressure of ideal quantum gas.

$$
n(T, \mu)=\left(\frac{\partial p}{\partial \mu}\right)_{T}=\frac{n^{\mathrm{id}}\left(T, \mu^{*}\right)}{1+b n^{\mathrm{id}}\left(T, \mu^{*}\right)}
$$

Algorithm for GCE

1) Solve system of eqs. for p and n at given (T, μ)
2) Choose the solution with largest pressure
${ }^{1}$ V. Vovchenko, D. Anchishkin, M. Gorenstein, Phys. Rev. C 91, 064314 (2015)
${ }^{2}$ Alternative derivation: K. Redlich, K. Zalewski, arXiv:1605.09686 (2016)
${ }^{3} \mathrm{a}=0 \Rightarrow$ excluded-volume model, D. Rischke et al., Z.Phys. C51, 485 (1991)

VDW gas of nucleons: zero temperature

How to fix \boldsymbol{a} and \boldsymbol{b} ? For classical fluid usually tied to CP location.
Different approach: Reproduce saturation density and binding energy
From $E_{B} \cong-16 \mathrm{MeV}$ and $n=n_{0} \cong 0.16 \mathrm{fm}^{-3}$ at $T=p=0$ we obtain: $a \cong 329 \mathrm{MeV} \mathrm{fm}^{3}$ and $b \cong 3.42 \mathrm{fm}^{3}$

Mixed phase at $T=0$ is specific:
A mix of vacuum ($n=0$) and liquid at $n=n_{0}$

VDW eq. now at very different scale!

VDW gas of nucleons: pressure isotherms

CE pressure

$$
p=p^{\mathrm{id}}\left[T, \mu^{\mathrm{id}}\left(\frac{n}{1-b n}, T\right)\right]-a n^{2}
$$

Behavior qualitatively same as for Boltzmann case
Mixed phase results from Maxwell construction
Critical point at $T_{C} \cong 19.7 \mathrm{MeV}$ and $n_{c} \cong 0.07 \mathrm{fm}^{-3}$
Experimental estimate ${ }^{1}: T_{c}=17.9 \pm 0.4 \mathrm{MeV}, n_{c}=0.06 \pm 0.01 \mathrm{fm}^{-3}$
${ }^{1}$ J.B. Elliot, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)

VDW gas of nucleons: (T, μ) plane

Density in (T, μ) plane

Crossover region at $\mu<\mu_{C} \cong 908 \mathrm{MeV}$ is clearly seen

VDW gas of nucleons: (T, μ) plane

Density in (T, μ) plane

Boltzmann: $T_{C}=28.5 \mathrm{MeV}$. Classical VDW does not work!

VDW-HRG gas of nucleons: fluctuations

- Results for $\sigma^{2} /\langle\boldsymbol{N}\rangle, S \sigma$, and $\kappa \sigma^{2}$
- Fluctuations diverge at CP (as expected)
- For higher moments singularity is specific: sign depends on path of approach

Vovchenko, Anchishkin, Gorenstein, Poberezhnyuk, PRC 91, 064314 (2015)

VDW gas of nucleons: skewness and kurtosis

VDW Kurtosis

NJL, J.W. Chen et al., PRD 93, 034037 (2016) PQM, V. Skokov, QM2012

Fluctuation patterns in VDW very similar to effective QCD models

Net-baryon fluctuations and nuclear matter

Are NN interactions relevant for observables in HIC region? Net-nucleon fluctuations within RMF ($\sigma-\omega$ model) of nuclear matter along line of "chemical freeze-out"

K. Fukushima, PRC 91, 044910 (2015)

A notable effect in fluctuations even at $\mu \simeq 0$
Reconciliation of HRG with nuclear matter can be interesting

Van der Waals interactions in HRG

Simplest generalization of VDW nuclear matter model to full HRG:

- Similar VDW interactions between baryons and baryons
- The baryon-antibaryon, meson-meson, and meson-baryon VDW interactions are neglected
- Baryon VDW parameters extracted from ground state of nuclear matter ($a=329 \mathrm{MeV} \mathrm{fm}^{3}, b=3.42 \mathrm{fm}^{3}$)
Three independent subsystems: mesons + baryons + antibaryons

$$
\begin{gathered}
p(T, \boldsymbol{\mu})=P_{M}(T, \boldsymbol{\mu})+P_{B}(T, \boldsymbol{\mu})+P_{\bar{B}}(T, \boldsymbol{\mu}), \\
P_{M}(T, \boldsymbol{\mu})=\sum_{j \in M} p_{j}^{\mathrm{id}}\left(T, \mu_{j}\right) \quad \text { and } \quad P_{B}(T, \boldsymbol{\mu})=\sum_{j \in B} p_{j}^{\mathrm{id}}\left(T, \mu_{j}^{B *}\right)-a n_{B}^{2} \\
n_{B}(T, \boldsymbol{\mu})=\left(1-b n_{B}\right) \sum_{j \in B} n_{j}^{\mathrm{id}}\left(T, \mu_{j}^{B *}\right) .
\end{gathered}
$$

In this simplest setup model is essentially "parameter-free" Transcendental equations for P_{B} and n_{B}

[^0]
VDW-HRG at $\mu=0$: thermodynamic functions

Comparison of VDW-HRG with lattice QCD at $\mu=0$

Pressure p / T^{4}

Energy density ε / T^{4}

- VDW-HRG does not spoil existing agreement of Id-HRG with lQCD despite significant EV interactions between baryons
- Not surprising: matter meson-dominated at $\mu=0$

VDW-HRG at $\mu=0$: speed of sound

- Monotonic decrease in Id-HRG, at odds with lattice
- Minimum for EV-HRG/VDW-HRG at $150-160 \mathrm{MeV}$
- No acausal behavior, often an issue in models with eigenvolumes

VDW-HRG at $\mu=0$: baryon number fluctuations

$$
\text { Susceptibilities: } \chi_{l m n}^{B S Q}=\frac{\partial^{I+m+n} p / T^{4}}{\partial\left(\mu_{B} / T\right)^{\prime} \partial\left(\mu_{S} / T\right)^{m} \partial\left(\mu_{Q} / T\right)^{n}}
$$

Baryon-charge correlator $\chi_{11}^{B Q}$

- Very different qualitative behavior between Id-HRG and VDW-HRG
- For χ_{2}^{B} lattice data is between Id-HRG and VDW-HRG at high T
- For $\chi_{11}^{B Q}$ lattice data is below all models, closer to EV-HRG

VDW-HRG at $\mu=0$: baryon number fluctuations

Higher-order of fluctuations are expected to be even more sensitive

- χ_{4}^{B} deviates from χ_{2}^{B} at high enough T, stays equal in Id-HRG
- Cannot be related only to onset of deconfinemnet
- VDW-HRG predicts strong non-monotonic behavior for $\chi_{6}^{B} / \chi_{2}^{B}$

VDW-HRG at $\mu=0$: net-light and net-strangeness

- Net number of light quarks χ_{2}^{L}
- $L=(u+d) / 2=(3 B+S) / 2$
- Improved description in VDW-HRG
- Net-strangeness χ_{2}^{S}
- Underestimated by HRG models, similar for $\chi_{11}^{B S}$
- Extra strange states? ${ }^{1}$
- Weaker VDW interactions for strange baryons? ${ }^{2}$

[^1]${ }^{2}$ Alba et al., arXiv:1606.06542 and P. Alba's talk

VDW-HRG at $\mu=0$: net-light and net-strangeness

- Lattice shows peaked structures in crossover regions
- Not at all reproduced by Id-HRG, signal for deconfinement? ${ }^{1}$
- Peaks at different T for net-L and net-S \Rightarrow flavor hierarchy? ${ }^{2}$
- VDW-HRG also shows peaks and flavor hierarchy \Rightarrow cannot be traced back directly to deconfinement

[^2]
VDW-HRG: extensions

Effect of reducing VDW interactions involving strange hadrons

- 3 times smaller EV for strange baryons
- Small EV for mesons
- Illustrative calculation (preliminary!)
- Most observables improved

VDW-HRG: influence on hadron ratios

VDW interactions change relative hadron yields Thermal fit to ALICE hadron yields: from pions to Ω

- Fit quality slightly better in EV-HRG/VDW-HRG vs Id-HRG but very different picture!
- All temperatures between 150 and 200 MeV yield similarly fair data description in VDW-HRG
- Results likely to be sensitive to further modifications, e.g for strangeness

VDW-HRG at finite μ_{B}

Net-baryon fluctuations in $T-\mu$ plane: $\chi_{4}^{B} / \chi_{2}^{B}$

Id-HRG

VDW-HRG

- Almost no effect in Id-HRG, only Fermi statistics
- Rather rich structure for VDW-HRG
- Likely relevant for net-baryon fluctuations in HIC

Summary

- VDW equation provides simple insight on fluctuations near CP
- Nuclear matter can be described as VDW equation with Fermi statistics
- VDW interactions between baryons have strong influence on fluctuations of conserved charges in the crossover region within HRG
- VDW-HRG captures basic features of both lattice results at $\mu=0$ and nuclear matter properties
- Freeze-out parameters extracted from thermal fits within ideal HRG are not unique, procedure sensitive to modeling of VDW interactions
- Interpretation of results obtained within standard ideal HRG should be done with extreme care

Summary

- VDW equation provides simple insight on fluctuations near CP
- Nuclear matter can be described as VDW equation with Fermi statistics
- VDW interactions between baryons have strong influence on fluctuations of conserved charges in the crossover region within HRG
- VDW-HRG captures basic features of both lattice results at $\mu=0$ and nuclear matter properties
- Freeze-out parameters extracted from thermal fits within ideal HRG are not unique, procedure sensitive to modeling of VDW interactions
- Interpretation of results obtained within standard ideal HRG should be done with extreme care

Thanks for your attention!

Backup slides

Skewness

Higher-order (non-gaussian) fluctuations are even more sensitive Skewness: $\quad S \sigma=\frac{\left\langle(\Delta N)^{3}\right\rangle}{\sigma^{2}}=\omega[N]+\frac{T}{\omega[N]}\left(\frac{\partial \omega[N]}{\partial \mu}\right)_{T}$ asymmetry

Skewness is

- Positive (right-tailed) in gaseous phase
- Negative (left-tailed) in liquid phase

Kurtosis

Kurtosis: $\quad \kappa \sigma^{2}=\frac{\left\langle(\Delta N)^{4}\right\rangle-3\left\langle(\Delta N)^{2}\right\rangle^{2}}{\sigma^{2}}$
peakedness

Kurtosis is negative (flat) above critical point (crossover), positive (peaked) elsewhere and very sensitive to the proximity of the critical point
V. Vovchenko et al., J. Phys. A 015003, 49 (2016)

VDW gas of nucleons: scaled variance

Scaled variance in quantum VDW:

$$
\omega[N]=\omega_{\mathrm{id}}\left(T, \mu^{*}\right)\left[\frac{1}{(1-b n)^{2}}-\frac{2 a n}{T} \omega_{\mathrm{id}}\left(T, \mu^{*}\right)\right]^{-1}
$$

VDW gas of nucleons: skewness and kurtosis

Skewness

$$
S \sigma=\omega[N]+\frac{T}{\omega[N]}\left(\frac{\partial \omega[N]}{\partial \mu}\right)_{T}
$$

$$
\kappa \sigma^{2}=(S \sigma)^{2}+T\left(\frac{\partial[S \sigma]}{\partial \mu}\right)_{T}
$$

Kurtosis

For skewness and kurtosis singularity is rather specific: sign depends on the path of approach
V. Vovchenko et al., Phys. Rev. C 92, 054901 (2015)

VDW-HRG at $\mu=0$: baryon number fluctuations

$$
\chi_{6}^{B} / \chi_{2}^{B}
$$

[^0]: V. Vovchenko, M. Gorenstein, H. Stoecker, arXiv:1609.03975

[^1]: ${ }^{1}$ Bazavov et al., PRL 113, 072001 (2014)

[^2]: ${ }^{1}$ S. Ejiri, F. Karsch, K. Redlich, PLB 633, 275 (2006)
 ${ }^{2}$ Bellwied et al., PRL 111, 202302 (2013)

