

Hunting solar neutrinos: New Results with Borexino Phase-II

Zara Bagdasarian on behalf of the Borexino Collaboration

18.09.2017 | Erice School: "Neutrinos in Cosmology, in Astro and in Particle and Nuclear Physics" Erice, Italy

[•]Forschungszentrum Jülich, Germany

Scientific Motivation

Studying Neutrinos with the Sun

- Section Neutrino oscillation parameters
- Magnetic moment of solar neutrinos
- Searching for deviations from MSW-LMA (large mixing angle Mikheyev-Smirnov-Wolfenstein effect) scenario of solar neutrino oscillations, especially in the transition region of P_{ee} (e.g. non-standard neutrino interactions models)

Studying the Sun with Neutrinos

Energy production/loss mechanisms Testing stability of the Sun Metallicity problem Fusion rates (pp, CNO)

Bahcall & Pena-Garay: JHEP 0311:004 (2003)

Solar Neutrinos

pp chain reaction (\sim 99%)

CNO cycle (<1%)

Solar Neutrinos Spectrum

based on Standard Solar Model (SSM) uncertainties on flux

4

Borexino @ LNGS

Gran Sasso, Apennines, Abruzzo, Italy

9° 12° 15° 15° 18°

3800 m.w.e shielding against cosmic rays

Borexino detector at Hall C

Entrance to the LNGS

BOREXINO Detector

Nylon Outer Vessel R = 5.5 mBarrier for Rn from steel, PMTs etc. **Outer Buffer** PC + DMP quencher **Inner Buffer** *PC* + *DMP* quencher **Nylon Inner Vessel** R = 4.25 m~ 300 tons of liquid scintillator (PC/PPO solution) **Fiducial volume** ~100 tons (software cut)

Water tank: R = 9 m, 2.1 kt of water Shielding Cherenkov muon veto

Stainless Steel Sphere: R = 6.85 mBuffer+ scint. container PMTs support

208 Outer Detector PMTs

2212 Inward-facing PMTs

Geoneutrinos	> 5o
Gamma-ray burts correlation	No statistically significat
	excess over background
e charge conservation	> 6.6 10 ²⁸ y @ 90%

CL	DOI:10.1103/PhysRevLett.115.231802

Borexino achievements so far

- process in the Sun (Nature, Vol. 512 2014)
- 92(2017)21);

New results on the solar fluxes

(arXiv:1707.09279);

Improved measurement of ⁸B solar neutrinos (arXiv:1709.00756)

First measurement of the neutrinos from the primary proton-proton fusion

Seasonal modulations of the 'Be solar neutrino rate (Astroparticle Physics)

First Simultaneous Precision Spectroscopy of pp, ⁷Be and pep Solar Neutrinos

Comparison between Phase I and Phase II

holtz Association Member of the H

The two methods are complementary and provide internal cross-check to the analysis

Three Fold Coincidence (TFC)

The data set is divided in two spectra: one depleted in ^{11}C (TFC subtracted) and one enriched in ^{11}C (TFC-tagged)

$n + p \rightarrow D + \gamma_{2.2 \text{ MeV}}$ $(250 \ \mu s)$ ¹¹C \rightarrow ¹¹B + e^+ + ν_e (\sim 30 min)

Association of neutrons to a given µ track

- Veto region in space and time to exclude decay signatures
 - from ¹¹C, associated to μ n pairs
- 92% efficiency, 64% TFC subtracted exposure

which are then simultaneously fit

Multivariate fit

energy spectrum

Monte Carlo spectral fit

TFC subtracted energy spectrum

Analytical fit (zoom at low energies)

14

First simultaneous precision spectroscopy of pp,⁷Be and pep: Overview

- **Data-set:** Dec 14th 2011- May 21st 2016;
- **Fit range**: (0.19-2.93) MeV;
- CNO rate constrained to HZ-value (and to LZ-value);
- without ⁸⁵Kr constraint..);
- The final numbers are the average values obtained in different conditions;
- Differences are quoted as systematic error.

Total exposure: 1291.51 days x 71.3 tons (1.6 times Phase I data);

Fit performed both with the Monte Carlo and the Analytical methods;

Different conditions of the fit (energy variable, range, binning, with or

15

Improved measurement of ⁸B neutrinos: Overview

- **Data-set:** January 2008 December 2016 (Purification period removed)
- **Total exposure**: 1.5 kton x years (**11.5-fold** increase from Phase I results)
- **Fit range**: 3.2 -17 MeV
- \bigcirc **Extending the fiducial mass** (~ 100 t) to the entire active mass (~ 300 t)
- Solution Fit performed with the MonteCarlo fit, split into Low Energy ([1650, 2950] p.e.) and High Energy ([2950, 8500] p.e.) ranges at 5 MeV for proper handling of the background;

Improvements

All rates are fully compatible with and improve the uncertainty of the previously published Borexino results

	Previous BX results (cpd/100t)	This work (cpd/100t)	Uncertain reduction
pp	144 ± 13 ± 10	134±10+6 -10	0.78
^ፇ Ɓe	48.3±2.0±0.9	48.3±1.1 ^{+0.4} -0.7 2.7% pre	cision 0.57
рер	3.1 ± 0.6 ± 0.3	(HZ) $2.43\pm0.36^{+0.15}$ -0.22 (LZ) $2.65\pm0.36^{+0.15}$ -0.24	0.61
8 B	0.217 ± 0.038 ± 0.008	0.220 ^{+0.015} -0.016 [±] 0.006	0.42

Implications of the new results

hypothesis

Survival Probability

High Metallicity

Low Metallicity

Conclusions

Borexino has gone well beyond its original goal providing a complete study of solar neutrinos from the entire proton-proton chain

The newest results feature

- multivariate fit;
- 2.7%);
- $>5\sigma$ evidence of the pep neutrino signal;
- Lowest energy threshold among real time measurements of ⁸B;
- Hint towards the High Metallicity hypothesis

First simultaneous extraction of pp, pep and 'Be neutrino rate from the same

Improved precision in all flux measurements (notably ⁷Be precision is now

NATIONAL RESEARCH CENTER "KURCHATOV INSTITUTE"

JAGIELLONIAN University In Kraków

SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS LOMONOSOV MOSCOW STATE **UNIVERSITY**

Borexino Collaboration

21

MILANO 1863

Erice, Sicily

Thanks

Svaneti, Georgia

Jvari Monastery, Georgia

Comparison with the theoretical predictions FORSCHUNGSZENTRUM

	Solar ν	Borexino results Rate [cpd/100 t]	Expected-HZ Rate [cpd/100 t]	Expected-LZ Rate [cpd/100 t]
Rates	pp	$134 \pm 10 \ ^{+6}_{-10}$	131.0 ± 2.4	132.1 ± 2.3
	⁷ Be	$48.3 \pm 1.1 \ ^{+0.4}_{-0.7}$	47.8 ± 2.9	43.7 ± 2.6
	pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	2.74 ± 0.05	2.78 ± 0.05
	pep (LZ)	$2.65 \pm 0.36 \ ^{+0.15}_{-0.24}$	2.74 ± 0.05	2.78 ± 0.05
	Solar ν	Borexino results Flux $[cm^{-2}s^{-1}]$	Expected-HZ Flux $[cm^{-2}s^{-1}]$	$\begin{array}{c} \text{Expected-LZ} \\ \text{Flux}\left[\text{cm}^{-2}\text{s}^{-1}\right] \end{array}$
	pp	$(6.1 \pm 0.5 \stackrel{+0.3}{_{-0.5}}) \times 10^{10}$	$5.98(1\pm0.006) imes10^{10}$	$6.03(1\pm0.005)\times1$
Fluxes o	⁷ Be	$(4.99 \pm 0.13 \ ^{+0.07}_{-0.10}) \times 10^9$	$4.93(1\pm0.06)\times10^9$	$4.50(1\pm0.06)\times10^{-10}$
	pep (HZ)	$(1.27 \pm 0.19 {}^{+0.08}_{-0.12}) \times 10^8$	$1.44(1\pm0.009)\times10^{8}$	$1.46(1 \pm 0.009) \times 1$
	pep (LZ)	$(1.39 \pm 0.19 \ ^{+0.08}_{-0.13}) \times 10^8$	$1.44(1\pm0.009)\times10^{8}$	$1.46(1 \pm 0.009) \times 1$

*oscillation parameters from: I.Esteban, MC.Gonzalez-Concha, M.Maltoni, I.Martinez-Soler and T.Schwetz, Journal of High Energy Physics 01 (2017) ** neutrino fluxes from: N.Vinyole, A.Serenelli, F.Villante, S.Basu, J.Bergstrom, M.C.Gonzalez-Garcia, M.Maltoni, C.Pena-Garay, N.Song, Astr. Jour. 835, 202 (2017)

Systematic errors of pp, 'Be and pep

Two methods to take into account pile-up:

Effects of non perfect modelling of the detector response; Uncertainty on theoretical input spectra (²¹⁰Bi);

⁸⁵Kr constrained to be <7.5cpd/100t (95% C.L.) (from ⁸⁵Kr-⁸⁵Rb delayed coincidences)

Source

Fit meth Choice of Pile-up n Fit range Fit mode Inclusio Live Tim Scintilla Fiducial **Total sy**

			7-			•
	p_{I}	p	'E	Be	$p\epsilon$	
of uncertainty	-%	+%	-%	+%	-%	
od (Analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	
f energy estimator	-2.5	2.5	-0.1	0.1	-2.4	
nodelling	-2.5	0.5	0	0	0	
e and binning	-3.0	3.0	-0.1	0.1	1.0	
els	-4.5	0.5	-1.0	0.2	-6.8	
n of ⁸⁵ Kr constraint	-2.2	2.2	0	0.4	-3.2	
10	-0.05	0.05	-0.05	0.05	-0.05	
tor density	-0.05	0.05	-0.05	0.05	-0.05	
volume	-1.1	0.6	-1.1	0.6	-1.1	
stematics	-7.1	4.7	-1.5	0.8	-9.0	

Borexino background rates

Background species	Rate (cpd
¹⁴ C (Bq/100t)	40.0±
⁸⁵ Kr	6.8±
²¹⁰ Bi	17.5±
пс	26.8±
²¹⁰ Po	260.0
Ext ⁴⁰ K	1.0±0
Ext ²¹⁴ Bi	1.9±(
Ext ²⁰⁸ Tl	3.3±(

Statistical and systematical errors added in quadrature

Sensitivity Studies

nu_CNO

Ext_TI208

10 20 30 1.6 1.8 2 2.2 2.4 0.5 1

Ext_Bi214

Build MC data set with the same exposure as in the data Fit with pdf used to fit the data Check bias, sensitivity, correlations

Analysis strategy:

CNO v recoil and ²¹⁰Bi: very similar energy spectrum

1) pp ⁷Be pep flux measurement: set a constraint of the CNO rate to the HZ and LZ values

CNO HZ 4.92 ± 0.56 *cpd*/100*t*

CNO LZ 3.52 ± 0.37 *cpd*/100*t*

2) Upper limit CNO v flux: we set a constraint on the ratio pp/pep

 47.5 ± 1.2 R(pp/pep)

Cosmogenic Isotopes

Isotopes	au	Q	Decay	Expected Rate	Fraction	Expected Rate $> 3 MeV$	Measured Rate $> 3 MeV$		
		[MeV]		[cpd/100 t]	> 3 MeV	[cpd/100 t]	[cpd/100 t]	_	
¹² B	0.03 s	13.4	eta^-	1.41 ± 0.04	0.886	1.25 ± 0.03	1.48 ± 0.06		
⁸ He	0.17 s	10.6	β^{-}	0.026 ± 0.012	0.898				/ E aviata
⁹ C	0.19 s	16.5	β^+	0.096 ± 0.031	0.965	$(1.8 \pm 0.3) \times 10^{-1}$	$(1.7 \pm 0.5) \times 10^{-1}$		6.5 S VEIO
⁹ Li	0.26s	13.6	eta^-	0.071 ± 0.005	0.932				
⁸ B	1.11 s	18.0	β^+	0.273 ± 0.062	0.938				TEC
⁶ He	$1.17\mathrm{s}$	3.5	β^{-}	NA	0.009	$(6.0 \pm 0.8) \times 10^{-1}$	$(5.1 \pm 0.7) \times 10^{-1}$		IFC
⁸ Li	1.21 s	16.0	β^{-}	0.40 ± 0.07	0.875				
¹⁰ C	27.8 s	3.6	β^+	0.54 ± 0.04	0.012	(6.5±0.5)×10 ⁻³	(6.6±1.8) ×10 ⁻³	۴ I	
¹¹ Be	19.9 s	11.5	β^{-}	0.035 ± 0.006	0.902	$(3.2 \pm 0.5) \times 10^{-2}$	(3.6±3.5)×10 ⁻²	K	untaggable

Extrapolation of the cosmogenic contribution after the 6.5 s time window, with a fit of the time profile of events following a muon

Cosmogenic Isotopes

Isotopes	au	\overline{Q}	Decay	Expected Rate	Fraction	Expect
_		[MeV]	-	[cpd/100 t]	$> 3 \ MeV$	[cpd/1
¹² B	0.03 s	13.4	eta^-	1.41 ± 0.04	0.886	$1.25\pm$
⁸ He	0.17 s	10.6	β^{-}	0.026 ± 0.012	0.898	
⁹ C	0.19 s	16.5	β^+	0.096 ± 0.031	0.965	(1.8 ±
⁹ Li	0.26s	13.6	eta^-	0.071 ± 0.005	0.932	
⁸ B	1.11 s	18.0	β^+	0.273 ± 0.062	0.938	
⁶ He	1.17 s	3.5	eta^-	NA	0.009	(6.0 ±
⁸ Li	1.21 s	16.0	eta^-	0.40 ± 0.07	0.875	-
¹⁰ C	27.8 s	3.6	β^+	0.54 ± 0.04	0.012	(6.5±0
¹¹ Be	19.9 s	11.5	eta^-	0.035 ± 0.006	0.902	(3.2 ±

Fraction of ${}^{10}C$ with Q > 1650 pe = 1.6%

Three Fold Coincidence:

- Sphere radius = 0.8 m
- Veto time window: 120 s
- Tag efficiency = 92.5^{+7}_{-20} %

Dominant **invisible channel**, ¹²C(p,t)¹⁰C: ~10⁻² cpd/100 t

Low and High Energy Ranges

Splitting the sample at 2950 npe (> 5 MeV): no natural radioactivity expected above this threshold

Mean neutrino energies: 7.9 MeV LE: HE: 9.9 MeV LE+HE: 8.7 MeV

Expected (unoscillated) 8B neutrino spectrum

High Energy External Background

Hypothesis:

- External background from neutron captures on elements different from H and C
- Neutron sources: (α, n) reactions and fissions from U and Th chains
- Neutron capture material candidates: SSS, PMTs, support structures

Excess **not compatible** with a **bulk** distribution

Not compatible with events from the vessel nylon: 5 MeV is the max Q-value from natural β -decay radioactivity (²⁰⁸TI)

Systematic Errors and Results

•	LE	HE	LE+H
Source	σ	σ	σ
Active mass	2.0	2.0	2.0
Energy Scale	0.5	4.9	1.7
z-cut	0.7	0.0	0.4
Live Time	0.05	0.05	0.05
Scintillator density	0.5	0.5	0.5
Total	2.2	5.3	2.7

Expected rate in the LE+HE range: 0.211±0.025 cpd/100t (Assuming B16(G98) SSM and MSW+LMA)

Super Kamiokande		Previous BX results	NEW BX results
⁸ B flux [106 cm-2 s-1]	2.345 ±0.014 ±0.036	2.4 ±0.4	2.55 ±0.18 ±0.07

- Addition tests:
- $E \subseteq pdf radial distortion: \pm 3\%$
 - Emanation vessel shift: ±1%
 - See Response functions for the emanation component generated at 6 cm from the vessel (instead of 1 cm)
 - Sinning dependence

None of these potential systematic sources affected the measured ⁸B rate outside 1 statistical sigma

$$R_{LE} = 0.133^{+0.013}_{-0.013} (stat) {}^{+0.003}_{-0.003} (syst) \text{ cpd}$$
$$R_{HE} = 0.087^{+0.08}_{-0.010} (stat) {}^{+0.005}_{-0.005} (syst) \text{ cpd}$$

 $R_{LE+HE} = 0.220^{+0.015}_{-0.016} (stat) {}^{+0.006}_{-0.006} (syst) \text{ cpd}/100 \text{ t}$

