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Overview

QCD equation of state

Thermodynamics in the quasiparticle limit

Selfenergy and transport

Generalized quasiparticle model

Transport coefficients and susceptibility

Hadronic equation of state
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Lattice QCD

Different lattice EoS's start to converge.

Agreement on the QCD-EoS.

Wuppertal-Budapest: Phys. Lett. B 370 (2014) 99-104
HotQCD: Phys. Rev. D 90, 094503

No lattice calculations                                                        
 for large μ

B
.

No calculations out                                                             
 of equilibrium.

Open problems:

Use effective models!
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Idea: treat partons as dynamical quasiparticles.

Quasiparticle thermodynamics

 Propagator with effective mass M and width γ:

Grand canonical potential in propagator representation:

                    has no contribution to entropy or density.
J.P. Blaizot, E. Iancu and A. Rebhan, Phys. Rev. D 63 (2001) 065003

with selfenergies
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Entropy density
Entropy consists of a pole and an interaction term.

Pole term is the entropy of a noninteracting gas:

Interaction term contains the width γ and vanishes        
in the on-shell limit γ→0:

  A. Peshier, PRD 70 (2004) 034016; J. Phys. G31(2005) S371  
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Effective mass and width

  A. Peshier, W. Cassing, PRL 94 (2005) 172301;
  Cassing,  NPA 791 (2007) 365: NPA 793 (2007)  

Motivated by HTL

The width is fixed by correlators.
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Effective coupling
1) Parametrisation of the effective coupling:

2) or use EoS as input:

Finite chemical potential
Scaling Hypothesis:

Consistent with lattice curvature
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Selfenergies
Effective mass and width define the parton selfenergies:

Selfenergies allow for a transport description in the 
Kadanoff-Baym framework!

Solve with extended testparticle ansatz:

Σ defines the 
dynamics:
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PHSD
DQPM+KB allow a transport treatment of partons. 

Hadronic transport can be done in KB too:     HSD

Hadrons+partons are treated in the same framework.

 Unified transport approach:     PHSD

Successful description of heavy-ion collisions from 
iSPS to top RHIC and LHC energies.

More on monday by Eduard Seifert and on 
iwednesday by Alessia Palmese + Wolfgang Cassing!

=> DQPM is a valid description of partonic matter
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Lattice QCD at finite μ
Sign problem prevents simulations for finite μ.

Pressure is obtained via Taylor expansion:

Lattice EoS at finite μ is controlled by the 
susceptibilities χ.
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Particle density

Particle density follows in the same way as the               
 entropy density:

Same systematics as the entropy:
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Susceptibilities
First glimpse on finite chemical potentials.

Contains only informations from quarks.

DQPM quarks     
appear too heavy!

NJL quarks      
seem too light!

Lattice: S. Borsanyi, et al., JHEP 1208 (2012) 053
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„Non-perturbative“ QCD
Heavy partons in the perturbative regime.

Dynamical chiral symmetry breaking: The quark masses have 
ito drop for higher energies to reach the perturbative limit!

C. S. Fischer, et al., Phys. Rev. D 90 (2014) 3,  034022

We introduce a correction 
factor to model CSR:

Propagator remains analytic in the upper half plane.

Transport realisation stays valid!
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Masses and width

DQPM* uses momentum 
idependent selfenergies.

EoS and susceptibilty in 
igood agreement with lQCD.
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DQPM* EoS
EoS by thermodynamic relations:

iMomentum dependent 
iDQPM* reproduces the 
iEoS at T > 170 MeV.

Phys. Rev. C93 (2016) no. 4, 044914
Int. J. Mod. Phys. E25 (2016) no. 07, 1642003
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DQPM* at finte μ
Default quasiparticle models fail to describe χ

B
.

Running selfenergies improve the susceptibility: 

Phys. Rev. C93 (2016) no. 4, 044914
Int. J. Mod. Phys. E25 (2016) no. 07, 1642003

16



 

Transport coefficients

The width so far is not well fixed by the EoS.

Use transport coefficients

 Electric conductivity in        
 relaxation time approach:

Conductivity probes 
only the quark width γ

f 
.

Phys. Rev. C93 (2016) no. 4, 044914
Int. J. Mod. Phys. E25 (2016) no. 07, 1642003
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Transport coefficients

BW-spectralfunction in relaxation time approximation

jOff-shell bulk and shear viscosity:

Integrate only over timelike 
part of the spectralfunction!

18

Probes quarks 
and gluons!



Transport coefficients

BW-spectralfunction in relaxation time approximation

jOff-shell bulk and shear viscosity:
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Probes quarks 
and gluons!



Transport coefficients
Transport coefficients are sensitive to the width.

Matching to lattice justifies functional form:

Phys. Rev. C93 (2016) no. 4, 044914
Int. J. Mod. Phys. E25 (2016) no. 07, 1642003
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Nonlinear Walecka interaction for nucleons:

Hadronic EoS including 
interacting nucleons

 σ-interaction connects to chiral symmetry restoration:

More about chiral symmetry restoration on                 
jwednesday from Alessia Palmese
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Hadronic EoS, μ
B
=0 22

Here only interacting nucleons, generalization possible.

Include important baryons with strong interactions 
jand mesons as noninteracting particles.

Resulting EoS describes hadronic part of the EoS: 



 

Hadronic EoS, T=0
Nuclear EoS defines the vector interaction.

Density dependent vector coupling: 
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Walecka + HRG consistent with nuclear and lattice EoS.



 

Summary
DQPM* defines parton propagators

Propagator enables transport in KB-framework

DQPM* is in line with lQCD EoS and correlators.

Susceptibilities challenge quasiparticle models

Mom. dep. Selfenergies reproduce EoS + χ
B
 

Width is controlled by transport coefficients
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Walecka+HRG is in line with nuclear and lattice EoS.

Hadronic EoS is controlled by Walecka interaction,
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