Ultra-Relativistic Heavy Ion Collision Results

John Harris (Yale), September 17, 2016

I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb)

John Harris (Yale), September 17, 2016

High p_T Hadrons Are Suppressed at LHC & RHIC

Central Pb-Pb and Au-Au Collisions Suppression \rightarrow parton energy loss in hot QCD medium

 $R_{\rm AA} = \frac{N_{\rm AA}^{\rm particle}}{N_{\rm coll} N_{pp}^{\rm particle}}$

Also enhancement at lower energies → initial state effects (Cronin enhancement) $R_{CP} = N_{central} / N_{peripheral}$ $\rightarrow R_{AA}$

John Harris (Yale), September 17, 2016

Jets Are Quenched at RHIC & LHC

John Harris (Yale), September 17, 2016

J/Ψ and Y Suppressed at the LHC

(also at RHIC)

John Harris (Yale), September 17, 2016

• Azimuthal asymmetry of charged particles:

 $dn/d\phi \sim 1 + 2 v_2(p_T) \cos(2 \phi) + ...$

John Harris (Yale), September 17, 2016

Azimuthal asymmetry of charged particles: $dn/d\phi \sim 1 + 2 v_2(p_T) \cos(2 \phi) + ...$

John Harris (Yale), September 17, 2016

Azimuthal asymmetry of charged particles: dn/dφ ~ 1 + 2 v₂(p_T) cos (2 φ) + ...

John Harris (Yale), September 17, 2016

Azimuthal asymmetry of charged particles: dn/dφ ~ 1 + 2 v₂(p_T) cos (2 φ) + ...

Mass dependence of v₂

Requires -

- Early thermalization (0.6 fm/c)
- Near-ideal hydrodynamics (near-zero viscosity)
 - → "nearly perfect liquid"

• ε ~ 25 GeV/fm³ (>> ε_{critical})

Quark-Gluon Equ. of State

John Harris (Yale), September 17, 2016

Flow Consequences → a Strongly-Coupled Medium

<u>with Ultra-low n/s (shear viscosity / entropy)</u>

Viscous hydrodynamics calculations: Schenke, et al. PRL 106 (2011) 042301 \rightarrow 1 /4 π < η/s < 1 /2 π

The strong-coupling limit of non-Abelian gauge theories with a gravity dual (ref: Kovtun, Son, Starinets, PRL 94, 111601 (2005))

Universal lower bound on shear viscosity / entropy ratio (η /s) $\rightarrow \eta$ /s = 1 / 4 π for a "perfect liquid"

John Harris (Yale), September 17, 2016

II. Effects in p(d) + A compared to A + A

John Harris (Yale), September 17, 2016

High p_T Particles & Jets

John Harris (Yale), September 17, 2016

<u>High p_T Hadrons $R_{p(d)A}$ & R_{AA} at LHC and RHIC</u>

- Suppression ($R_{PbPb} \ll 1$, $R_{AuAu} \ll 1$) \rightarrow Final state effects (hot QCD matter)

John Harris (Yale), September 17, 2016

Jets in p-Pb & Pb-Pb at LHC

John Harris (Yale), September 17, 2016

<u>Jets in d-Au at RHIC</u>

PHENIX arXiv:1509.04657v2

Jets reconstructed in p+p and d+Au $12 < p_T < 50 \text{ GeV/c}$

 R_{dAu} ~ 1 for min.bias d+Au

R_{dAu} exhibits strong centrality dependence Peripheral collisions: jets enhanced Central collisions: jets suppressed

Centrality Dependence of Jets in p (d) + A

ATLAS, PLB 748 (2015) 392

R_{dAu} jets → strong centrality dependence Peripheral collisions: jets enhanced Central collisions: jets suppressed

Challenge to factorization in hard-scattering?

R_{pPb} jets → strong centrality dependence
Peripheral collisions: jets enhanced
Central collisions: jets suppressed

PHENIX arXiv:1509.04657v2

John Harris (Yale), September 17, 2016

Identified Particles

John Harris (Yale), September 17, 2016

Identified Particle Spectra in p-Pb

John Harris (Yale), September 17, 2016

R_{pPb} for Identified Hadrons

Suppression in Pb-Pb

John Harris (Yale), September 17, 2016

Similar Effects at RHIC in d+Au

John Harris (Yale), September 17, 2016

Indications of Collective Flow of Identified

John Harris (Yale), September 17, 2016

<u>π, K, p – Blast Wave pPb & PbPb</u>

John Harris (Yale), September 17, 2016

<u>Heavy Flavor – D-Mesons: R_{pPb} & R_{PbPb}</u>

ALICE Collaboration, Phys. Rev. Lett. 113 (2014) 232301

D-meson NOT suppressed in p-Pb R_{pPb} consistent with ≈1 Initial state effects small! D-meson central R_{PbPb} suppressed! Centrality dependence Not initial state effect!

John Harris (Yale), September 17, 2016

Particle Correlations:

Flow Harmonics of Lighter Systems

John Harris (Yale), September 17, 2016

Initial (Historical) STAR Discovery of the AA Ridge

Phys. Rev. C 80 (2009) 64912

John Harris (Yale), September 17, 2016

Long-range Di-hadron Correlations in pp, p-A

Potential interpretations include CGC, long-range color correlations....., hydro?? John Harris (Yale), September 17, 2016 Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy

Observation of p-Pb Double Ridge

After subtraction of low multiplicity from high multiplicity events: Fourier decomposition seen as curves

> ALICE, arXiv:1307.3237 Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy

John Harris (Yale), September 17, 2016

Comparing v₂ and v₃ from Long-range Correlations

 V_n {2, $|\Delta \eta|$ >2} data

from ALICE arXiv:1212.2001, CMS arXiv:1305.0609, ATLAS arXiv:1409.1792 & arXiv:1203.3087.

Symbols are (back-to-back jet) subtracted data. Curves are before subtraction. Notice v_2 trends and v_3 almost identical (p-Pb and Pb-Pb)

John Harris (Yale), September 17, 2016

Collective Flow v₂(n) in Pb-Pb & p-Pb

CMS, Phys. Rev. Lett. 115 (2015) 012301arXiv:1502.05382

 $v_2(4) = v_2(6) = v_2(8) = v_2(LYZ)$ within 10%

John Harris (Yale), September 17, 2016

Fourier Decomposition of p-Pb Double Ridge

ALICE, arXiv:1307.3237

John Harris (Yale), September 17, 2016

Collective Flow of Identified Particles in p-Pb!

CMS, arxiv:1409.3392

Identified Ks, Λ & charged hadrons

v2 from 2-particle correlations

Exhibit mass ordering in pPb and PbPb

NCQ scaling better in pPb

John Harris (Yale), September 17, 2016

Particle Correlations: System Size from Freeze-out Radii

John Harris (Yale), September 17, 2016

System Size in pp, p-Pb and Pb-Pb

Perhaps only small hydrodynamic expansion in pPb beyond that in pp at same Nch

John Harris (Yale), September 17, 2016

Evolution of p-Pb System

Radii decrease with increasing k_T as in AA (and in hydro)

Similarity between pPb and high multiplicity pp

ALICE, PLB 739 (2014) 139

John Harris (Yale), September 17, 2016

What are the Freezeout Radii Telling Us?

ALICE, Physics Letters B739 (2014) 139–151:

Invariant Source Radii from HBT 2 & 3 Pion Correlation Measurements

 $R_{inv} (p-Pb) \sim 1.05-1.15 R_{inv} (pp)$ $R_{inv} (Pb-Pb) \sim 1.35-1.55 R_{inv} (p-Pb)$

- This disfavors models incorporating significantly larger flow in p-Pb than in pp at same multiplicity!
- Consistent with CGC initial conditions without a hydro-dynamical phase!
- See also (Shuryak interpretation) arxiv:1404.1888 – "collective implosion"

Demonstrates importance of initial conditions on the final-state – and/or – indicates significant collective expansion in peripheral Pb–Pb collisions.

John Harris (Yale), September 17, 2016

What Have We Learned from p(d)A + A?

- p(d)+A studies confirm quenching/suppression in A+A is final state effect
- p(d)+A hard probes described by pQCD-inspired models
 Exceptions High p_T hadrons (enhancement?)
 High p_T jets (peripheral enhanced? Central suppressed?)
- Many aspects of p(d)+A (at lower p_T) exhibit effects attributed to collective behavior e.g. strong mass ordering, radial flow, v₂ (4) = v₂ (6) = v₂ (8)
- Size of system much smaller in p(d)+A than in A+A
 p+A close to p+p at similar multiplicity important to understand theoretically
- Need more theoretical guidance, direct model comparisons, more precise data!

John Harris (Yale), September 17, 2016

<u>A Final Comment</u>

- We seek to investigate high density QCD phenomena in collisions of various (large and small) systems!
- Can we separate the initial state from the final state (even in theory) to compare p+p, p+A, A+A results and extract vital answers on:
 - → The initial state: CGC, Glauber, pdf's, etc?
 - → The effect of cold nuclear matter on final state observables?
 - → The basic parton energy loss mechanisms?
 - \rightarrow The dependence on multiplicity and energy in p+p, p+A & A+A?
 - → The basic mechanisms of equilibration, transport and production?
- What are the key measurements to discriminate models or better yet theories?

We are investigating collective phenomena in a variety of nuclear systems to learn how the many-body system emerges from the fundamental interactions!

John Harris (Yale), September 17, 2016

Thanks for your attention!

John Harris (Yale), September 17, 2016