News from MINOS and MINOS+

Karol Lang University of Texas at Austin

Selected Topics: + Beams and experiments + Standard oscillations + Sterile neutrinos + Large extra dimensions + Non-standard interactions On behalf of the MINOS+ Collaboration

MINOS & MINOS+

BEAMS AND DETECTORS

MINOS, MINOS+, and NuMI

NuMI Neutrino Beams (Neutrinos from the Main Injector)

MINOS: Near and Far Detectors

K. Lang, U. of Texas at Austin, Recent News from MINOS and MINOS+, Erice, Sep 2017

MINOS and MINOS+ exposures $2005 \rightarrow 2016$

MINOS & MINOS+

STANDARD OSCILLATIONS

Event types in MINOS

MINOS+ Charged current (CC) vs Neutral current (NC) classification

Event classification: k Nearest-Neighbors (kNN)

MINOS & MINOS+ Standard Oscillations Results (so far: 5.80x10²⁰ POT)

Best fits, 68% C.L.

Normal
$$\Delta m_{32}^2 = \pm 2.42 \pm 0.09 \ (\times 10^{-3} eV^2)$$

 $\sin^2 \theta_{23}^2 = 0.41 \ (0.37 \leftrightarrow 0.46)$

Inverted
$$\Delta m_{32}^2 = -2.48 \pm 0.09 \ (\times 10^{-3} eV^2)$$

 $\sin^2 \theta_{23}^2 = 0.41 \ (0.37 \leftrightarrow 0.47)$

Data events		ν_{μ}	$\overline{\nu}_{\mu}$	ν_{e}	$\overline{\nu}_e$	Atmospheric
VINOS (200	5-2012)	2579	538	152	20	2072
MINOS+ (201	3-2015)	3692	179	-	-	551

sin²θ₁₃=0.0210 +- 0.0011 (PDG 2017)

MINOS & MINOS+

SEARCH FOR STERILE NEUTRINOS

(New) Oscillation parameters:

- \Rightarrow 3 mass scales:
- \Rightarrow 3 CP-violating phases: δ_{13} , δ_{14} , δ_{24}

 Δm_{21}^2 , Δm_{32}^2 , Δm_{41}^2 \Rightarrow 6 mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}, \theta_{14}, \theta_{24}, \theta_{34}$

4-flavor oscillations in MINOS

- The 2016 sterile neutrino analysis used the ratio of FD & ND energy spectra*
 - ⇒ Use both CC and NC channels
 - Many systematics cancel in the ratio

However:

- Ratio uncertainty dominated by FD statistics
- Effect of high-mass sterile neutrino cancels

*P. Adamson *et al.*, Phys. Rev. Lett. 117, 151803 (2016)

MINOS (v_{μ} disappearance)

The 2016 results 10^{2} 90% C.L. Allowed MINOS LSND Daya Bay MiniBooNE Bugey-3 10 MiniBooNE (v mode) Kopp et al. (2013) Gariazzo ^{et} al. (2016) ∆m²₄₁ (eV²) 10⁻¹ 10⁻² 90% C.L. (CL_s) Excluded 10⁻³ - NOMAD --- KARMEN2 MINOS and Daya Bay/Bugey-3 10⁻⁴ └<u>-</u> 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ $\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$

Combined : Phys. Rev. Lett. 117, 151801 MINOS : Phys. Rev. Lett. 117, 151803 Daya Bay : Phys. Rev. Lett. 117, 151802

- The 2016 combination of MINOS data with Daya Bay/ Bugey-3
- 90% C.L. limit excludes appearance allowed regions for

*S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys. G43 033001 (2016)

- The 2017 MINOS sterile analys1s uses Far and Near Detectors energy spectra directly rather than their ratios
- Systematics through the covariance matrix

- Preliminary: ongoing effort between MINOS+/MINOS and Daya Bay and Bugey-3 data.
- Significant increase in the constraint at Δm²₄₁ > 10 eV² due to two-detector fit method.
- A new combination with a larger Daya Bay data later.

^J. Kopp, P. Machado, M. Maltoni, T. Schwetz, JHEP 1305:050 (2013)
*S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J.Phys. G43 033001 (2016)

MINOS & MINOS+

LARGE EXTRA DIMENSIONS (LED)

- Introduce extra spatial dimension compactified on a circle with radius *R*
- 3 sterile fields that live in the bulk
- Sterile fields act as Kaluza-Klein towers of infinite sterile neutrinos

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = \left| \sum_{j=1}^{3} \sum_{n=0}^{+\infty} U_{\mu j} U_{\mu j}^{*} \left(\mathbf{W}_{j}^{(0n)} \right)^{2} \exp \left[i \left(\frac{\lambda_{j}^{(n)}}{R} \right)^{2} \left(\frac{L}{2E} \right) \right] \right|^{2}$$

Mixing in

towers

Ratios of energy spectra

P. Adamson et al. [MINOS Collaboration], Phys.Rev. D94 (2016) no.11, 111101

- MINOS+ and MINOS data
- Two-detector method

MINOS & MINOS+

NON-STANDARD INTERACTIONS (NSI)

- MINOS also searches for non-standard matter effects
 - The Mikheyev-Smirnov-Wolfenstein (MSW) matter effect is an important consideration for electron neutrino appearance analyses
 - Hamiltonian modified with analogous potentials to address NC NSI scattering processes that could affect oscillation

$$H_{matter} = \sqrt{2}G_F N_e \begin{bmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu}^* & \varepsilon_{e\tau}^* \\ \varepsilon_{e\mu} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau}^* \\ \varepsilon_{e\tau} & \varepsilon_{\mu\tau} & \varepsilon_{\tau\tau} \end{bmatrix}$$

- ⇒ In particular, the MINOS appearance analysis is sensitive to ε_{eτ} and its associated complex phase
- Utilize many of the same tools as the standard appearance analysis
 Modify the oscillation and extrapolation software to handle NSI parameters

NSI bounds using v_e appearance

PHYSICAL REVIEW D 95, 012005 (2017)

MINOS & MINOS+ THE END GAME

◆ 11 years of operations, 25 POT exposure, up to 600 kW beam
 ◆ Best to date △ m^2_{32} (68% CL), no octant preference at 90%CL for θ_{23}

Normal $\Delta m_{32}^2 = +2.42 \pm 0.09 \quad (\times 10^{-3} eV^2) \qquad \sin^2 \theta_{23}^2 = 0.41 \quad (0.37 \leftrightarrow 0.46)$ Inverted $\Delta m_{32}^2 = -2.48 \pm 0.09 \quad (\times 10^{-3} eV^2) \qquad \sin^2 \theta_{23}^2 = 0.41 \quad (0.37 \leftrightarrow 0.48)$

Some of the most stringent bounds on "3+1" sterile neutrinos

- ⇒ Muon disappearance
- ⇒ Joint analysis with Daya Bay for $v_{\mu} \rightarrow v_{e}$ appearance bounds
- ⇒ Increased tension with global fits
- Bounds on LED and NSI
- MINOS+ data still being analyzed
 - ⇒ (Run 13 not used)
 - ⇒ Final papers on all the above still to come ...

Then and now

Last MINOS+ FD event: 29 Jun 2016

Argonne · Athens · Brookhaven · Caltech · Cambridge · Campinas · Cincinnati · Fermilab · Goiás · Harvard · Holy Cross · Houston · IIT · Indiana · Iowa State · Lancaster · Manchester · Minnesota-Twin Cities · Minnesota-Duluth · Otterbein · Oxford · Pittsburgh · Rutherford · São Paulo · South Carolina · Stanford · Sussex · Texas A&M · Texas-Austin · Tufts · UCL · Warsaw · William & Mary