Viscous chemical equilibration and cavitation at LHC energies

V. Sreekanth

Centre for High Energy Physics, IISc Bangalore

Sept 22, 2016

Erice School on Nuclear Physics Ettore Majorana Foundation & Centre for Scientific Culture

The and the second strong

Chemical equilibration and cavitation in the early stage of ultrarelativistic heavy-ion collisions V. Sreekanth arxiv1610.xxxx

Chemical equilibration and cavitation in the early stage of ultrarelativistic heavy-ion collisions

V. Sreekanth arxiv1610.xxxx

Quark and gluon distribution functions in a viscous quark-gluon plasma medium and dilepton production via $q\bar{q}$ - annihilation Vinod Chandra and V. Sreekanth Phys.Rev. D92 (2015) 9, 094027

Introduction

- Shear viscosity of QGP: η/s
- Second order dissipative hydro
- Shear viscosity induced cavitations
- Chemical equilibration in early times
- Combined effect
- Summary

- It is believed that perfect fluid is created at RHIC experiments
- \blacksquare QGP at RHIC energies: lowest value of $\eta/s \sim 1/4\pi$
- Shear viscosity at the high energies: many temperature dependent forms are used by different groups
- most of these calculations are done using hydrodyamical approaches, assuming instantaneous chemical equilibration of matter together with thermal equilibration
- In heavy ion collisions number changing processes involving gluons and quark- anti-quarks govern the chemical equilibration of QGP

Temperature dependent Shear viscosity at LHC energies

- Viscous hydrodynamics for LHC energies
- Different prescriptions for *temperature dependent* η/s [Nakamura *et.al* 2005, S. Matiello *et.al* 2005 etc.] to calculate flow properies [H. Niemi *et.al*, PRL, 2011; U.Heinz *et.al* 2011, 2015]

Relativistic Hydrodynamics

Relativistic hydrodyamical equations are obtained using

 $T^{\mu\nu} = \varepsilon \, u^{\mu} \, u^{\nu} - P \, \Delta^{\mu\nu} + \Pi^{\mu\nu}$

 $u^{\nu}\partial_{\mu}T^{\mu\nu} = 0$ (NR limit: Continuity eq) $\Delta_{\alpha\nu}\partial_{\mu}T^{\mu\nu} = 0$ (NR limit: Euler eq)

$$D\varepsilon + (\varepsilon + P) \theta - \Pi^{\mu\nu} \nabla_{(\mu} u_{\nu)} = 0,$$

(\varepsilon + P) $Du^{\alpha} - \nabla^{\alpha} P + \Delta_{\alpha\nu} \partial_{\mu} \Pi^{\mu\nu} = 0.$

$$(D \equiv u^{\mu}\partial_{\mu}, \theta \equiv \partial_{\mu} u^{\mu}, \nabla_{\alpha} = \Delta_{\mu\alpha}\partial^{\mu} \text{ and } A_{(\mu} B_{\nu)} = \frac{1}{2}[A_{\mu} B_{\nu} + A_{\nu} B_{\mu}])$$

The structure of viscous tensor can be determined with help of the definition of the entropy current s^µ and demanding the validity of second law of thermodynamics:

$$\partial_{\mu} s^{\mu} \geq 0 \; (s = rac{arepsilon + P}{T})$$

 Second order hydrodynamics (Isreal-Stewart) is obtained by using s^μ = su^μ − ^β/_{2T} u^μΠ² − ^β/_{2T} u^μπ_{αβ}π^{αβ} + O(Π³)

 Now ∂_μs^μ ≥ 0 gives dynamical evolution equations for π_{μν} and Π

$$\pi_{\alpha\beta} = \eta \left(\nabla_{<\alpha} u_{\beta>} - \pi_{\alpha\beta} TD \left(\frac{\beta_2}{T} \right) - 2\beta_2 D\pi_{\alpha\beta} - \beta_2 \pi_{\alpha\beta} \partial_\mu u^\mu \right) ,$$

$$\Pi = \zeta \left(\nabla_\alpha u^\alpha - \frac{1}{2} \Pi TD \left(\frac{\beta_0}{T} \right) - \beta_0 D\Pi - \frac{1}{2} \beta_0 \Pi \partial_\mu u^\mu \right) ,$$

The coefficients β_0 and β_2 are related with the relaxation time by $\tau_{\Pi} = \zeta \, \beta_0 \,, \tau_{\pi} = 2\eta \, \beta_2.$

Unlike first order (Navier-Stokes) this description is *causal* and no *instabilities*

Bjorken's prescription

Bjorken's prescription to describe the one dimensional boost invariant expanding flow:-

• convenient parametrization of the coordinates using the proper time $\tau = \sqrt{t^2 - z^2}$ and space-time rapidity $y = \frac{1}{2} ln[\frac{t+z}{t-z}]$;

 $t = \tau \cosh y$ and $z = \tau \sinh y$

- in the local rest frame of the fireball $u^{\mu} = (\cosh y, 0, 0, \sinh y)$, form of $T^{\mu\nu} = \operatorname{diag.}(\varepsilon, P_{\perp}, P_{\perp}, P_{z})$
- effective pressure in the transverse and longitudinal directions

$$P_{\perp} = P + \frac{1}{2}\Phi$$
$$P_{z} = P - \Phi$$

• Φ is the non-equilibrium contributions to the equilibrium pressure *P* coming from shear $(\pi^{ij} = \text{diag}(\Phi/2, \Phi/2, -\Phi))$

Equations governing longitudinal expansion

$$\begin{split} \frac{\partial \varepsilon}{\partial \tau} &= -\frac{1}{\tau} (\varepsilon + P - \Phi) \,, \\ \frac{\partial \Phi}{\partial \tau} &= -\frac{\Phi}{\tau_{\pi}} + \frac{2}{3} \frac{1}{\beta_2 \tau} - \frac{\Phi}{2} \left[\frac{1}{\tau} + \frac{T}{\beta_2} \partial_{\tau} \left(\frac{\beta_2}{T} \right) \right] \\ \end{split}$$
where $\Phi = \pi^{00} - \pi^{zz}$.

V. Sreekanth (CHEP)

Equations governing longitudinal expansion

$$\begin{aligned} \frac{\partial \varepsilon}{\partial \tau} &= -\frac{1}{\tau} (\varepsilon + P - \Phi) \,, \\ \frac{\partial \Phi}{\partial \tau} &= -\frac{\Phi}{\tau_{\pi}} + \frac{2}{3} \frac{1}{\beta_2 \tau} - \frac{\Phi}{2} \left[\frac{1}{\tau} + \frac{T}{\beta_2} \partial_{\tau} \left(\frac{\beta_2}{T} \right) \right] \end{aligned}$$
where $\Phi = \pi^{00} - \pi^{zz}$.

We consider the EoS of a relativistic gas of massless quarks and gluons:

$$\varepsilon = 3P = (a_2 + 2b_2) T^4;$$

 $a_2 = \frac{8\pi^2}{15}, b_2 = \frac{7\pi^2 N_f}{40}.$

Equations governing longitudinal expansion

$$\begin{aligned} \frac{\partial \varepsilon}{\partial \tau} &= -\frac{1}{\tau} (\varepsilon + P - \Phi) \,, \\ \frac{\partial \Phi}{\partial \tau} &= -\frac{\Phi}{\tau_{\pi}} + \frac{2}{3} \frac{1}{\beta_2 \tau} - \frac{\Phi}{2} \left[\frac{1}{\tau} + \frac{T}{\beta_2} \partial_{\tau} \left(\frac{\beta_2}{T} \right) \right] \end{aligned}$$
where $\Phi = \pi^{00} - \pi^{zz}$.

We consider the EoS of a relativistic gas of massless quarks and gluons:

$$\varepsilon = 3P = (a_2 + 2b_2) T^4;$$

 $a_2 = \frac{8\pi^2}{15}, b_2 = \frac{7\pi^2 N_f}{40}.$

• η/s information enters via τ_{π}

Cavitation

- From the definition of longitudinal pressure P_z = P − Π − Φ it is clear that if either Π or Φ is large enough it can drive P_z to negative values.
- Pz = 0 defines the condition for the onset of *cavitation*
- In the case of relativistic fluids such as the QGP studied in heavy-ion collisions, cavitation would imply a phase transition from a deconfined plasma phase of quarks and gluons to a confined hadron-gas phase.
- The resulting medium would be highly inhomogeneous with (possibly short-lived) hadron gas bubbles expanding and collapsing
- Maybe more importantly, hadron gas dynamics would take over at temperatures above the QCD phase transition, which would have immediate consequences on the measured particle spectra.
- Bulk viscosity induced cavitation scenarios at RHIC energies [Mishustin et. al. (PRC 2008), K. Rajagopal et. al. (JHEP 2010), Sreekanth et al (JHEP 2010), Romatschke et al (JHEP 2014)]

Shear viscosity and cavitation at LHC energies

High value of η/s [U.Heinz *et.al*, PRC, 2011] and cavitation

$$\eta/s_1 = 0.2 + 0.3 * \frac{T - T_c}{T_c}; \ \eta/s_2 = 0.2 + 0.4 * \left[\frac{T - T_c}{T_c}\right]^2; \\ \eta/s_3 = 0.2 + 0.3 * \sqrt{\frac{T - T_c}{T_c}}$$

V. Sreekanth (CHEP)

Shear viscosity and cavitation at LHC energies

- High value of η/s and cavitation
- Cavitation sets in *very early* in all the cases $\sim 1 \text{ fm/c}$

Shear viscosity and cavitation at LHC energies

- High value of η/s and cavitation
- Cavitation sets in *very early* in all the cases $\sim 1 \text{ fm/c}$

 Shear viscosity induced cavitation at LHC energies [Sreekanth et al (Phys Lett B 2011)]

V. Sreekanth (CHEP)

Chemical non-equilibration in early times

non-equilibrium effect is represented through *fugacities* - λ_i ($0 < \lambda_i \leq 1$) into distribution function,

$$f_i(p;\lambda_i,T) = \lambda_i \left(e^{\beta \cdot p} \pm \lambda_i\right)^{-1} \approx \lambda_i \left(e^{\beta \cdot p} \pm 1\right)^{-1}$$

('Boltzmann factorisation")

• The prominant reactions driving the equilibration are $gg \leftrightarrow q\bar{q}$ and $gg \leftrightarrow ggg$ and the corresponding *rate equations* are given by

$$\partial_{\mu}(n_{g}u^{\mu}) = n_{g}R_{2\to3}\left[1-\lambda_{g}\right] - 2n_{g}R_{g\to q}\left[1-\frac{\lambda_{q}\lambda_{\bar{q}}}{\lambda_{g}^{2}}\right]$$
$$\partial_{\mu}(n_{q}u^{\mu}) = n_{g}R_{g\to q}\left[1-\frac{\lambda_{q}\lambda_{\bar{q}}}{\lambda_{g}^{2}}\right] = \partial_{\mu}(n_{\bar{q}}u^{\mu})$$

with $R_{2\rightarrow3} = \frac{1}{2} \langle \sigma_{2\rightarrow3} v \rangle n_g \simeq 2.1 \alpha_s^2 T (2\lambda_g - \lambda_g^2)^{1/2}$ and $R_{g\rightarrow q(\bar{q})} = \frac{1}{2} \langle \sigma_{g\rightarrow q} v \rangle n_g \simeq 0.24 N_f \alpha_s^2 \lambda_g T \ln(5.5/\lambda_g)$. [Biro et. al PRC 93]

• At equilibrium, $\lambda_i = 1 \implies \partial_\mu(n_i u^\mu) = 0$

Longitudinal dynamics in presence of chemical equilibration

$$\begin{aligned} \frac{\partial \varepsilon}{\partial \tau} &= -\frac{1}{\tau} (\varepsilon + P - \Phi) \,, \\ \frac{\partial \Phi}{\partial \tau} &= -\frac{\Phi}{\tau_{\pi}} + \frac{2}{3} \frac{1}{\beta_2 \tau} - \frac{\Phi}{2} \left[\frac{1}{\tau} + \frac{T}{\beta_2} \partial_{\tau} \left(\frac{\beta_2}{T} \right) \right] \,, \\ \frac{\partial n_i}{\partial \tau} + \frac{n_i}{\tau} &= R_i \,; i = g, q \end{aligned}$$

where $\Phi = \pi^{00} - \pi^{zz}$.

We consider the EoS of a relativistic gas of massless quarks and gluons:

$$\varepsilon = 3P = (a_2\lambda_g + b_2[\lambda_q + \lambda_{\bar{q}}]) T^4; a_2 = \frac{8\pi^2}{15}, b_2 = \frac{7\pi^2 N_f}{40}, b_1 = (a_1\lambda_g + b_1[\lambda_q + \lambda_{\bar{q}}]) T^3; a_1 = \frac{16\zeta(3)}{\pi^2}, b_1 = \frac{9\zeta(3)N_f}{2\pi^2}$$

Longitudinal dynamics in presence of chemical equilibration

$$\begin{split} \frac{\dot{T}}{T} + \frac{1}{3\tau} &= -\frac{1}{4} \frac{\dot{\lambda}_g + b_2/a_2 \dot{\lambda}_q}{\lambda_g + b_2/a_2 \lambda_q} + \frac{\Phi}{4\tau} \frac{1}{(a_2 \lambda_g + b_2 \lambda_q) T^4} \,, \\ \dot{\Phi} + \frac{\Phi}{\tau_\pi} &= \frac{8}{27\tau} \left[a_2 \lambda_g + b_2 \lambda_q \right] T^4 \\ &- \frac{\Phi}{2} \left[\frac{1}{\tau} - 5 \frac{\dot{T}}{T} - \frac{\dot{\lambda}_g + b_2/a_2 \dot{\lambda}_q}{\lambda_g + b_2/a_2 \lambda_q} \right] \,, \\ \dot{\lambda}_g + 3 \frac{\dot{T}}{T} + \frac{1}{\tau} &= R_3 \left(1 - \lambda_g \right) - 2R_2 \left(1 - \frac{\lambda_q^2}{\lambda_g^2} \right) \,, \\ \dot{\lambda}_q + 3 \frac{\dot{T}}{T} + \frac{1}{\tau} &= R_2 \frac{a_1}{b_1} \left(\frac{\lambda_g}{\lambda_q} - \frac{\lambda_q}{\lambda_g} \right) \end{split}$$

Numerical solving above set of equations, we get evolution profiles: $T(\tau)$, $\lambda_i(\tau)$ and $\Phi(\tau)$

,

- Initial conditions: T_0 =0.570 GeV, τ_0 = 0.7 fm/c, λ_g^0 = 0.08, λ_q^0 = 0.02 (HIJING D. Dutta et al PRC 2009, T. Biro et al PRC 1993)
- $\tau_{\pi} = 3 \frac{\eta/s}{T}$, $T_c = 180$ MeV and hydro equations of the code VISHNU [U Heinz]

- Initial conditions: T_0 =0.570 GeV, τ_0 = 0.7 fm/c, λ_g^0 = 0.08, λ_q^0 = 0.02 (HIJING D. Dutta et al PRC 2009, T. Biro et al PRC 1993)
- $\tau_{\pi} = 3 \frac{\eta/s}{T}$, $T_c = 180$ MeV and hydro equations of the code VISHNU [U Heinz]
- Take KSS limit: $\eta/s = 1/4\pi$

Chemical equilibration and cavitation at LHC energies

Temperature dependent shear viscosity with *Chemical non-equilibrium* :

 $\blacksquare \eta/s_1$

Chemical equilibration and cavitation at LHC energies

Temperature dependent shear viscosity with *Chemical non-equilibrium* :

 $\ \ \eta/s_1$

• Cavitation condition: $Pz = [a_2\lambda_g(\tau) + 2b_2\lambda_q(\tau)] T(\tau)^4 - 3\Phi(\tau) = 0$

Chemical equilibration and cavitation at LHC energies

Temperature dependent shear viscosity with *Chemical non-equilibrium* :

- \bullet η/s_1
- Cavitation condition: $Pz = [a_2\lambda_g(\tau) + 2b_2\lambda_q(\tau)] T(\tau)^4 3\Phi(\tau) = 0$
- η/s driven cavitation survives and happens early times

Supposing cavitations doesnt happen \Rightarrow bound on shear viscosity (For bulk viscosity, equilibrated system - [P Romatschke et al JHEP 2015])

$$\bullet \eta/s = 1/4\pi$$

Supposing cavitations doesnt happen \Rightarrow bound on shear viscosity (For bulk viscosity, equilibrated system - [P Romatschke et al JHEP 2015]) $\eta/s = 6 * 1/4\pi$

Supposing cavitations doesnt happen \Rightarrow bound on shear viscosity (For bulk viscosity, equilibrated system - [P Romatschke et al JHEP 2015])

• Temperature dependent $\eta/s = \eta/s_1$

Supposing cavitations doesn't happen \Rightarrow bound on shear viscosity (For bulk viscosity, equilibrated system - [P Romatschke et al JHEP 2015])

• Temperature dependent $\eta/s = \frac{\eta/s_1}{1.5}$

Summary and Conclusions

- We studied the effect of temperature dependent η/s on Chemical equilibration using second order hydrodynamics within Bjorken approximantion
- Study of shear viscosity driven cavitation scenarios under chemical equilibration
- Chemical non-equilibrium is not washing away cavitation scenarios
- Obtained bound on the values of
 η/s(T) by assuming that cavitations
 doesnt occur
- 2+1 D and 3+1 D Hydro codes should check the longitudinal effective pressure
- 'Boltzmann factorisation' ⇒ relatively simple equations
- used relativistic massless equation of state : $\epsilon = 3P$
- the bulk-viscous contributions to the fluid flow profiles themselves have been neglected for simplicity We studied how this combined effect alters temperature profile the system
- Need to do a meticulous analysis of these effects within all allowed parameter ranges

THANK YOU

Special thanks to Marco Schramm, Christopher Jung, Shakeb Ahmed and others...

Non-ideal Equation of State

• $(\varepsilon - 3P)/T^4$, ζ/s (and $\eta/s = 1/4\pi$) as functions of temperature T. Around critical temperature ($T_c = .190 \text{ GeV}$) $\zeta \gg \eta$ and departure of equation of state from ideal case is large.

Ideal Equation of State

In order to understand the effect of *non-ideal* EoS in hydrodynamical evolution and subsequent photon spectra we compare these results with that of an *ideal* EoS ($\varepsilon = 3P$).

We consider the EoS of a relativistic gas of massless quarks and gluons. The pressure of such a system is given by

$$P = a T^4$$
; $a = \left(16 + \frac{21}{2}N_f\right) \frac{\pi^2}{90}$

where $N_f = 2$ in our calculations.

 Hydrodynamical evolution equations of such an EoS within ideal (without viscous effects) Bjorken flow can be solved analytically and the temperature dependence is given by

$$T = T_0 \left(\frac{\tau_0}{\tau}\right)^{1/3},$$

where τ_0 and T_0 are the initial time and temperature.

• effect of bulk viscosity can be neglected in the relativistic limit when the equation of state $3P = \varepsilon$ is obeyed