Exact Sum Rules for Vector Channel at Finite Temperature and its Applications in Lattice QCD Analysis

Daisuke Satow (Frankfurt ${ }^{\text {E }}$)
Collaborator: Philipp Gubler (Yonsei

Outline

- Introduction
- Deriving sum rules
- Sum rule 1

Application to lattice QCD analysis

- Sum rule 2
- Sum rule 3

Application to lattice QCD analysis

- Summary and future perspective

Introduction

Deconfined phase

Quark-Gluon Plasma

$T_{\mathrm{c}} \sim 160 \mathrm{MeV}$

Introduction

- Electrical conductivity

- Dilepton production rate

- Vector meson spectrum at finite T

Introduction

Vector spectral function contains all information of them.

$j^{\mu} \equiv e \sum_{f} q_{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f}$
f : flavor index, q_{f} : electric charge

$$
\begin{aligned}
& G^{R \mu \nu}(t, \mathbf{x}) \equiv i \theta(t)\left\langle\left[j^{\mu}(t, \mathbf{x}), j^{\nu}(0, \mathbf{0})\right]\right\rangle \\
& \rho^{\mu v}(p)=\operatorname{Im} G^{R \mu v}(p)
\end{aligned}
$$

Introduction

Possible form of vector spectral function

ρ transport peak vector meson peak
 continuum (qq)

Rich and complicated structure.

Introduction

There are several approaches: perturbation, holography, model, lattice...

But every approach has weak point.

Even lattice QCD analysis needs an ansatz for the spectral function because it can not directly treat dynamical quantity.

Motivation

Is there any exact relation we can use for improvement?

Sum rule

Retarded Green function: $G^{R \mu \nu}(\omega, \mathbf{p})$
analyticity in
upper ω plane

$$
\begin{gathered}
\delta G^{R}(0, \mathbf{p})-\delta G_{\infty}^{R}(\mathbf{p})=\frac{2}{\pi} \int_{0}^{\infty} d \omega \frac{\delta \rho(\omega, \mathbf{p})}{\omega} \\
\text { IR UV } \\
\begin{array}{c}
\delta G^{R}(\omega) \equiv G^{R}(\omega)-G_{T=0}^{R}(\omega) \\
\text { remove UV divergence }
\end{array}
\end{gathered}
$$

Sum of spectral function is constrained by the UV/IR behaviors! (sum rule)

Zero momentum case

For simplicity, we consider $p=0$ case.

$$
\text { isotropy: } \quad G_{i j}^{R}(\omega, \mathbf{0})=\delta_{i j} G^{R}(\omega)
$$

Only one independent component.

Asymptotic behavior—UV (OPE)

UV behavior: operator product expansion (OPE)

 separation of scale: $T, \Lambda_{\mathrm{QCD}} \ll 1 / x \sim \omega$$$
\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle=\sum_{i} C^{i}(x)\left\langle\mathcal{O}_{i}(x=0)\right\rangle_{T}
$$

It can be computed perturbatively.

It contains all nonperturbative information.

Asymptotic behavior—UV (OPE)

Only T-dependent term was retained.

Asymptotic freedom

Asymptotic behavior - IR (Hydro)

IR behavior: hydrodynamics

Assume the locality of the current:

$$
\mathbf{j}(t, \mathbf{x})=\mathbf{j}[\mathbf{E}(t, \mathbf{x}), \mathbf{B}(t, \mathbf{x})]
$$

(Small frequency/wavelength of $\boldsymbol{E}, \boldsymbol{B}$ justifies this assumption.)

Ohmic

$$
\mathbf{j}=\sigma \mathbf{E}-\sigma \tau_{J} \partial_{t} \mathbf{E}+O\left(\partial^{2} E\right)
$$

σ : Electric conductivity

Asymptotic behavior-IR (Hydro)

$$
\mathbf{j}=\sigma \mathbf{E}-\sigma \tau_{J} \partial_{t} \mathbf{E}
$$

linear response: $\quad \mathbf{j}(\omega)=-G^{R}(\omega) \mathbf{A}(\omega)$

$$
\mathbf{E}=-\partial_{t} \mathbf{A}
$$

$$
G^{R}(\omega)=i \omega \sigma\left(1+i \tau_{J} \omega\right)+O\left(\omega^{3}\right)
$$

Sum rule 1

$$
\begin{aligned}
& \text { IR } \quad G^{R}(\omega)=i \omega \sigma\left(1+i \tau_{J} \omega\right) \stackrel{\omega \rightarrow 0}{ } \delta G^{R}(\omega) \rightarrow 0 \quad \text { irrelevant. } \\
& \delta G^{R}(0, \mathbf{p})-\delta G_{\infty}^{R}(\mathbf{p})=\frac{2}{\pi} \int_{0}^{\infty} d \omega \frac{\delta \rho(\omega, \mathbf{p})}{\omega} \\
& 0=\int_{0}^{\infty} \frac{d \omega}{\omega} \delta \rho(\omega) \quad \text { sum rule } 1 \\
& \text { (Also obtained by current conservation: } \\
& \text { D. Bernecker and H. B. Meyer, Eur. } \\
& \text { Phys. J. A 47, } 148 \text { (2011)) }
\end{aligned}
$$

Check at weak coupling

Check Transport peak with Boltzmann eq.

Check at weak coupling

Continuum:

$$
\rho(\omega)=\frac{N_{c} C_{\mathrm{em}}}{12 \pi} \omega^{2}\left(1-2 n_{F}\left(\frac{\omega}{2}\right)\right) .
$$

$$
\left[1-n_{F}\right]^{2}-\left[n_{F}\right]^{2}=1-2 n_{F}
$$

Check at weak coupling

$$
\underbrace{1-2 n_{F}}_{T=0}
$$

$$
\int_{0}^{\infty} \frac{d \omega}{\omega} \delta \rho(\omega)=-\frac{\pi T^{2} C_{\mathrm{em}} N_{c}}{18}
$$

It cancels the transport peak, so that the sum becomes zero!
The sum rule 1 is satisfied.

Ansatz in lattice calculation

H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys.Rev. D 83034504 (2011).

ansatz:

transport peak

continuum

$$
\begin{gathered}
\rho(\omega)=C_{\mathrm{em}}\left[3 \left(\left\langle c_{B W} \frac{\omega \Gamma / 2}{\omega^{2}+(\mathrm{D} / 2)^{2}}+\frac{9}{4 \pi}(1+(\lambda)) \omega^{2}\left(X-2 n_{F}\left(\frac{\omega}{2}\right)\right)\right]\right.\right. \\
T=0 \text { contribution is subtracted. }
\end{gathered}
$$

n_{F} : Fermi distribution
3 parameters.

Ansatz in lattice calculation
Sum rule $1 \quad 0=\int_{0}^{\infty} \frac{d \omega}{\omega} \delta \rho(\omega)$
Transport peak and continuum should cancel.
(We confirm it in the weak coupling case)
constraint: $\chi c_{B W}=(1+\underline{k}) T^{2}$

We can reduce independent parameters.

Sum rule 2

$$
\frac{\delta \rho}{\omega} \times \omega^{2} \quad \mapsto \quad \text { Sum rule for } \omega \rho, \text { not } \rho / \omega
$$

UV $\quad \omega^{2} \times \delta G^{R}(\omega)=e^{2} \sum_{f} q_{f}^{2} \frac{1}{(\omega)}\left[2 m_{f} \delta\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle+\frac{1}{12} \delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle\right.$

$$
\left.+\frac{8}{3} \frac{\delta\left\langle T^{00}\right\rangle}{4 C_{F}+N_{f}}\right] \cdot \times @^{2} \quad \text { relevant. }
$$

IR irrelevant.

$$
\begin{aligned}
\frac{2}{\pi} \int_{0}^{\infty} d \omega \omega \delta \rho(\omega)= & -e^{2} \sum_{f} q_{f}^{2}\left[2 m_{f} \delta\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle \quad \text { sum rule } 2\right. \\
& \left.+\frac{1}{12} \delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle+\frac{8}{3\left(4 C_{F}+N_{f}\right)} \delta\left\langle T^{00}\right\rangle\right] .
\end{aligned}
$$

Expectation values of operators appear.
Application to lattice is ongoing...

Sum rule 3

$\frac{\delta \rho}{\omega} / \omega^{2} \longrightarrow$ Sum rule for $\boldsymbol{\rho} / \boldsymbol{\omega}^{\mathbf{3}}$, not $\boldsymbol{\rho} / \boldsymbol{\omega}$

UV irrelevant.
IR $\quad G^{R}(\omega) / \omega^{2}=i \omega \sigma\left(1+i \tau_{J} \omega\right) / \omega^{2}$

$$
-\sigma \tau_{J}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d \omega}{\omega^{3}}[\delta \rho(\omega)-\sigma \omega] \quad \text { sum rule } 3
$$

Transport coefficients appear.
P. Kovtun and L. G. Yaffe, Phys. Rev. D 68, 025007 (2003).
(Exact in large N_{c}; otherwise, long-time tail appears and changes low energy behavior. But practically does not change the lattice analysis since all the lattice IR cutoff is much larger than the energy scale where this effect occurs.)

Ansatz in lattice calculation

$$
\sim \omega^{2}
$$

ansatz: $\quad \rho(\omega)=C_{\mathrm{em}}\left[c_{B W} \rho_{\text {peak }}(\omega)+(1+k) \rho_{\text {cont }}(\omega)\right]$
H. T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys.Rev. D 83034504 (2011).
sum rule 3

$$
-\sigma \tau_{J}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d \omega}{\omega^{3}}[\delta \rho(\omega)-\sigma \omega]
$$

Contribution from the continuum contains IR divergence. More sophisticated ansatz is necessary.

Ansatz in lattice calculation

suggestion for improved ansatz:

$$
\begin{gathered}
\left.\rho(\omega)=C_{\mathrm{em}}\left[c_{B W} \rho_{\text {peak }}(\omega) 1-A(\omega)\right]+A(\omega)(1+k) \rho_{\mathrm{cont}}(\omega)\right] \\
A(\omega) \equiv \tanh \left(\omega^{2} / \Delta^{2}\right)
\end{gathered}
$$

Connect the two regions smoothly.

σ becomes larger by 50\%.

Dilepton production increases.

Ansatz in lattice calculation

Spectral function obtained by fit of lattice data

$$
\rho(\omega)=C_{\mathrm{em}}\left[c_{B W} \rho_{\mathrm{peak}}(\omega)[1-A(\omega)]+A(\omega)(1+k) \rho_{\mathrm{cont}}(\omega)\right]
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Sum rule } 3 \\
-\sigma \tau_{j}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d \omega}{\omega^{3}}[\delta \rho(\omega)-\sigma \omega] \\
\tau_{J}=0.067 C_{\mathrm{em}} / T
\end{array} C_{\mathrm{em}} \equiv e^{2} \sum_{f} q_{f}^{2}
\end{gathered}
$$

τ_{J} is evaluated for the first time.

Summary

- We derived three exact sum rules in vector channel at finite temperature by using OPE (UV) and hydrodynamics (IR).

1: $0=\int_{0}^{\infty} \frac{d \omega}{\omega} \delta \rho(\omega)$

$$
\begin{aligned}
2: \frac{2}{\pi} \int_{0}^{\infty} d \omega \omega \delta \rho(\omega)= & -e^{2} \sum_{f} q_{f}^{2}\left[2 m_{f} \delta\left\langle\bar{\psi}_{f} \psi_{f}\right\rangle\right. \\
& \left.+\frac{1}{12} \delta\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle+\frac{8}{3\left(4 C_{F}+N_{f}\right)} \delta\left\langle T^{00}\right\rangle\right] .
\end{aligned}
$$

3: $-\sigma \tau_{J}=\frac{2}{\pi} \int_{0}^{\infty} \frac{d \omega}{\omega^{3}}[\delta \rho(\omega)-\sigma \omega]$

- We used our sum rules to improve the ansatz used in the lattice calculation, reevaluated dilepton rate and σ, and evaluate $\tau_{J .}$

