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Net-proton as proxy for net-baryon. �

Ø  Non-monotonic trend is observed  
for the 0-5% most central Au+Au 
collisions. Dip structure is observed 
around 19.6 GeV.  
 
Ø  Separation and flipping for the  
results of 0-5% and 5-10% centrality 
are observed at 14.5 and 19.6 GeV. 
( Oscillation Pattern observed �) 

Ø  UrQMD (no CP) results show 
suppression at low energies& 
Consistent with the effects of baryon 
number conservation.�
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• Chiral symmetry broken in vacuum and restored 
at high temperatures. 

• Quark condensate                                                                
at high T (order parameter) 

• Chiral susceptibility                                                                 
peaks at                                                                                  
(fluctuations!) 

Lattice QCD

LQCD Thermodynamics with Physical Quark Masses 7

FIG. 5: Chiral susceptibility for several volumes for the stout staggered action for N⌧ = 6 with physical quark mass (left), and
the domain wall fermion action for N⌧ = 8 (right) for m⇡ values of 140 and 200 MeV. Comparisons to the HISQ action with
N⌧ = 12 are also shown. There is no evident change in peak height with increasing volume for the same pion mass.

As noted, the presence of a crossover transition for physical quark mass values complicates the definition of a
transition temperature, but many of the thermodynamic observables that develop singularities in the chiral limit may
retain some remnant of the transition in a steep drop or inflection point in the crossover region, corresponding to the
peak in the chiral susceptibility seen in Figure 5. These characteristics are used to define a pseudo-critical temperature
(Tpc).
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FIG. 6: The renormalized chiral condensate (left) and the subtracted renormalized chiral condensate (right) for the stout action
for N⌧ = 8, 10, 12, 16 and the continuum extrapolation with physical quark masses.

When working with the chiral condensate, it is common to remove lattice artifacts through subtraction and nor-
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Figure 14: The renormalized two-flavor chiral susceptibility χR for the asqtad and HISQ/tree actions obtained at ml = 0.05ms

and compared with the stout action results [22]. The temperature scale is set using r1 (fK) in the left (right) panels.

V. O(N) SCALING AND THE CHIRAL TRANSITION TEMPERATURE

A. The transition temperature using the p4 action

In this section, we use the universal properties of the chiral transition to define the transition temperature and
its quark mass dependence for sufficiently small quark masses, as discussed in Sec. III. The scaling analysis of the
chiral condensate leads to a parameter free prediction for the shape and magnitude of the chiral susceptibility. In the
vicinity of the chiral limit, the peak in the chiral susceptibility corresponds to the peak in the scaling function fχ(z)
and the quark mass dependence of the pseudocritical temperature Tc is controlled entirely by the universal O(N)
scaling behavior. Keeping just the leading term proportional to a1 in the regular part, the position of the peak in
χm,l is determined from Eq. (16) using

∂

∂T

(

m2
s χm,l(t, h)

T 4

)

=
1

h0t0T 0
c
h1/δ−1−1/βδ d

dz
fχ(z) +

a1
T 0
c
= 0 , (35)

which, for zero scaling violation term, i.e., a1 = 0, gives the position of the peak in the scaling function fχ at z = zp
(see Sec. III). The strange quark mass on the left hand side is included only for consistency as the derivative is taken
keeping it constant. For small light quark masses, we can expand fχ(z) around zp:

fχ(z) = fχ(zp) +Ap(z − zp)
2 . (36)

In this approximation, the location of the maximum in the chiral susceptibility varies as

z = zp −
a1t0h0

2Ap
h1−1/δ+1/βδ , (37)

and the variation of the pseudocritical temperature as a function of the quark mass is given by

Tc(H) = T 0
c + T 0

c
zp
z0
H1/βδ

(

1−
a1

2Apzpz0h
−1/δ
0

H1−1/δ+1/βδ

)

= T 0
c + T 0

c
zp
z0
H1/βδ

(

1−
a1t

β
0

2Apzpz01−β
H1−1/δ+1/βδ

)

. (38)

Recall that T 0
c is the transition temperature in the chiral limit. Thus, to determine the pseudocritical temperatures

Tc(H), we need to perform fits to the chiral condensate Mb, defined in Eqs. (12) and (13), to determine the parameters
T 0
c , z0, t0, a0, a1 and a2 in the scaling and regular terms. Theoretically, one expects the O(4) Ansatz to describe the

Borsanyi  et al. 2010
Bazavov et al. 2012



• Dependence on quark masses 

• Three massless flavors:                                                              
1st order chiral transition 

• Quark masses                                                                       
1st order deconfinement trans. 

• Order of transition in                                                    
2-flavor chiral limit: 

• 2nd order     O(4) scaling 

• 1st order      Z(2) scaling
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Figure 1. Possible scenarios for the QCD phase transition at µ = 0 as function of quark mass. See text for details.

[12]. The purpose of this paper is to investigate cut-off
effects on the Nf = 2 chiral transition region by repeat-
ing the study of Ref. 8 with unimproved Wilson fermions,
starting from previous studies at imaginary chemical po-
tential in Refs. 13 and 14. The reason we use unimproved
Wilson fermions is two-fold. On a conceptual level, one
can be sure that there are no unphysical modifications
to the phase structure due to improvement terms. On a
practical level, if we wish to quantify cut-off effects and
eventually remove them by extrapolation, it is necessary
to see and control the chiral phase transition, rather than
just bounding it.

We summarize QCD at imaginary chemical potential
in Sec. II and give technical details of our simulation
setup in Sec. III. Numerical results are presented in
Sec. IV, followed by a discussion in Sec. V.

II. QCD AT IMAGINARY CHEMICAL
POTENTIAL

At imaginary quark chemical potential µ = iµi (µ =
µB/3) the sign problem is absent and standard simulation
algorithms can be applied. QCD possesses a rich phase
structure in this region, which depends on the number of
flavors Nf and the quark mass m. The partition function
is an even function of µ due to CP -symmetry, and it is
periodic in µ/T with period 2⇡/Nc due to gauge symme-
try and the anti-periodic boundary conditions of fermions
in the temporal direction [15]. As a consequence, critical
values µc

i/T = (2k + 1)⇡/Nc (k 2 N) mark the bound-
aries between adjacent, physically equivalent Z(Nc) cen-
ter sectors of the gauge group (throughout the paper we
use Nc = 3). The transitions in the µi-direction between
these sectors are called Roberge-Weiss (RW) transitions.
For low temperatures, the RW transition is a smooth
crossover, whereas it becomes a first order transition for
high T [15–17]. Consequently, there is a so-called RW
endpoint, where these two distinct behaviors meet. For
small and large quark masses, the analytic continuation

of the chiral and deconfinement transitions also join this
point, which then becomes a triple point. For interme-
diate masses, where there is no chiral or deconfinement
transition, it is instead a second order endpoint. Hence,
the nature of the RW endpoint depends on the masses
and the number of flavors just as the order of the transi-
tion at µ = 0 does.

This is the content of Fig. 2 (left), which represents
Fig. 1 (left) enlarged by an additional µ2-axis. The value
µi/T = ⇡/3 denotes the RW-plane with its regions of
triple point behavior and second order endpoint behav-
ior, separated by tricritical lines. The critical lines at
µ = 0 bounding the chiral and deconfinement transitions
continue as critical surfaces to imaginary chemical po-
tential and terminate in these tricritical lines [18]. This
phase structure has been mapped out in recent years, and
is qualitatively the same using staggered [1, 8, 16–23] or
Wilson fermions [13, 14, 24–26].

Our interest now is in the Nf = 2 backplane, shown in
Fig. 2 (right). More specifically, leaving the critical µi-
value of the RW-transition (bottom of the figure), a line
of second order transitions departs from the tricritical
point, separating regions of first order transitions from
crossover regions. This line has to terminate in another
tricritical point at mud = 0. In the vicinity of tricritical
points, the functional form of the line is governed by
tricritical scaling laws, which allows for its extrapolation
to the chiral limit [8]. There are two possible scenarios as
shown in Figure 2 (right). If the tricritical point at mud =
0 is at negative values of µ2, the chiral phase transition
is second order. On the other hand, if it is at positive
values, there exists a first order region at µ = 0 and the
transition in the chiral limit must be first order, too. In
this way one can clarify the order of the chiral limit at
zero chemical potential by mapping out the second order
line. For staggered fermions on N⌧ = 4 lattices, it was
found to be of first order [8]. In this work we apply the
same strategy using Wilson fermions.
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Figure 1. Possible scenarios for the QCD phase transition at µ = 0 as function of quark mass. See text for details.

[12]. The purpose of this paper is to investigate cut-off
effects on the Nf = 2 chiral transition region by repeat-
ing the study of Ref. 8 with unimproved Wilson fermions,
starting from previous studies at imaginary chemical po-
tential in Refs. 13 and 14. The reason we use unimproved
Wilson fermions is two-fold. On a conceptual level, one
can be sure that there are no unphysical modifications
to the phase structure due to improvement terms. On a
practical level, if we wish to quantify cut-off effects and
eventually remove them by extrapolation, it is necessary
to see and control the chiral phase transition, rather than
just bounding it.

We summarize QCD at imaginary chemical potential
in Sec. II and give technical details of our simulation
setup in Sec. III. Numerical results are presented in
Sec. IV, followed by a discussion in Sec. V.

II. QCD AT IMAGINARY CHEMICAL
POTENTIAL

At imaginary quark chemical potential µ = iµi (µ =
µB/3) the sign problem is absent and standard simulation
algorithms can be applied. QCD possesses a rich phase
structure in this region, which depends on the number of
flavors Nf and the quark mass m. The partition function
is an even function of µ due to CP -symmetry, and it is
periodic in µ/T with period 2⇡/Nc due to gauge symme-
try and the anti-periodic boundary conditions of fermions
in the temporal direction [15]. As a consequence, critical
values µc

i/T = (2k + 1)⇡/Nc (k 2 N) mark the bound-
aries between adjacent, physically equivalent Z(Nc) cen-
ter sectors of the gauge group (throughout the paper we
use Nc = 3). The transitions in the µi-direction between
these sectors are called Roberge-Weiss (RW) transitions.
For low temperatures, the RW transition is a smooth
crossover, whereas it becomes a first order transition for
high T [15–17]. Consequently, there is a so-called RW
endpoint, where these two distinct behaviors meet. For
small and large quark masses, the analytic continuation

of the chiral and deconfinement transitions also join this
point, which then becomes a triple point. For interme-
diate masses, where there is no chiral or deconfinement
transition, it is instead a second order endpoint. Hence,
the nature of the RW endpoint depends on the masses
and the number of flavors just as the order of the transi-
tion at µ = 0 does.

This is the content of Fig. 2 (left), which represents
Fig. 1 (left) enlarged by an additional µ2-axis. The value
µi/T = ⇡/3 denotes the RW-plane with its regions of
triple point behavior and second order endpoint behav-
ior, separated by tricritical lines. The critical lines at
µ = 0 bounding the chiral and deconfinement transitions
continue as critical surfaces to imaginary chemical po-
tential and terminate in these tricritical lines [18]. This
phase structure has been mapped out in recent years, and
is qualitatively the same using staggered [1, 8, 16–23] or
Wilson fermions [13, 14, 24–26].

Our interest now is in the Nf = 2 backplane, shown in
Fig. 2 (right). More specifically, leaving the critical µi-
value of the RW-transition (bottom of the figure), a line
of second order transitions departs from the tricritical
point, separating regions of first order transitions from
crossover regions. This line has to terminate in another
tricritical point at mud = 0. In the vicinity of tricritical
points, the functional form of the line is governed by
tricritical scaling laws, which allows for its extrapolation
to the chiral limit [8]. There are two possible scenarios as
shown in Figure 2 (right). If the tricritical point at mud =
0 is at negative values of µ2, the chiral phase transition
is second order. On the other hand, if it is at positive
values, there exists a first order region at µ = 0 and the
transition in the chiral limit must be first order, too. In
this way one can clarify the order of the chiral limit at
zero chemical potential by mapping out the second order
line. For staggered fermions on N⌧ = 4 lattices, it was
found to be of first order [8]. In this work we apply the
same strategy using Wilson fermions.
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• LQCD at             difficult                                         
due to sign problem 

•      Taylor expansion about 

• Other schemes: 

• Im chemical potential + analytic continuation 

• Reweighting 

• Complex Langevin           Gert Aarts talk 

Lattice QCD @ small µB

µB = 0 ! µB 6= 0 (µB/T . 1)

µB 6= 0
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• Line of critical points                                                 
surface of cp’s 

• Physical point crosses                                                      
surface       CP & 1st ord. 

• No crossing                                                                                                             
chiral transition remains                                                                
of cross over type. 

• Not settled due to                                                          
strong cut-off effects
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Figure 2: The chiral critical surface in the case of positive and negative curvature. If

the physical point is in the crossover region for µ = 0, a finite µ phase transition will
only arise in the scenario with positive curvature.

In this work we present a comprehensive numerical study mapping out the chiral

critical line in simulations of the standard staggered action on several lattices with
Nt = 4. Upon repeating the computation for the Nf = 3 chiral critical point with

the rational hybrid Monte Carlo (RHMC) algorithm [11], which is free of finite step
size errors, we find that the bare quark mass amc

0 is reduced by 25%, and the physical
pion mass by 10%, compared to the accepted values determined previously using the

R-algorithm. We then extend our simulations to cover a wide range of quark masses,
mapping out the critical line up to the neighbourhood of the physical point. In agree-

ment with expectations, the physical point is found to be on the crossover side of the
boundary. Assuming O(4) behaviour for the Nf = 2 chiral limit, the fit to our criti-

cal line can be extrapolated to the mu,d = 0 axis consistently with the required O(4)
scaling behaviour, putting the tri-critical point in that scenario (see Fig. 1) around
mtric

s /T ∼ 2.8. However, non-O(4) behaviour is not excluded by our data. Our results

should also provide a testing ground and input for analytic attempts to determine the
critical line from effective theories based on universality arguments [12] (for a review,

see [13]).
In a second set of simulations, we repeat the analysis for an imaginary baryon chem-

ical potential µB/(iT ) = 2.4 and determine the corresponding shift of the critical line,

following the strategy already used in [9]. Together with additional imaginary µ simula-
tions for the Nf = 3 case, this allows for a determination of the curvature of the critical

surface at µB = 0, which can be readily continued to real values of µB. We find this
curvature to be negative, as illustrated in Fig. 2 (right). In the (T − µ) phase diagram

this implies that the critical endpoint moves to smaller µ with growing quark mass,
until it disappears entirely for physical quark masses. This is contrary to customary
expectations, and in contradiction with the results of [14], obtained at the same lattice

spacing and with the same action, but using the R-algorithm and a different numerical
approach. Clearly, a careful study of systematic errors, due in particular to the very

coarse lattice spacing, is needed. Still, if the physical point of QCD is indeed in the

3

* QCD critical point

crossover 1rst
0 ∞

Real world

X

Heavy quarks

mu,d
ms

µ

  QCD critical point DISAPPEARED

crossover 1rst
0 ∞

Real world

X

Heavy quarks

mu,d
ms

µ

Figure 2: The chiral critical surface in the case of positive and negative curvature. If

the physical point is in the crossover region for µ = 0, a finite µ phase transition will
only arise in the scenario with positive curvature.

In this work we present a comprehensive numerical study mapping out the chiral

critical line in simulations of the standard staggered action on several lattices with
Nt = 4. Upon repeating the computation for the Nf = 3 chiral critical point with

the rational hybrid Monte Carlo (RHMC) algorithm [11], which is free of finite step
size errors, we find that the bare quark mass amc

0 is reduced by 25%, and the physical
pion mass by 10%, compared to the accepted values determined previously using the

R-algorithm. We then extend our simulations to cover a wide range of quark masses,
mapping out the critical line up to the neighbourhood of the physical point. In agree-

ment with expectations, the physical point is found to be on the crossover side of the
boundary. Assuming O(4) behaviour for the Nf = 2 chiral limit, the fit to our criti-

cal line can be extrapolated to the mu,d = 0 axis consistently with the required O(4)
scaling behaviour, putting the tri-critical point in that scenario (see Fig. 1) around
mtric

s /T ∼ 2.8. However, non-O(4) behaviour is not excluded by our data. Our results

should also provide a testing ground and input for analytic attempts to determine the
critical line from effective theories based on universality arguments [12] (for a review,

see [13]).
In a second set of simulations, we repeat the analysis for an imaginary baryon chem-

ical potential µB/(iT ) = 2.4 and determine the corresponding shift of the critical line,

following the strategy already used in [9]. Together with additional imaginary µ simula-
tions for the Nf = 3 case, this allows for a determination of the curvature of the critical

surface at µB = 0, which can be readily continued to real values of µB. We find this
curvature to be negative, as illustrated in Fig. 2 (right). In the (T − µ) phase diagram

this implies that the critical endpoint moves to smaller µ with growing quark mass,
until it disappears entirely for physical quark masses. This is contrary to customary
expectations, and in contradiction with the results of [14], obtained at the same lattice

spacing and with the same action, but using the R-algorithm and a different numerical
approach. Clearly, a careful study of systematic errors, due in particular to the very

coarse lattice spacing, is needed. Still, if the physical point of QCD is indeed in the

3

!

!

deForcrand & Philipsen 2007

µB



• Assume O(4) at               +                                     
critical point at larger 

• TCP corresponds to Gaussian FP 

• Crossover from O(4) to Gaussian                                     
to Z(2) fixed point with incr.       ?                                                
Interference between FP’s?                 
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• Critical fluctuations and scaling 

• Aside on focusing (on the cross over side) 

• Magnetic equation of state and scaling window 

• Scaling window near TCP 

• Conclusions

Outline



• Mixture of methanol and cyclohexane             
Critical fluctuations

T > Tc T = Tc

Uniform mixture Critical opalescence

Uniform mixture           Separated fluids  

Index of 
refraction
n1 6= n2

Light scatt. 
on critical 

fluctuations



• Close to a CP,              most important length scale; 
responsible for singular part of thermodynamics 

• Partition function dimensionless & extensive 

• Free energy density:

Criticality and scaling (heuristic)

singular regular
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• Reduced temperature 

• Symmetry breaking field 

• Correlation length diverges @  

• Scale invariance

Widom scaling hypothesis
t̄ =

1

t0

T � Tc
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•                                                  true for any 

• Choose 

• Order parameter scaling  

Critical exponents
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• Scaling window: critical fluctuations dominate 

• More derivatives         stronger singularity 

• Size of scaling window                                     
determ. by competition                                          
betw. sing. & reg. parts                                                            
depends on observable  

Critical region
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• Robust observable of criticality: Sing. part diverges! 

• Singular free energy: 

• Choose 

• Yields:   

Aside on focusing 

fs(t̄, h̄) = ��dfs(�
yt t̄,�yh h̄)
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1� ↵ > 0 No divergence!
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FIG. 8: Equilibrium correlation length ξeq (thin lines) and
non-equilibrium correlation length ξ (thick lines) on the isen-
tropic trajectories with nB/s = 0.008 and 0.01, together with
τ as functions of L/Ltotal (inlet). z = 3 was used in the
calculation.
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FIG. 9: Cube of the equilibrium correlation length (thin
lines) as a function of the temperature and the cube of the
non-equilibrium correlation length (thick lines) on the isen-
tropic trajectories with nB/s = 0.008, 0.01, and 0.015. The
parameters are the same as for Fig. 8. The isentropic lines
with nB/s = 0.008, 0.01, and 0.015 pass left of, almost
through, and right of the CEP, respectively.

diagram. Since the correlation length and fluctuation di-
verge at the CEP in thermal equilibrium, it has been
expected that some enhancement of the fluctuation, for
instance, is observed if the collision energy of nuclei is
properly adjusted so that the system goes right through
the CEP. Generally, the higher the collision energy is,
the smaller chemical potential region is explored in the
T -µB plane. Thus, it has also been expected that the
observables related to the critical behavior around the
CEP such as fluctuations show non-monotonic behavior
as a function of the collision energy. We discuss the ob-
servability of such behavior in ultrarelativistic heavy ion
collisions on the basis of our findings in the previous sec-
tions.

It has been naively expected that the collision energy
needs to be carefully adjusted so that the system goes
right through the CEP and its existence can be con-
firmed. In section II, we have shown that the CEP acts
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FIG. 10: Isentropic trajectories and entropy density contour
lines in the case with the CEP. The parameters are the same
as for Fig. 3 and the left figure of Fig. 4. The solid lines are
isentropic trajectories (nB/s = 0.01, 0.015, 0.02, 0.025, 0.03,
0.035, and 0.04 from left to right) as in Fig. 4. The dashed
lines are entropy density contour lines, which are shown at
every 1 fm−3.

as an attractor of the isentropic trajectories. Thus, if the
size of the critical domain is large enough, as stressed in
Ref. [16] for the right hand side of the CEP, it is not neces-
sary to fine-tune the collision energy to make the system
approach the CEP closely enough. However, such phys-
ical quantities that show the critical behavior near the
CEP are hadronic observables, and are subject to final
state interactions in the hadron phase. It has been often
argued that if the system passes near the CEP, kinetic
freezeout takes place near the CEP [16]. It is based on
the expectation that, in such a case, the system stays long
near the CEP, where the phase transition is second order,
and that when the system starts to leave away from the
CEP, the entropy density or particle density is already
small enough so that kinetic freezeout takes place. To
the contrary, Fig. 3 does not show a sharp drop of the
entropy density near the CEP. To see this more clearly,
we show the contour plot of the entropy density in Fig. 10
for the same parameters as in Fig. 3. The entropy density
gives a semi-quantitative measure of the whereabouts of
kinetic freezeout. Alternatively, we could use the energy
density as a measure as well. Figure 10 shows that the
contour lines of the entropy density are not focused near
the CEP in contrast to the isentropic trajectories. Thus,
it is not likely that kinetic freezeout takes place near the
CEP. The reason can be traced back to the fact that at
the CEP the entropy density is continuous and bound,
although its derivative along the h axis diverges. If the
system does not freeze out near the CEP, the dilution
of the critical behaviors in the hadron phase needs to be
carefully considered.

Empirically it has been known that chemical freezeout
takes place just below the theoretically expected phase
transition line. Since the isentropic trajectories are fo-
cused around the CEP, it would be tempting to expect
that the chemical freezeout points are focused as the col-
lision energy is varied. However, so far, only the free
resonance gas model has been used in the analysis of
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FIG. 3: Isentropes calculated in the quark–meson model us-
ing the FRGTaylor and FRGgrid methods (see text). The isen-
tropes computed within the FRGTaylor approach are shown
as solid lines whereas those obtained within the grid method
FRGgrid are indicated by dashed lines. The s/n-ratio of each
isentrope is indicated at each contour. The phase boundary,
with the CEP, obtained in the FRG approach, is indicated as
in Fig. 1. The CEP shown is that obtained using the Taylor
expansion method FRGTaylor .

not support the universality of the focusing phenomenon
conjectured in Refs. [26, 28]. We stress that the RG treat-
ment of fluctuations employed here, reproduces the Z(2)
universal scaling of the relevant physical observables at
the CEP [5].

The fact that the focusing effect is not universal can be
understood in general terms. The point is that the en-
tropy and the baryon density are both obtained as first
derivatives of the thermodynamic potential Ω, which re-
main finite at the CEP, since only second- and higher-
order derivatives diverge. Consequently, the singular
part of the entropy per baryon does not diverge at the
CEP and hence is not guaranteed to dominate over the
regular background contribution. It follows that the isen-
tropic trajectories are not universal, since they depend on
the relative strength of the universal singular part and
the non-universal background. In other words, the char-
acteristic shape of the isentropes in the vicinity of the
CEP can vary from model to model, even though they
belong to the same universality class. The model con-
structed in Refs. [26, 28] yields focusing of the isentropes
towards the CEP because the singular part of the thermo-
dynamic potential is chosen by hand to be very large. In
chiral models, where the critical region around the CEP
and around the O(4) transition line is small [5, 21], and
consequently the relative strength of the singular part of
Ω is small, it is unlikely that the focusing effect of the

isentropic trajectories reported in [26] can be observed.
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FIG. 4: Isentropes as in Fig. 3 but in a narrower region around
the CEP from the side of the crossover transition (dashed
line). The CEP is indicated as a black point at the right edge
of the figure.

For completeness we note that the fact that this effect
is not universal does not exclude the possibility that in
QCD the relative strength of the singular part is large.
If this is the case, focusing may then potentially be rel-
evant for nucleus-nucleus collision experiments [28, 29].
However, then a detailed study of the equilibration of
long-range fluctuations in an expanding system, along the
lines of Ref. [17] is needed in order to decide whether the
isentropic trajectories are relevant or not, as discussed in
the introduction.

5. SUMMARY

The isentropic trajectories (contours of fixed entropy
per baryon) in the QCD phase diagram describe possi-
ble paths of the hydrodynamic evolution of a thermal
medium created in nucleus-nucleus collisions. We inves-
tigated the behavior of the isentropic trajectories within
the chiral quark-meson model for two-quark flavors. The
thermodynamics was formulated using functional renor-
malization group (FRG) techniques and the results were
compared with two variants of the mean-field (MF) ap-
proximation, one neglecting and the other one including
the fermion vacuum term.

Our studies of the isentropic trajectories near the chiral
phase transition were motivated by recent findings that
the chiral critical endpoint (CEP) acts as an attractor
for the isentropes, leading to a focusing towards the CEP
[26]. It was argued that the focusing effect would have

Nakano et al., 2010
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• Dimensionless order parameter 

• Unique magnetic EOS for each universality class! 

• Scaling violations         deviations from universal EOS

Magnetic equation of state
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• Landau effective free energy 

• Temperature dependence 

• mEOS
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• Scaling violation in mEOS:
Scaling window
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• Lattice QCD: 

• Physical value  

• Scaling window extends       to physical 

• Staggered fermions: one light pion         O(2) 

Scaling window
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FIG. 6: The order parameters M (left) and Mb (right) for all quark mass values, ml/ms ≤ 0.4, and all values of the gauge
coupling, β ∈ [3.28, 3.33], used in this study. The scaling variables t and h used to compare with the O(2) scaling function are
taken from the fit to the light quark mass results shown in Fig. 5.

linear in the light quark mass. In our analysis of the order parameter, performed in a larger temperature and quark
mass interval, we clearly see these differences and their role in contributing to violations of scaling. This is shown in
Fig. 6. Most prominent are effects arising from a too large quark mass value. These effects show up in the scaling
plot as deviations from the scaling function in the region of small z, i.e. for large quark masses at fixed t. They
lead to the sizeable displacement of results obtained for too heavy quarks from the scaling curve. Effects that arise
because the temperatures chosen are too far away from the critical point, t = 0, are typically not that drastic in our
data sample. We fitted the scaling violations to an ansatz

M(t, h) = h1/δfG(t/h1/βδ) + atth + b1h + b3h
3 + b5h

5 . (16)

We also considered including a term quadratic in the reduced temperature (∼ t2h). This correction, however, turned
out to vanish within the errors of our fits.

The fits of both order parameters performed with the ansatz given in Eq. 16 are shown in Fig. 7. As expected, we
find that corrections linear in ml/ms are eliminated in M . The corresponding fit parameter b1 is zero within errors
and we therefore have fixed it to be zero in the fit shown in Fig. 7 (left). For the non-subtracted order parameter Mb

this term gives the dominant finite quark mass corrections. Here we find b1 = 0.0013(3).

C. Scaling of the chiral condensate

We have seen in the previous section that order parameters constructed from the chiral condensate are well described
by the magnetic equation of state for small enough values of the light quark masses, ml/ms<∼1/20. We want to
underscore this point here by displaying the order parameters not in their scaling form, but as a function of temperature
in units of the transition temperature determined in the previous section. This is shown in Fig. 8. The curves drawn
in this figure are taken from the scaling fits to the subtracted and non-subtracted order parameters shown in Fig. 5.
They had been obtained from the numerical results for M (left) and Mb (right) in the range ml/ms ≤ 1/20 and
T/Tc = 1 ± 0.03.

D. Comparison with earlier calculations in 2-flavor QCD

As mentioned in the Introduction, there have been earlier attempts to compare the quark mass and temperature
dependence of the chiral order parameter with O(N) scaling functions on lattices with temporal extent Nτ = 4
[6, 8, 9]. These calculations had been performed for 2-flavor QCD using unimproved gauge and staggered fermion
actions. In Ref. [6] calculations with three quark mass values had been performed, m̂ = 0.008, 0.0125 and 0.025. The
last two masses are similar to the two mass values used in Ref. [8], i.e. m̂ = 0.01335 and 0.0267. In fact, results for
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FIG. 7: The O(2) magnetic equation of state compared to results for the subtracted order parameter M (left) and the non-
subtracted chiral condensate, Mb for light quark masses ml/ms ≥ 1/10. Curves show fits to data at fixed ml/ms using the
ansatz for scaling violations given in Eq. 16. Same symbols correspond to same values of the gauge coupling.
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FIG. 8: The subtracted chiral order parameter, M , defined in Eq. 12, compared to the fit result for the magnetic equation of
state (left). The right hand figure shows results for the un-subtracted, but normalized chiral condensate Mb defined in Eq. 13.

chiral condensates obtained in these two calculations are in good agreement with each other. This also is true for
calculations performed in [4] where m̂ = 0.02 has been used. All these calculations have been performed at values of
the gauge coupling in the vicinity of the cross-over at the corresponding quark mass values. They therefore mostly
explored the region of z > 0.

In Fig. 9 we compare results for the chiral condensate obtained in 2-flavor calculations with unimproved gauge and
fermion actions with our results obtained in (2+1)-flavor QCD with O(a2) improved gauge and fermion actions. In
this figure we use a log-log plot as has been done also in Ref. [6]. In the 2-flavor case the symmetry breaking field has
usually been chosen as H = m̂Nτ while for the reduced temperature variable we used (T − Tc)/Tc ≡ R(βc)/R(β)− 1,
with βc = 5.2435 as estimate for the critical value of the gauge coupling in the chiral limit [8] and R(β) denoting
the 2-loop β-function for 2-flavor QCD. In the log-log plot differences in the scale parameters h0 and z0 correspond
to shifts in vertical and horizontal directions, respectively. We made no effort to optimize the choice of these scale
parameters for the 2-flavor data set. In Fig. 9 we have positioned the data such that the crossover region roughly
corresponds to the location of the maximum in the O(2) scaling function fχ(zp), with zp = 1.56 (see also [9]); this
required the choice z0 ≃ 12.

When comparing results obtained with standard and improved gauge actions the difference in the shape of the data

Ejiri et al. 2009
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• Critical points mark the end                                                  
of a first-order transition 

• At a tricritical point three lines                                          
of critical points meet 

• Advantageous to discuss                                 
scaling in three dimensions

Tricritical scaling
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• Strong direction:                                                              

• Weak direction: 

• Independent direction:                                                                        

Tricritical scaling

Hankey et al, 1973

At TCP all coord. systems coincide!

x1 $ m,H

x2 $ T cos ✓ + µ sin ✓

x3 $ �T sin ✓ + µ cos ✓

FIG. 1. Schematic phase diagram showing a TCP
(at T= T~). Shaded areas are coexistence surfaces. At
a point P on I t„a triad of directions x;(P) are shorn.
This triad becomes x; at TCP.

other absolute invariants are expressible in terms
of these. One such basis set is

yo=—Q/x 3, yq ——xq/x'~t's, y =-7/x's~'3, (4)

The scaling hypothesis, Eq. (1), requires Eq. (2)
to be expressible in terms of the basis set as a
"single-power" scaling function,

ye=F2(y» yz),

We remark that, using Eq. (1), it is possible to
determine all exponent relations and "single-pow-
er" scaling laws for a TCP. 3
III. GEOMETRY OF SURFACES AND CURVES NEAR TCP

Since the quantities y, and yz defined in Eqs. (4)
form a basis set of functionally independent abso-
lute znvarzants of x,- under the group of transforma-
tions x = X 'x;, points in the invariant (y~, y2)
plane give rise to invariant curves in the (x» xz,
x3) space. We have seen that the scabng hypothesis
requires scaled thermodynamic functions near a
TCP to depend on yz and yz only. This implies that

pI each of the three critical lines near the TCP can be
expressed as a point y, = k, in the (y&, y2) plane,
where k, are constants.
Usually, for systems exhibiting a TCP, one of

the critical lines is a planar curve lying entirely in
the (g, T) plane (e. g. , f,~ of Fig. 1). Since x~=0,
Eq. (4) implies that I., is given by (y» yz) = (0, —k)
in the invariant plane.
Near I.&, it is expected that the symmetry prop-

erty of the critical line will also influence the as-
ymptotic form of the thermodynamic functions.
The region of influence is bounded by some "cross-
over" curve, f„(y» yz)=0 [Fig. 2(a)], or

f„(xg/x," 's, x,/x, '2'&) =0, (S)
which is a conical surface surrounding I.& in the
(x~, x2, xs) space [Fig. 2(b)]. Scaling cannot tell
us the actual shape of the curve in the (y, , yz)
plane, ' but it does limit the shape of the conical
"crossover" surface in the (x„xa, xs) space,
since all points in the (y„yz) plane give rise to
curves approaching the TCP along the xs axis (cor-
responding to the minimum a, ). n

which states that G (and other thermodynamic func-
tions), when appropriately sealed, are functions of
the invariants (y~, y2) alone. This result allows
data e a TCPto ollapsef orna I ~o toa
sutfoce

IV. DOUm. E-IOmR SCAI.ING FUNCTIONS FOR I,,
%e now proceed to deduce the restriction on the

asymptotic form of the thermodynamic functions
near a TCP adjacent to the critical line I-q .
Along I.~, the conventional sealing hypothesis is

Crossover
cUr ve

L)

FIG. 2. (a) Invariant (y~, y2)
plane. The strong and weak direc-
tions for I ~ are y~ and y2, and the
crossover curve is shoran (Ref. 8).
(b) Principal points of interest of
(a) in the (x~, x2, x3) space.
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FIG. 1. Schematic phase diagram showing a TCP
(at T= T~). Shaded areas are coexistence surfaces. At
a point P on I t„a triad of directions x;(P) are shorn.
This triad becomes x; at TCP.
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• Scaling arguments:                                                   : 

• Scaling windows                                                  
near TCP 

• Expect O(4) scaling window                                       
to decrease with  

• If physical        within                                                                  
scaling window @                                                       
leave SW at some   

Scaling window near TCP
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FIG. 1. Schematic phase diagram showing a TCP
(at T= T~). Shaded areas are coexistence surfaces. At
a point P on I t„a triad of directions x;(P) are shorn.
This triad becomes x; at TCP.
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sutfoce

IV. DOUm. E-IOmR SCAI.ING FUNCTIONS FOR I,,
%e now proceed to deduce the restriction on the

asymptotic form of the thermodynamic functions
near a TCP adjacent to the critical line I-q .
Along I.~, the conventional sealing hypothesis is
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FIG. 2. (a) Invariant (y~, y2)
plane. The strong and weak direc-
tions for I ~ are y~ and y2, and the
crossover curve is shoran (Ref. 8).
(b) Principal points of interest of
(a) in the (x~, x2, x3) space.
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• Landau effective free energy 

• TCP:  

• Scaling window:                                                                 

Landau Theory revisited

L =
1

2
a(T, µ)�2 +

1

4
b(T, µ)�4 +

1

6
c(T, µ)�6 �H�

a = b = 0 ! (TTCP , µTCP )
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✓
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! 0 @ TCP

If TCP expect scaling window to decrease with           µB

This yields

r = 0 or r =
u2

2v
. (2.12)

Note that for r = 0 we find ⌘+ = 0 and both minima coincide. It is now very useful to sketch the Lan-
dau free energy for the different situations. In Fig. 2.3 we show L for the situations u > 0 and u < 0

and different values of r, respectively. For u < 0 we observe that the global minimum – and therefore
the ground state of the system – jumps from ⌘ = 0 to ⌘ = ⌘+ at r = ˜r = u2

2v . This discontinuity in the
order parameter indicates a first-order phase transition. For u > 0, however, we observe that the global
minimum continuously changes from ⌘ = ⌘+ to ⌘ = 0 as r approaches zero. This is characteristic for a
continuous phase transition. The line of continuous phase transitions, u > 0 and r = 0, and the line of
first-order phase transitions, u < 0 and r = u2

2v , meet at the tricritical point u = 0 = r. These considera-
tions give rise to the phase diagram depicted in Fig. 2.4.

(a) Landau free energy for u < 0 and di�erent val-
ues of r. The critical coupling is ˜r = u2

2v .
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(b) Landau free energy for u > 0 and di�erent val-
ues of r.

Figure 2.3.:We see that in (a) the minima at ±⌘+ are stable for r < ˜r = u2

2v and unstable for r > ˜r. The
phase transition at r = ˜r is of first order. In (b), however, the minima at ±⌘+ are stable for
r < 0 and disappear for r > 0. The phase transition at r = 0 is continuous.

It turns out, however, that Landau theory is often not capable for calculating the precise values of the
critical exponents. The reason for that is that Landau theory is a mean-field theory that only takes into
account fluctuations of fermion fields but ignores bosonic fluctuations. We saw, however, that the corre-
lation length – which is in fact a measure of fluctuations – diverges at the phase transition. This means
that fluctuations become crucial in this region and Landau theory breaks down. It is remarkable that
the quality of Landau theory also depends on the dimension d of the system. It turns out that for d > 4

Landau theory is unrestrictedly applicable and gives the correct critical exponents. For d < 4, Landau
theory breaks down and does not give the correct physics. For d = 4, Landau theory is quite good,
but logarithmic corrections from fluctuations need to be taken into account. In this context, the special
dimension d = 4 is called upper critical dimension.6

The correct theory for dealing with critical phenomena, that also considers fluctuations, is the Renormal-
ization Group that we shall introduce in the next section.

6 The upper critical dimension d = 4 as illustrated above is actually just an example for the Ising universality class.
However, it is almost always the case that there exists an upper critical dimension (that does not need to be four) [2].
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• Quark-meson model (O(4) universality class) 

• Critical fluctuations accounted for using FRG                                                                

Critical scaling in QM-FRG

L = q̄ [i@µ�
µ � g(� + i�5~⌧~⇡)] q +

1

2

⇥
(@µ�)

2 + (@µ~⇡)
2
⇤
� U(�,~⇡)

U(�,~⇡) =
�

4
(�2 + ~⇡ 2 � v2)2 �H�

3 Renormalization group method

∂kΓk[φ] = 1
2

Figure 3.3: Graphical representation of the flow equation for the effective average
action Γk[φ]. The complete field dependent propagator is represented by
the double line and the solid dot denotes the insertion of ∂kRk.

By taking a variation on Eq. (3.19) with respect to φ(y) we have

δ

δφ(y)

(
δW [J ]

δJ(x)

)

= δ(x − y). (3.41)

Thus, we can write the following set of identities

δ(x − y) =
δ2W

δJ(x)δφ(y)
=

∫

z

(
δ2W

δJ(x)δJ(z)

δJ(z)

δφ(y)

)

(z, y)

=

∫

z

δ2W

δJ(x)δJ(z)

(
δ2Γk[φ]

δφ(z)δφ(y)
+ Rk

)

(z, y)

=

∫

z

δ2W

δJ(x)δJ(z)

(

Γ(2)
k [φ] + Rk

)

(z, y). (3.42)

From the last step follows Eq. (3.40). Finally, we can write the flow equation for
the effective average action Γk[φ] as

∂kΓk[φ] =
1

2

∫

x,y

G(x, y)∂kRk =
1

2

∫

x

[(

Γ(2)
k [φ] + Rk

)−1

∂kRk

]

. (3.43)

Since no approximations have been introduced during the derivation of flow equation
for the effective average action Γk[φ], this flow is in the literature also referred to
as the exact RG flow equation. However, as one starts with the tedious procedure
of solving the exact flow equation, various approximation schemes and truncations
have to be used and the exactness is lost.

The flow equation can be written in momentum space and extended to include
fermions as well. The full form of the flow equation is usually written in the following
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p2k2

k2
Rk

(d/dt) Rk

Fig. 1. Sketch of a regulator function Rk(p2) (lower curve) and its derivative
∂tRk(p2) (upper curve). Whereas the regulator provides for an IR regularization
for all modes with p2 ! k2, its derivative implements the Wilsonian idea of integrat-
ing out fluctuations within a momentum shell near p2 ≃ k2.

(Note that we frequently change from coordinate to momentum space or vice
versa by Fourier transformation for reasons of convenience.) Now, we are in a
position to define the interpolating effective action Γk by a slightly modified
Legendre transform,3

Γk[φ] = sup
J

(∫
Jφ− Wk[J ]

)
− ∆Sk[φ]. (20)

Since we later want to study Γk as a functional of a k-independent field φ, it is
clear from Eq. (20) that the source J ≡ Jsup = J [φ] for which the supremum
is approached is necessarily k dependent. As before, we get at J = Jsup:

φ(x) = ⟨ϕ(x)⟩J =
δWk[J ]

δJ(x)
. (21)

The quantum equation of motion receives a regulator modification,

J(x) =
δΓk[φ]

δφ(x)
+

(
Rkφ

)
(x). (22)

From this, we deduce4:

δJ(x)

δφ(y)
=

δ2Γk[φ]

δφ(x)δφ(y)
+ Rk(x, y). (23)

3 Now, only the “sup” part of Γk is convex. For finite k, any non-convexity of Γk

must be of the form of the last regulator term of Eq. (20).
4 In case of fermionic Grassmann-valued fields, the following φ derivative should

act on Eq. (22) from the right.

@k�k =
1

2
Tr

⇢
@kRk

⇣
�(2,0)
k +Rk

⌘�1
�



• Magnetic EOS                                                                  
@  

• Scaling violation                                                                 
@           along                                                                  
phase boundary                                                             

Scaling violation in mEOS
mΠ
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(a) mEOS at µ = 0 MeV. The black curve corre-
sponds to the universal scaling curve of the O(4)
universality class. Some of the curves have an
endpoint at negative z =

t

t0h̄1/��
because T = 0,

i.e. t = �1, is reached. Note that a fixed pion
mass corresponds to a fixed h̄.

(b) Deviation from the scaling value of the order pa-
rameter at t̄ = 0 as a function of the external field for
di�erent quark chemical potentials. The 1% deviation
from unity determines the size of the scaling window.

Figure 5.4.: Illustration of the mEOS as described in the text.

f ⌘ fs + fr. (5.65)

In the vicinity of the critical point, the behavior of a system is determined by the singular part of the free
energy. According to the scaling hypothesis – cf. Sec. 4.2 –, the singular part obeys the scaling form

fs( t̄, h̄) = s�d fs(s yt t̄, s yhh̄), (5.66)

with

yt =
1
⌫

and yh =
��

⌫
. (5.67)

The scale factor s can be chosen as s yhh̄ = 1. Using the definition of the order parameter, � = �@h f ,
and the scaling relation d⌫= � (1+�), one finds at the critical point, where the singular part of the free
energy dominates,

�̃ = h̄1/� fG

Å

t̄

h̄1/��

ã

(5.68)

or equivalently

x = fG(z), (5.69)

where
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• 1% deviation from scaling 

• Scaling region in t, for h=0                                                                      

Scaling window
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Μ in MeV

lo
g

1
0

h
sw

Figure 5.5.: Scaling window hsw as a function of µ. The scaling window is determined as the 1% deviation
from unity of the mEOS at z = 0.

x 0(z0 = 0) = 1 and lim
z0!1 x 0(z0) =

�

z0
�1/�

. (5.75)

The modified mEOS is shown at µ = 0 MeV in Fig. 5.6(a). We again derive a scaling window by
considering the deviation of the modified mEOS from unity at z0 = 0. Fig. 5.6(b) shows a plot of x 0(0) as
a function of the reduced temperature for different µ. The 1% derivation from unity is shown in Fig. 5.7.
The scaling window in t direction is qualitatively very similar to that in h direction. It is noticeable, that
the maximum of the scaling window in t direction is at about µ = 270 MeV and therefore closer to the
TCP than that in h direction.

(a) Modified mEOS at µ = 0 MeV. The black
curve corresponds to the universal scaling curve
of the O(4) universality class.

(b) Deviation from the scaling value of the order pa-
rameter at h̄= 0 as a function of the external symmetry
breaking field. The 1% deviation from unity determines
the size of the scaling window.

Figure 5.6.: Illustration of the modified mEOS as described in the text.
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Figure 5.7.: Scaling window tsw as a function of µ. The scaling window is determined as the 1% deviation
from unity of the modified mEOS at z0 = 0.

5.4.3 Mean–Field Study of the Scaling Region

The simplest approach for describing phase transitions and critical phenomena is the mean–field approx-
imation, where fluctuations of the meson fields are ignored. In this subsection, we compare our findings
concerning the scaling window with a mean–field calculation using Landau theory, which is a convenient
framework for exploring continuos phase transitions. The basis of Landau theory is the observation that
the order parameter in the vicinity of a continuous phase transition is small. Consequently, one can write
down an effective potential as a polynomial in the order parameter �:

L (t,µ, H,�) = a(t,µ)
�2

2
+ b(t,µ)

�4

4
+ c(t,µ)

�6

6
+ O (�8) � H�. (5.76)

This so–called Landau free energy respects – except for the explicit symmetry breaking term H� – the
symmetry � ! ��. The order parameter of the theory is given by the location of the global minimum
of the Landau free energy and therefore determined by the gap equation

@L
@ �

= a(t,µ)�+ b(t,µ)�3 + c(t,µ)�5 � H = 0. (5.77)

The temperature dependence of the coefficients is expanded in a Taylor series in the reduced temperature
about t = 0:

a(t,µ) = a1(µ)t + a2(µ)t2,

b(t,µ) = b0(µ) + b1(µ)t,
c(t,µ) = c0(µ).

(5.78)

In the symmetric case H = 0, the system undergoes a continuous phase transition for b(t,µ) > 0 and
c(t,µ) � 0. The critical temperature is determined by the condition a(t,µ) = 0, t = 0. Using the
definitions (5.63), one finds for the normalizations in Landau theory [52]
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• QM-model in mean-field theory 

•                 @ TCP. What about       ? 

• High-temperature expansion of one-fermion-loop:                                                 

Interpretation?
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• To leading order in scale-breaking field 

• Maximum related to change in sign of scale 
breaking term 

•      dependence of one-fermion-loop                                               

Scaling window MFT
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Figure 5.8.: Mean–field result for the scaling window h̄sw as a function of the quark chemical poten-
tial. The divergence occurs since we calculated only the leading–order contribution to the
scaling violation. For the calculation, m� = 650 MeV is chosen in accordance with the FRG
calculation.
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• O(4) scaling window shows unexpected behavior     
in QM-FRG, maximal close to TCP 

• Existence of TCP and scaling window non-universal; 
In MFT both traced back to one-fermion-loop;                      
Enhanced scaling window survives critical fluct. 

• Effect of confinement?  

• Lattice QCD? (need to overcome sign problem) 

• What happens along Z(2) line? 

• Analogous effect in finite size scaling?                                                             

Summary and conclusions
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