Measurements of Heavy Flavor Production and Properties of sQGP at RHIC

Xin Dong Lawrence Berkeley National Laboratory

Sept. 16-24, 2016 38th Erice School, Erice, Italy

X. Dong

Uniqueness of Heavy Quarks in QCD

Heavy Quarks for Measuring sQGP Properties

- A) To establish a consistent framework
 - to describe the strongly coupled medium and interactions
- B) To measure intrinsic transport properties of sQGP medium: D_{HQ} , η/s etc.

Other Ingredients: p+p reference - pQCD, Cold Nuclear Matter (CNM) effects ...

Experimental Methods

Hadron	Abundance	Cτ (μm)
D^0	56%	123
D+	24%	312
D _s	10%	150
$\Lambda_{\sf c}$	10%	60
B+	40%	491
B ⁰	40%	456

Indirect - through inclusive semi-leptonic/J/ ψ channels

- easy to trigger
- high statistics
- background sources
- kinematic smearing due to decays
- **Direct** through exclusive hadronic channels
 - full charmed hadron kinematics
 - hard to trigger
 - smaller branching ratios
- need precision vertex detector to reduce combinatorial background

Key Instruments – Pixel Silicon Detector

	ATLAS	CMS	ALICE	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm ²)	50x400	100x150	50x425	50x425	20x20
Radius of first layer (cm)	5.1	4.4	3.9	2.5	2.8
Thickness of first layer	~1%X ₀	~1%X ₀	1%X ₀	1%X ₀	0.4%X ₀

Next generation MAPS detector planned for ALICE/STAR/sPHENIX upgrades

Sept. 16-24, 2016 38th Erice School, Erice, Italy

Monolithic Active Pixel Sensors (MAPS)

Properties:

- Standard commercial CMOS technology
- Sensor and signal processing are integrated in the same silicon wafer
- Signal is created in the low-doped epitaxial layer (typically ~10-15 μ m) \rightarrow MIP signal is limited to <1000 electrons
- Charge collection is mainly through thermal diffusion (~100 ns), reflective boundaries at p-well and substrate

MAPS and competition	MAPS	Hybrid Pixel	CCD
Granularity	+		+
Small material budget	+	L.	+
Readout speed	+	++	N.
Radiation tolerance	+	++	

MAPS - particularly chosen for measuring HF hadron decays in heavy ion collisions

Sept. 16-24, 2016 38th Eric

38th Erice School, Erice, Italy

Pixel Detector Performance

Sept. 16-24, 2016 38th Erice School, Erice, Italy

Pixel Detector Performance

Pixel Detector Performance

Significant improvement in S/B in D-meson reconstruction

Creation of Heavy Quarks in p+p Collisions

Charm/bottom hadron spectra well described by pQCD calculations (FONLL, MC@NLO etc.) - Similar for data at Tevetron, HERA etc.

Data precision provides inputs to constrain pQCD calculations - Nelson et al, PRC 87(2013) 014908

Heavy Quark Total Cross Section

Critical calibration for both open heavy flavor and heavy quarkonia in A+A collisions - need to be vetted in heavy ion collisions

RHIC: Charm total cross section at mid-rapidity follows N_{bin} scaling

- pending checks on various charm hadrons (D_s , Λ_c etc)

Charm Modification in A+A Collisions at RHIC

Significant charm energy loss in medium $- R_{AA}(D^0) \sim R_{AA}(e) \sim R_{AA}(h)$ Modification of charm hadrons with bulk medium $- coalescence important at low p_T$ Charm quark flows?- complicated by interplays between cold/hot nuclear effects

D-meson v₂ at RHIC

RHIC R_{AA} and v₂ Compared to Models

D-meson R_{AA} and v_2 : RHIC vs. LHC

 High statistics Run-II data from ALICE/ ATLAS/CMS

38th Erice School, Erice, Italy

D_s – Hadronization and Strangeness Enhancement

Sept. 16-24, 2016 38th Erice School, Erice, Italy

Λ_{c} - Charm Baryon Enhancement?

Open Bottom Production

Measuring Bottom

Lower production rate! Lower branching ratios for exclusive reconstruction!

19

Bottom Suppression in Heavy Ion Collisions

ALICE JHEP 09 (2012) 112, CMS-PAS-HIN-12-014, ALICE arXiv: 1506.06604

 $\begin{array}{l} \mathsf{R}_{\mathsf{A}\mathsf{A}} \text{ of b-jets at } \mathsf{p}_\mathsf{T} \!\!>\!\!80 \text{ GeV/c comparable to that of light jets} \\ \text{ caveat: sizable gluon splitting contribution} \\ \text{Suppression hierarchy between } \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{J}/\psi^\mathsf{B}) \text{ and } \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{D}) \\ \text{ - consistent with pQCD calculations} \end{array}$

Measuring Bottom at RHIC

Separation of c and b contribution to electrons / non-prompt J/ ψ using impact parameter method with VTX and FVTX at PHENIX

21

What we have learned?

A) How do energetic heavy quarks lose energy in sQGP medium?

 $R_{AA}(h) \sim R_{AA}(e) \sim R_{AA}(D) < R_{AA}(J/\psi^B)$ at high p_T at LHC and RHIC(?) - described by pQCD calculations including collisional and radiative energy loss - only revealed with heavy quark measurements

B) How do charm quark flow?

low-intermediate p_T : R_{AA} and $v_2(D)$ at RHIC $v_2(D) \sim v_2(\pi)$ at LHC

- hint of charm flow + coalescence
- indication of large charm flow?

C) Can we extract the medium transport properties (e.g. D_{HO})?

Theory:Need to figure out other differences in different models
– Very actively on-going with task-forces/topical collaborationsExperiments:Precision data

Future Measurements:

- Very near future Precision charmed hadron data (STAR HFT and LHC Run2)
- Open bottom production over a broad momentum range
- Heavy quark correlations

Calibration of charm/bottom total cross section Cold nuclear matter effects

38th Erice School, Erice, Italy

Near-Term: STAR HFT Physics Goals

STAR HFT: Precision measurement of charmed hadron production in heavy ion collisions

Fast MAPS Detector Upgrades at RHIC and LHC

ALICE ITS upgrade / STAR HFT+ / sPHENIX MAPS pixel - 2021+

Next generation MAPS sensors with much shorter integration time < 20 μ s (vs. 186 μ s)

Goals:

- open bottom measurements over a broad range of momentum range

- heavy quark correlations
- precision charmed hadron (D⁰, Λ_c) measurements down to low p_T (ALICE)

Summary

Backups

Sept. 16-24, 2016 38th Erice School, Erice, Italy

STAR Heavy Flavor Tracker

2013 May 2014 Spring 2014 Sept 2015 Spring 2016 Spring

- PXL prototype engineering run with 3 sectors (out of 10 in total)
- Commissioning in Au+Au 200 GeV collisions. Physics mode since then
- HFT project closeout. Project finished on time and under budget
- p+p and p+Au 200 GeV run with HFT
- Au+Au 200 GeV run with HFT

STAR HFT – first application of MAPS pixel detector at a collider

Heavy Quark Production in p+p Collisions

System Size Dependence of High p_T Suppression

¥ ₽ Nuclear Modification Factor $(R_{_{AA}})$ **STAR Preliminary** Pb-Pb, $\sqrt{s_{NN}}$ = 2.76 TeV U+U 193 GeV Dº: lyl<1, 3<p_<5 GeV/c π^{\pm} (ALICE) 8< p_{\pm} <16 GeV/c, |y|<0.8 1.2 Au+Au 200 GeV D⁰: lyl<1, 3<p_<8 GeV/c, arXiv:1404.6185 (submitted to PRL) D mesons (ALICE) 8<p_<16 GeV/c, |y|<0.5 (empty) filled boxes: (un)correlated syst. uncert. Au+Au 200 GeV π[±]: lyl<0.5, p_>6 GeV/c, PLB655, 104 (2007) 1.5 Djordjevic et al. Phys.Lett.B 737 (2014) 298 p+p norm. π^{\pm} 0.8 D mesons 0.6 0.5 0.4 0 400 0 100 200 300 0.2 30-40% 20-30% $\langle N_{part} \rangle$ 10-20% π^{\pm} shifted by +10 in $\langle N_{\text{part}}$ 250 300

ALICE arXiv: 1506.06604

 $R_{AA}(D)$ has similar suppression level as $R_{AA}(\pi)$

RHIC

Several pQCD calculations consistent with inclusive $R_{AA}(D)$ data More differential measurements: v₂ at high p_T / correlations

X. Dong

LHC

350

 $\langle N_{\rm part} \rangle$

400

Charm Modification in A+A Collisions at LHC

ALICE, JHEP 09 (2012) 112, PRL111 (2013) 102301, PRC 90 (2014) 034904

Significant charm hadron energy loss and flow in medium

 $- \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{D}) \sim \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{e}) \sim \mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathsf{h}), \quad \mathsf{v}_2(\mathsf{D}) \sim \mathsf{v}_2(\pi)$

Charm quark flows? - likely with the medium. Need precision for decisive answer

Challenge to models to consistently describe both R_{AA} and v_2

- positive progresses in some models recently

Centrality Dependence of v2

X. Dong

R_{AA} vs. R_{pA}

 $R_{pPb}(D) \sim 1$, $R_{PbPb}(D) \sim 0.2$, suggest significant charm energy loss due to hot sQGP

32

Cold Nuclear Matter Effect

Background Composition in Electron Measurement

34

Background in Direct Reconstruction

Single Electron R_{AA} and v_2 @ RHIC

38th Erice School, Erice, Italy

D meson production is suppressed in 2.76 TeV PbPb collisions

□ pp reference @ 2.76 TeV → ALICE 7 TeV pp measurement + FONLL

□ R_{AA} going down for $p_T < 10$ GeV/c and going up at higher p_T □ No large dependence on centrality within uncertainties

• different from some model predictions

CMS PAS HIN-15-005

X. Dong

D meson production is suppressed in 5.02 TeV PbPb collisions

NPE Results at 62.4GeV between PHENIX/STAR

PHENIX/STAR measurements (spectra/ v_2) are consistent in overlapping p_T regions

Sept. 16-24, 2016 38th Erice School, Erice, Italy

Bottom Suppression in Heavy Ion Collisions

High p_T -> Flavor dependence of R_{AA} – "dead-cone" in pQCD
- R_{AA}(e_D) vs. R_{AA}(e_B) indicates bottom suppression in central A+A at RHIC/LHC
- Need precision measurement on both R_{AA}(D) and R_{AA}(B)

X. Dong

41

D-meson R_{AA} and v_2 at RHIC and LHC

Heavy Quark Correlations

Between p+p and p(d)+A:

 $e-\mu$ (mid-forward) correlations show difference in away side

- initial nPDFs/saturation, final state effect

D-h (mid-mid) correlations no significant difference beyond current uncertainties

Heavy quark correlations in A+A: to be explored

Centrality Dependence of $D^0 v_2 - Run16$ Projection from STAR

Estimation based on Run14 measurement

Run16 TPC efficiency/ HFT acceptance factors included (same as slide 2) A factor of 2 improvement included due to the PXL decode bug fix $v_2(D^0)/v_2(Ks)$ assumed to be the same for different centrality bins

ALICE ITS-upgrade

Fast MAPS Detectors at RHIC

