

Institut für Theoretische Physik

Observables of chiral symmetry restoration in heavy-ion collisions

Alessia Palmese

for the PHSD group Institut für Theoretische Physik, Gießen

International School of Nuclear Physics, Erice, 21 September 2016

Motivation

Beam Energy scan is pointing at lower energies to explore systems with higher baryon density.

Motivation

Beam Energy scan is pointing at lower energies to explore systems with higher baryon density.

There are many open questions related to the **strangeness production** in Heavy-Ion Collisions (HIC)!

Motivation

Beam Energy scan is pointing at lower energies to explore systems with higher baryon density.

There are many open questions related to the **strangeness production** in Heavy-Ion Collisions (HIC)!

Can we find a manifestation of the Chiral Symmetry restoration in HIC observables?

Outline

- **1** Parton Hadron String Dynamics (PHSD)
- 2 Chiral Symmetry Restoration (CSR) in PHSD
- 3 Observables of CSR in heavy-ion collisions
 - Rapidity and transverse mass spectra
 - Particle ratios and abundances
 - Sensitivity to the system size
 - Centrality dependence

4 Directed flow

- Proton and pion flow
- Excitation functions of the directed flow slopes

5 Summary

Reminder of Parton Hadron String Dynamics (PHSD)

- Dynamical many-body transport approach.
- Consistently describes the full time evolution in HIC.
- Explicit parton-parton interactions, explicit phase transition from hadronic to partonic degrees of freedom.

Reminder of Parton Hadron String Dynamics (PHSD)

- Dynamical many-body transport approach.
- Consistently describes the full time evolution in HIC.
- Explicit parton-parton interactions, explicit phase transition from hadronic to partonic degrees of freedom.

 Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase.

W.Cassing, E.Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W.Cassing, EPJ ST 168 (2009) 3. More details were given by T. Steinert, E. Seifert and W. Cassing.

Reminder of Parton Hadron String Dynamics (PHSD)

Initial A+A collision Partonic phase

Hadronization

- String formation in primary NN Collisions.
- String decays to pre-hadrons (baryons and mesons).

- Formation of a **QGP state** if $\epsilon > \epsilon_C \approx 0.5 \,\text{GeV fm}^{-3}$.
- Dissolution of newly produced secondary hadrons into massive colored quarks/antiquarks and mean-field energy U_q:

 $B o q q q \left(ar{q} ar{q} ar{q}
ight) \qquad M o q ar{q} \qquad + \quad U_q.$

- DQPM defines the properties (masses and widths) of partons and mean-field potential at a given local energy density *ε*.
- **EoS**: crossover at $\mu_q = 0$ from Lattice QCD fitted by DQPM.

More details were given by T. Steinert, E. Seifert and W. Cassing.

Reminder of the string dynamics in PHSD

In PHSD the flavor chemistry of the final hadrons is mainly defined by the **LUND string model**.

According to the **Schwinger-formula**, the probability to form a massive $s\bar{s}$ pair in a string-decay is suppressed in comparison to light flavor pair $(u\bar{u}, d\bar{d})$:

$$\frac{P(s\bar{s})}{P(u\bar{u})} = \frac{P(s\bar{s})}{P(d\bar{d})} = \gamma_s = \exp\left(-\pi \frac{m_s^2 - m_{u,d}^2}{2\kappa}\right)$$

with $\kappa\approx 0.176~{\rm GeV}^2$ and $m_{u,d,s}$ as constituent ('dressed') masses due to the coupling to the vacuum.

In vacuum (e.g. p+p collisions) the dressing of the bare quark masses follows: $m_q^V = m_q^0 - g_s \langle \bar{q}q \rangle_V$,

with
$$m_{u,d}^0 \approx$$
 7 MeV, $m_s^0 \approx$ 100 MeV and $\langle \bar{q}q \rangle_V \approx -3.2 \, {\rm fm}^{-3}$.

In medium (e.g. A+A collisions) the dressing of the bare quark masses follows:

$$egin{aligned} m_q^* &= m_q^0 - g_s \langle ar{q}q
angle, \ &= m_q^0 + (m_q^V - m_q^0) rac{\langle ar{q}q
angle}{\langle ar{q}q
angle_V} \end{aligned}$$

More details were given by T. Steinert and W. Cassing.

Scalar quark condensate in HIC

Time evolution of the ratio $\frac{\langle \bar{\mathbf{q}} \mathbf{q} \rangle}{\langle \bar{\mathbf{q}} \mathbf{q} \rangle_{\mathbf{V}}}$ for Au+Au @ 30 AGeV.

 $\langle \bar{q}q \rangle = \left\{ egin{array}{cc}
eq 0 & \mbox{chiral non-symmetric phase;} \\
= 0 & \mbox{chiral symmetric phase.} \end{array}
ight.$

The scalar quark condensate $\langle \bar{q}q \rangle$ is not a direct observable.

Can we find manifestations of the chiral symmetry restoration indirectly in hadronic observables?

Chiral Symmetry restoration: Horn

We observe a rise in the ratio K^+/π^+ at low $\sqrt{s_{NN}}$ related to Chiral Symmetry Restoration (CSR) and then a drop due to the appearance of a deconfined partonic medium. \rightarrow A "horn"-structure emerges.

W. Cassing, A. P., P. Moreau, E.L. Bratkovskaya, Phys. Rev. C93 (2016) 014902.

What is the sensitivity to the equation of state?

Rapidity spectra I

Rapidity spectra II

Rapidity spectra III

Alessia Palmese

Observables of chiral symmetry restoration in heavy-ion collisions

Transverse mass spectra of kaons

Open issue: there was an underestimation of the transverse mass spectra of kaons in the whole energy range.

Transverse mass spectra I

Transverse mass spectra II

Strange to non-strange particle ratios

- There is a moderate sensitivity related to the hadronic EoS in our results.
- NL1 parameter set for the EoS shows a sharper peak in the K⁺/π⁺ ratio in good agreement with the data.

Strange to non-strange particle ratios

- There is a moderate sensitivity related to the hadronic EoS in our results.
- NL1 parameter set for the EoS shows a sharper peak in the K⁺/π⁺ ratio in good agreement with the data.

Strange to non-strange particle ratios

- There is a moderate sensitivity related to the hadronic EoS in our results.
- NL1 parameter set for the EoS shows a sharper peak in the K⁺/π⁺ ratio in good agreement with the data.

Observables of chiral symmetry restoration in heavy-ion collisions

Hyperon abundances

Excitation function of the hyperons Λ and Ξ^- .

A. P. et al., nucl-th:1607.04073 (2016).

They show **analogous peaks** as the K^+/π^+ and $(\Lambda + \Sigma_0)/\pi$ ratios due to CSR. There is a small sensitivity on the parametrizations for the hadronic EoS.

Sensitivity to the system size: A+A collisions

A. P. et al., nucl-th:1607.04073 (2016).

Observables of chiral symmetry restoration in heavy-ion collisions

Sensitivity to the system size: p+A collisions

In **p+A collisions** strange to non-strange particle ratios show **no peaks**.

Centrality dependence

Particles abundances and ratios as a function of the number of participants in Au+Au @ 30 AGeV

A. P. et al., nucl-th:1607.04073 (2016).

There is a **sizeable difference between** the results **with and without CSR**. → Interesting to study experimentally!

Alessia Palmese

Observables of chiral symmetry restoration in heavy-ion collisions

Directed flow v_1

First type of collective motion to be identified among fragments of HIC. It represents the deflection of the produced particles in the reaction plane.

$$rac{dN}{darphi} \propto \left(1 + 2\sum_{n=1}^{+\infty}
u_n cos[n(arphi - \psi_n)]
ight)$$

with $\nu_n = \langle cos[n(\varphi - \psi_n)] \rangle$ for n = 1, 2, 3...

$$v_1 = \langle rac{p_x}{p_T}
angle$$

Directed flow v_1 : slope F and time evolution

The directed flow is approximately linear at midrapidity: $v_1 \approx F \cdot y$ F > 0 normal flow F < 0 antiflow

Protons:

 v_1 is established in the early stage of the collision and marginally distorted during the evolution.

Pions:

mesons are sensitive to rescattering of hadrons; v_1 is positive at small values of time and becomes negative later on.

Proton flow in Au+Au collisions at RHIC energies in comparison to STAR data

The proton v_1 has a normal flow behavior at small energies and an antiflow behavior at high energies. The PHSD (CSR included) results show the same trend as the data, though there is not a perfect agreement.

Data from: L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112 (2014) 162301.

Pion flow in Au+Au collisions at RHIC energies in comparison to STAR data

The pions are characterized by an **antiflow** behavior in the **whole investigated energy range**. The PHSD (CSR included) results are in good agreement with the data at high energies, while at small energies the PHSD antiflow is too large.

Data from: L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112 (2014) 162301.

Observables of chiral symmetry restoration in heavy-ion collisions

Excitation functions of the directed flow slopes

- The proton F is positive at small energies and negative at higher energies.
- The pion slopes are negative in the whole energy range.
- CSR has an appreciable effect only on the F of the protons: without CSR the slope becomes negative at smaller energies.

UrQMD and data from: L. Adamczyk et al. (STAR Coll.), Phys. Rev. Lett. 112 (2004) 162301; Y. Pandit (STAR Coll.), J. Phys. Conf. Ser. 636 (2015) 012001; V. P. Konchakovski et al., Phys. Rev. C 90 (2014) 014903.

Excitation functions of the directed flow slopes

UrQMD and data from: L. Adamczyk et al. (STAR Coll.), Phys. Rev. Lett. 112 (2004) 162301; Y. Pandit (STAR Coll.), J. Phys. Conf. Ser. 636 (2015) 012001; V. P. Konchakovski et al., Phys. Rev. C 90 (2014) 014903.

Observables of chiral symmetry restoration in heavy-ion collisions

Summary

Observables of CSR in HIC

- Particle abundances and rapidity spectra are suitable probes to extract information about CSR.
- Transverse mass spectra are not so much sensitive to the CSR mechanism. The PHSD m_T-spectra are in good agreement with the data.
- There is a moderate sensitivity on the hadronic EoS in our results, especially in the excitation functions of the strange to non-strange particle ratios.
- The 'horn'-structure disappears in the K^+/π^+ ratio as the system size decreases, while it remains in the $(\Lambda + \Sigma^0)/\pi$ ratio.
- The difference between our results with and without CSR remains sizable in a large range of centralities.

Directed flow

- CSR has a small effect only on the F of protons, the pion flow remains basically unchanged.
- PHSD reproduces the experimental trend of the proton and pion flows with some discrepancy for p at high energies and for π at small energies.

Looking forward for FAIR and NICA results!

Thank you for your attention!

PHSD group 2016

GSI & Frankfurt University Elena Bratkovskaya Pierre Moreau Taesoo Song Andrej Ilner

SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux

External Collaborations

Texas A&M University: Che-Ming Ko

> JINR, Dubna: Viacheslav Toneev Vadim Voronyuk

Barcelona University: Laura Tolos Angel Ramos

