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Where Do We Stand?

• Latest 3 neutrino global analysis (after NOW2016 and ICHEP2016):
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➡evidence of θ13 ≠ 0 

➡hints of θ23 ≠ π/4 

➡expectation of Dirac CP phase δ 

➡no clear preference for hierarchy
➡Majorana vs Dirac

Esteban, Gonzalez-Garcia, Maltoni, 
Martinez-Soler, Schwetz, 1611.01514

Recent T2K result ➪ δ ≃ - π/2, consistent with global fit best fit value 

Normal Ordering (best fit) Inverted Ordering (��2 = 0.83) Any Ordering

bfp ±1� 3� range bfp ±1� 3� range 3� range

sin2 ✓12 0.306+0.012
�0.012 0.271 ! 0.345 0.306+0.012

�0.012 0.271 ! 0.345 0.271 ! 0.345

✓12/
� 33.56+0.77

�0.75 31.38 ! 35.99 33.56+0.77
�0.75 31.38 ! 35.99 31.38 ! 35.99

sin2 ✓23 0.441+0.027
�0.021 0.385 ! 0.635 0.587+0.020

�0.024 0.393 ! 0.640 0.385 ! 0.638

✓23/
� 41.6+1.5

�1.2 38.4 ! 52.8 50.0+1.1
�1.4 38.8 ! 53.1 38.4 ! 53.0

sin2 ✓13 0.02166+0.00075
�0.00075 0.01934 ! 0.02392 0.02179+0.00076

�0.00076 0.01953 ! 0.02408 0.01934 ! 0.02397

✓13/
� 8.46+0.15

�0.15 7.99 ! 8.90 8.49+0.15
�0.15 8.03 ! 8.93 7.99 ! 8.91

�CP/
� 261+51

�59 0 ! 360 277+40
�46 145 ! 391 0 ! 360

�m2
21

10�5 eV2 7.50+0.19
�0.17 7.03 ! 8.09 7.50+0.19

�0.17 7.03 ! 8.09 7.03 ! 8.09

�m2
3`

10�3 eV2 +2.524+0.039
�0.040 +2.407 ! +2.643 �2.514+0.038

�0.041 �2.635 ! �2.399


+2.407 ! +2.643
�2.629 ! �2.405

�

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2016 and
ICHEP-2016 conference. The numbers in the 1st (2nd) column are obtained assuming NO (IO),
i.e., relative to the respective local minimum, whereas in the 3rd column we minimize also with
respect to the ordering. Note that �m

2
3` ⌘ �m

2
31 > 0 for NO and �m

2
3` ⌘ �m

2
32 < 0 for IO.

the statistical distribution of the marginalized ��

2 for �
CP

and ✓

23

(and consequently the

corresponding CL intervals) may be modified [54, 55]. In Sec. 4 we will discuss and quantify

these e↵ects.

In Tab. 1 we list the results for three scenarios. In the first and second columns we

assume that the ordering of the neutrino mass states is known a priori to be Normal

or Inverted, respectively, so the ranges of all parameters are defined with respect to the

minimum in the given scenario. In the third column we make no assumptions on the

ordering, so in this case the ranges of the parameters are defined with respect to the global

minimum (which corresponds to Normal Ordering) and are obtained marginalizing also

over the ordering. For this third case we only give the 3� ranges. In this case the range

of �m

2

3`

is composed of two disconnected intervals, one containing the absolute minimum

(NO) and the other the secondary local minimum (IO).

Defining the 3� relative precision of a parameter by 2(xup � x

low)/(xup + x

low), where

x

up (xlow) is the upper (lower) bound on a parameter x at the 3� level, we read 3� relative

precision of 14% (✓
12

), 32% (✓
23

), 11% (✓
13

), 14% (�m

2

21

) and 9% (|�m

2

3`

|) for the various
oscillation parameters.

2.3 Results: leptonic mixing matrix and CP violation

From the global �2 analysis described in the previous section and following the procedure

outlined in Ref. [56] one can derive the 3� ranges on the magnitude of the elements of the

– 6 –

➡Sterile Neutrinos?

See Talks by 
Gonzalez-

Garcia (Sun),  
Marrone (Tu)
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]



6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
Fermion mass and hierarchy 

problem ➟ Many free parameters in 
the Yukawa sector of SM



Smallness of neutrino masses 

What is the operator for neutrino mass generation?

 - Majorana vs Dirac

 - scale of the operator

 - suppression mechanism

7



Neutrino Mass beyond the SM

• SM: effective low energy theory


• only one dim-5 operator: most sensitive to high scale physics


• mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ O(1) ⇒ M ~ 1014 GeV 


• Lepton number violation ∆L = 2 ➩ Majorana fermions

8

L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

new physics effects

�ij

M HHLiLj � m⇥ = �ij
v2

M

Weinberg, 1979

GUT scale
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Type-I seesaw Type-II seesaw Type-III seesaw
Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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NR: SU(3)c x SU(2)w x U(1)Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; 

Gell-mann, Ramond, Slansky,1979; 

Mohapatra, Senjanovic, 1979; 
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Δ: SU(3)c x SU(2)w x U(1)Y ~(1,3,2)

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.

NR

ℓ

φ

YNY †
N

φ

ℓ

φ

ℓ

φ

ℓ

∆

µ∆

Y∆

ΣR

ℓ

φ

YΣY †
Σ

φ

ℓ

Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Foot, Lew, He, Joshi, 1989; Ma, 1998

June 3, 2011 0:18 WSPC/INSTRUCTION FILE TeVSeesaw-proof

4 M.-C. Chen and J.R. Huang

exist seven massive physical Higgs bosons: two neutral Higgses, H1, H2, one CP
odd Higgs, A, two singlet charged Higgses, H±, and two doubly charged Higgses,
H±±.

The generic prediction of the model is the existence of the doubly charged Hig-
gses, which couple only to the leptons, but not to the quarks. A unique signature
of this class of model is that the doubly charged Higgses decay into same sign di-
leptons (for a recent general discussion on the same sign dilepton signals at the
collider experiments, see, Ref. 9),

�±± ! `±`±, (` = e, µ, ⌧) (5)

which do not have any SM or MSSM backgrounds. As pointed out in Ref. 10, the
doubly charged Higgses can be produced at the LHC via the Drell-Yan,

qq ! �⇤, Z⇤ ! H++H��, qq0 ! W ⇤ ! H±±H⌥ . (6)

As the production of the triplet Higgs is through the gauge interactions, it is in-
dependent of the small light-heavy neutrino mixing and consequently can have un-
suppressed production cross section, in contrast to the case of the Type-I seesaw.
It has been shown that, for a triplet mass in the range of (200-1000) GeV, the cross
section can be 0.1-100 fb. With 300 fb�1, a doubly charged Higgs, �++, with mass
of 600 GeV can be discovered at the LHC.

Phenomenology associated with the triplet Higgs at a linear collider has also
been investigated11.

2.1.3. Type-III Seesaw

The Weinberg operator can also be UV completed by the mediation of a SU(2)L
triplet fermion, ⌃ = (⌃+,⌃0,⌃�), with zero hypercharge12. The e↵ective neutrino
mass is y2⌫v

2/⇤, where y⌫ is the Dirac Yukawa coupling of the triplet lepton to the
SM lepton doublet and the Higgs and ⇤ is the lepton number violation scale. To
have ⇤ ⇠ 1 TeV, y⌫ has a value ⇠ 10�6.

Because the triplet lepton ⌃ has weak gauge interactions, their production cross
section is unsuppressed, contrary to the case of the Type-I seesaw. The signature
with relatively high rate is13

pp ! ⌃0⌃+ ! ⌫W+W±`⌥ ! 4 jets + /ET + ` . (7)

As the masses of ⌃± and ⌃0 are on the order of sub-TeV region, the displaced
vertices from the primary production vertex in the ⌃0, ⌃± decays can be visible13.
The triplet lepton lifetime is related to the e↵ective neutrino mass spectrum

⌧  1 mm⇥
✓
0.05 eVP

i mi

◆✓
100 GeV

⇤

◆2

. (8)

For the normal hierarchy case (
P

i mi ' 0.05 eV), this leads to ⌧  1 mm for ⇤ '
100 GeV. (For other collider studies, see Ref. 14.) In addition, in the supersymmetric

ΣR: SU(3)c x SU(2)w x U(1)Y ~(1,3,0) Lazarides, 1980; Mohapatra, Senjanovic, 1980

3 possible portals

9

Neutrino Mass beyond the SM



Why are neutrinos light? (Type-I) Seesaw Mechanism

• Adding the right-handed neutrinos:


10

If

Minkowski, 1977;  Yanagida, 1979;  Gell-Mann, 
Ramond, Slansky, 1979; Mohapatra, Senjanovic, 1981



Grand Unification Naturally Accommodates Seesaw

11

LHC neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

Grand Unification

10

EM *

weak

strong

MGUT

Dimopoulos, Raby, Wilczek, 1981

LHC

coupling strengths run!

neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

SO(10):
☞ origin of the heavy scale ⇒ U(1)B-L   

☞ exotic mediators ⇒ predicted in 
many GUT theories, e.g. SO(10)

Fritzsch, Minkowski, 1975



Low Scale Seesaws

• New particles:

• Type I seesaw: generally decouple from collider experiments

• Type II seesaw: 

• Type III seesaw: observable displaced vertex

• inverse seesaw: non-unitarity effects

• radiative mass generation: model dependent - singly/doubly charged 

SU(2) singlet, even colored scalars in loops

• New interactions:


• LR symmetric model: WR

• R parity violation:

• …..

TeV Scale Seesaw Models

• With new particles:

• type-I seesaw 


• generally decouple from collider physics


• type-II seesaw


• TeV scale doubly charged Higgs ⇔ small couplings

• unique signatures:


• decay BR � mass ordering


34

m⇤ ⌅= 0

yD, m⇤ ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

V > 0.01

V < 0.1

qq ⇥ �+� ��⇥ + jets (� ⌅= ⇥)

y�LL

�++ ⇥ e+e�, µ+µ�, ⌅+⌅�

1

Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, ‘08; ...Perez, Han, Huang, Li, Wang, ‘08; 

Kersten, Smirnov, 2007

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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+ +
+

 Lazarides, 1980; Mohapatra, Senjanovic, 1980

~(1,3,2)
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2

persymmetry (SUSY) with bilinear violation of R parity can be tested at the LHC in a crucial way and potentially

falsified. We identify the regions of minimal supergravity (mSUGRA) parameters, event reconstruction efficiencies and

luminosities where the LHC will be able to probe the atmospheric neutrino mixing angle with sensitivity competitive

to its low-energy determination by underground experiments, both for 7 and 14 TeV center-of-mass energies.

For the sake of definiteness, we consider the minimal supergravity model supplemented with bilinear R parity

breaking [22–24] added at the electroweak scale; we refer to this scenario as RmSUGRA. In this effective model one

typically finds that the atmospheric scale is generated at tree level by a weak-scale neutralino-exchange seesaw, while

the solar scale is induced radiatively [22]. The LSP lacks a symmetry to render it stable and, given the neutrino mass

scales indicated by oscillation experiments, typically decays inside the LHC detectors [22, 23, 25] 1. As an illustration

we depict the neutralino LSP decay length in Fig. 1. We can see from Fig. 1 that the expected decay lengths are large

enough to be experimentally resolved, leading to displaced vertex events [33, 34].

Figure 1: χ̃0
1 decay length in the plane m0,m1/2 for A0 = −100 GeV, tan β = 10 and µ > 0.

More strikingly, one finds that in such a RmSUGRA model one has a strict correlation between neutralino de-

cay properties measurable at high-energy collider experiments and neutrino mixing angles determined in low-energy

neutrino oscillation experiments, that is

tan2 θatm ≃
BR(χ̃0

1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

. (1)

The derivation of Eq. (1) can be found in [25]. In short, the relation between the neutralino decay branching ratio

and the low-energy neutrino angle in the bilinear model can be understood in the following way. At tree-level in

RmSUGRA the neutrino mass matrix is given by [22]

meff =
M1g2+M2g′

2

4 det(Mχ0)

⎛

⎜

⎝

Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ

⎞

⎟

⎠
(2)

where Λi = µvi+vDϵi and ϵi and vi are the bilinear superpotential parameters and scalar neutrino vacuum expectation

value, respectively. Equation (2) is diagonalized by two angles; the relevant one for this discussion is the angle

tan θ23 = −Λµ

Λτ
. One can understand this tree-level mass as a seesaw-type neutrino mass with the right-handed

neutrino and the Yukawa couplings of the ordinary seesaw replaced by the neutralinos of the minimal supersymmetric

1 We may add, parenthetically, that such schemes require a different type of dark matter particle, such as the axion [28]. Variants with
other forms of supersymmetric dark matter, such as the gravitino [29–32], are also possible.

Mukhopadhyaya, Roy, Vissani, 1998

Franceschino, Hambye, Strumia,2008

mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ 10-6 
⇒ M ~ 102 GeV
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What if neutrinos     

   are Dirac?



‣ naturally small Dirac neutrino masses?


‣ before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg 
operator)

‣ after SUSY breaking: realistic effective Dirac neutrino masses generated


‣ similar to the Giudice-Masiero Mechanism for the mu problem 


‣ need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;

9

Dirac Neutrinos and SUSY Breaking
The μ Term and Dirac Neutrino Mass

‣ Absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd  

‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons

‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)

48

Hidden sector:
dynamical SUSY

MSSM

metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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The μ Term and Dirac Neutrino Mass

‣ Absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd  

‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons

‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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48

Hidden sector:
dynamical SUSY

MSSM

metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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Dirac Neutrinos and SUSY Breaking

• Symmetry realization in MSSM: discrete R symmetries,       


‣Dirac neutrinos, with naturally small masses

‣∆ L = 2 operators forbidden to all orders ⇒ no neutrinoless double beta decay


‣New signature: lepton number violation ∆L = 4 operators, (νR)4, allowed ⇒ 
new LNV processes, e.g. 
• neutrinoless quadruple beta decay


• mu term is naturally small

• dangerous proton decay operators forbidden/suppressed 

• dynamical generation of RPV operators with size predicted
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Anarchy

• there are no parametrically small numbers

• large mixing angle, near mass degeneracy statistically preferred


• UV theory prediction can resemble anarchy

• warped extra dimensions

• heterotic string theory

4

(parabolic [blue] region). We refer to this region of the parameter space as the prediction of the ‘ordered hypothesis.’
The figure also depicts the experimentally allowed values of sin2 θ23, sin

2 θ13 at the one and three sigma levels, and
the region of the parameter space preferred by anarchy at the one and two sigma levels, as in Fig. 2(top-right).
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FIG. 3: Prediction of the ordered hypothesis in the sin2 θ23 × sin2 θ13 plane ([blue] parabolic contours), dictated by Eq. (10)
for C ∈ [0.8, 1.2]. The light [yellow] curve corresponds to C = 1. The currently allowed region of the parameter space and the
expectations from the anarchy hypothesis, both in Fig. 2(top-right), are also depicted.

Fig. 3 reveals that the ordered hypothesis and the anarchy one prefer somewhat different regions of the currently
allowed sin2 θ23 × sin2 θ13 parameter space. The anarchy hypothesis does not strongly prefer any region of the
experimentally available space. It does, however, favor maximal sin2 θ23 = 1/2 and “large” values of sin2 θ13. On
the other hand, the ordered hypothesis, in light of the Day Bay result, rules out sin2 θ23 = 1/2, instead preferring
cos 2θ23 ∼ ±0.1 (this point was recently also emphasized in [15]). It is also curious to note that C ! 0.5 values are
disfavored.
Precision measurements of the neutrino oscillation parameters may ultimately favor anarchy versus order, or vice-

versa. The values of the parameters are such that an improved determination of sin2 θ23 will provide the most
discriminating power. If one interprets the width of the blue region in Fig. 3 as indicative of the uncertainty in the
ordered predictions, next-generation experiments sensitive to δ(sin2 θ23) ∼ 0.02 – an uncertainty of a few percent –
would be required to qualitatively change our understanding of structure in lepton mixing. The NOνA experiment,
for example, is aiming at measuring, from νµ disappearance, sin2 2θ23 at the 0.4% level for sin2 2θ23 = 1 [16], which
translates into an uncertainty of 0.03 for sin2 θ23 = 0.5. Similar, albeit slightly worse, precision is expected from T2K
[17]. The fact that θ13 is large implies that νµ → νe searches at T2K and NOνA, combined with reactor measurements
of ν̄e disappearance, will allow one to directly measure sin2 θ23. The precision with which sin2 θ23 can be measured
will be dominated by the precision with which T2K and NOνA can measure sin2 θ23 sin

2 2θ13,[23] which is expected
to be markedly worse than the one advertised for sin2 θ23 from νµ disappearance, above. Interesting information is
also expected from precision measurements of the atmospheric neutrinos at, for example, the INO experiment (see,
for example, [18, 19], and references therein).
Similar arguments can be made in the sin2 θ12 × sin2 θ13 and sin2 θ12 × sin2 θ23 planes. The circumstances here,

however, are different. sin2 θ12 is already known at the few percent level. This implies that constraints on successful
ordered scenarios are either very stringent and the associated “predictions” are very tight (e.g., sin2 θ12 may almost
uniquely determine the value of sin2 θ13 and sin2 θ23) or correlations are either absent or very weak. In the sin2 θ12 ×
sin2 θ23 plane, the anarchical prediction works almost “too well,” as the currently three-sigma experimentally allowed
region is entirely contained deep in the one-sigma anarchy hypothesis prediction. It is quite unlikely that an ordered
hypothesis will lead to a significantly better, statistically speaking, a posteriori agreement with the data.
The next obvious target for neutrino oscillation experiments is the discovery of leptonic CP-invariance violation,

whose magnitude is governed by the Dirac phase δ. For example, for neutrinos propagating in vacuum, P (νµ →
νe) − P (ν̄µ → ν̄e) ∝ sin δ. Since the Haar measure Eq. (3) is flat in δ, the probability distribution of sin δ is peaked
at sin δ = ±1 [2]: the anarchy hypothesis implies that “large” leptonic CP-invariance violation is quite probable.
If the neutrinos are Majorana fermions, the Majorana phases χ1,2 in Eq. (1) are physical observables. Similar

to that of δ, their probability distributions are flat in χ1,2, respectively. Majorana phases are known to affect the
magnitude of the neutrino exchange contribution to neutrinoless double-beta decay (0νββ), and it is interesting to ask
whether the anarchy hypothesis has any impact on the expected rates for these rare nuclear processes. The answer,
unfortunately, depends on the value of the lightest neutrino mass, which is both experimentally unknown and not
addressed by the anarchy hypothesis, which concerns only mixing parameters. Nonetheless, we would like to advertise
that, if the anarchy hypothesis is correct and neutrinos are Majorana fermions, it is quite unlikely that the rate for

Hall, Murayama, Weiner (2000); 

de Gouvea, Murayama (2003)

 de Gouvea, Murayama (2012)

18



Expectations from Heterotic String Theories

• heterotic string models: O(100) RH neutrinos


• statistical expectations with large N  ( = # of RH neutrinos)

19

Dirac versus Majorana

• efforts 

20

Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

➥ effective suppression of the see–saw scale

mν ∼
v2

M∗
M∗ ∼

MGUT

10...100

. . . seems consistent with observation(√
∆m2

atm ≃ 0.04 eV &
√
∆m2

sol ≃ 0.008 eV
)

Talk by Michael Ratz at BeNE 2012

Buchmüller, Hamaguchi, Lebedev, 
Ramos-Sánchez, Ratz (2007)

Neutrinos & Strings An explicit example

See–saw couplings

Heterotic see–saw
Buchmüller et al. (2007b) ; Buchmüller et al. (2007a) ; Lebedev et al. (2007) ; Kappl et al. (2011)

☞ there are O(100) neutrinos (= R parity odd SM singlets)

➥ O(100) contributions to the (effective) neutrino mass operator

ℓ

φ

φ

ℓ

mν =

∑

 ν ℓ

φ

φ

ℓ

ν̄

+
ℓ

φ

φ

ℓ

ν̄

near maximal mixing angle and one large mixing angle. Because maximal mixing, with

sin2(2✓) = 1, is a special point, we look for cases which have at least as much mixing

as the 1� experimental bounds, requiring that one angle satisfies sin2(2✓) � 0.98 and

another satisfies sin2(2✓) � 0.84. The results are shown in Figure 2, from which we see

a clear indication that as the number of right-handed neutrinos increases, so too does

the likelihood of obtaining large mixing angles – as expected for the reasons laid out in

Section 2.This e↵ect is further illustrated in Figure 3, where we see the shift to larger

mixing angles as N increases.
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Figure 3: Distribution of mixing angles. The three di↵erent bands represent the largest,
middle, and smallest sin2(2✓).

Other parameters

While the absolute masses of the neutrinos are not well measured, oscillation experiments

give us a good measure of their mass squared di↵erences, with a best fit of �m2

21

=

7.59+0.20
�0.18⇥10�5 eV2 and �m2

31

= 2.50+0.09
�0.16⇥10�3 eV2 (assuming a normal hierarchy, with

comparable values for an inverted hierarchy) [17]. To see if our construction accommodates

this small but non-trivial hierarchy, and to determine whether there is a preference for a

normal or inverted structure, in Figure 4 we consider the ratio of neutrino mass squared

di↵erences, which we plot as log
10

�m2

32

/�m2

21

. Here we label the masses such that

13

m
3

> m
2

> m
1

, so that this quantity is positive for a normal hierarchy and negative

for an inverted one.9 Observed masses give a value of about ±1.5. We see that for

large N , the masses are much less hierarchical, and easily accommodate the observed

values. Furthermore, we see an overwhelming preference for the normal hierarchy, which

in particular justifies our use of the associated mass and mixing angle measurements in

later parts of this section.10
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Figure 4: Ratio of mass squared di↵erences log
10

�m2

32

/�m2

21

for N = 3, 10, 30 and
100. Here we choose the convention m

3

> m
2

> m
1

, so that positive(negative) values
correspond to a normal (inverted) hierarchy.

Having seen that the mixing angles and mass splittings observed in nature are in-

creasingly typical as N increases, we wish to look at other properties of viable matrices

produced within our framework. To select cases close to reality, we consider only matrices

which satisfy: 0.28  sin2(✓
12

)  0.35; 0.41  sin2(✓
23

)  0.61; 29.1  �m2

31

/�m2

21


35.6; and 0.004  sin2(✓

13

)  0.028, which come from best fit 2� bounds [17]. In Figure

5, we show the distribution of sin(✓
13

), subject to the large angle and mass constraints,

and find that there is some tension with the best fit, which at 2� corresponds to about

9Note that for an inverted hierarchy, our labeling is non-standard.
10 The reason our scenario strongly prefers a normal versus an inverted hierarchy is that the reasonably

large observed ratio of solar and atmospheric mass squared di↵erences necessitates that either the heaviest
(normal hierarchy) or the lightest (inverted hierarchy) of the neutrinos is a mild outlier. Having the
heaviest neutrino as the outlier in our scenario is much more probable, since this requires fewer outlying
elements in our typically degenerate mass matrix.

14

Feldstein, Klemm (2012)

preference for large 
mixing angles

preference for 
normal hierarchy
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Symmetry Relations

21

Grand Unified Theories: GUT symmetry

Family Symmetry:

Quarks ⬌ Leptons

e-family ⬌ muon-family ⬌ tau-family



Symmetry Relations

22

Symmetry ⇒ relations among parameters 
⇒ reduction in number of fundamental 

parameters



Symmetry Relations
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Symmetry ⇒ relations among parameters 
⇒ reduction in number of fundamental 

parameters

Symmetry ⇒ experimentally testable 
correlations among physical observables



Origin of Flavor Mixing and Mass Hierarchies

• several models have been constructed 
based on 

•GUT Symmetry [SU(5), SO(10)] ⊕ 
Family Symmetry GF   


•models based on discrete family 
symmetry groups have been constructed 

•A4 (tetrahedron)

• T´ (double tetrahedron) 

•S3 (equilateral triangle)

•S4 (octahedron, cube)

•A5 (icosahedron, dodecahedron)

• ∆27 

•Q6 
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33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

GUT Symmetry
SU(5), SO(10), …

family symmetry 
(T′, SU(2), ...)

See Talk by 
King (Fri)



Example: Tetrahedral Group A4    

• Smallest group giving rise to tri-bimaximal neutrino mixing: tetrahedral group A4   

T: (1234) → (2314) S: (1234) →(4321)

25



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)


• Tri-bimaximal Mixing Pattern 


• Leading Order: TBM (from symmetry) + higher order corrections/contributions


• More importantly, corrections to the kinetic terms


• sizable in discrete symmetry models for leptons

Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin2 ⇤12 = 0.30 (0.25� 0.34), sin2 ⇤23 = 0.5 (0.38� 0.64), sin2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⇧
3 0

�
⌥

1/6 1/
⇧

3 �1/
⇧

2

�
⌥

1/6 1/
⇧

3 1/
⇧

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⌅ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (March 2014)

sin2 ✓23 = 0.437 (0.374� 0.626)

sin2 ✓12 = 0.308 (0.259� 0.359)

sin2 ✓13 = 0.0234 (0.0176� 0.0295)

1

[θlep23 ~ 41.2°]

[θlep12 ~ 33.7°]

[θlep13 ~ 8.80°]

Leurer, Nir, Seiberg (’93); 

Dudas, Pokorski, Savoy (’95)

M.-C.C, M. Fallbacher, M. Ratz, C. Staudt  (2012) 



Neutrino Mass Matrix from A4

• always diagonalized by TBM matrix, independent of the two free parameters 

27

under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

relative strengths  
⇒  CG’s

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); 
Altarelli, Feruglio (2005)

2 free parameters



General Structure
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Flavor Model Structure: A4 Example

• interplay between the symmetry breaking patterns 
in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections

13

GF

Ge Gν

charged lepton 
sector
e.g. Z3 

subgroup of A4

neutrino
 sector
e.g. Z2 

subgroup of A4

�Φe� �Φν�

� Φe�∝ (1,0,0) � Φν�∝ (1,1,1)

e.g. A4

Leurer, Nir, Seiberg (1993); Dudas, 
Pokorski, Savoy (1995); Dreiner, 
Thomeier (2003);  

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavour                                                                           Blois 2014



Example: SU(5) Compatibility ⇒ T′ Family Symmetry 

• Double Tetrahedral Group T´: double covering of A4

• Symmetries ⇒ 10 parameters in Yukawa sector  ⇒ 22 physical observables


• Symmetries ⇒ correlations among quark and lepton mixing parameters 
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angle, the corresponding mixing angle in the charged lepton sector, ⌅e
12, is much suppressed due to

the GJ relations,

⌅e
12 ⌅

⌥
me

mµ
⌅ 1

3

⌥
md

ms
⇤ 1

3
⌅c . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 ⌅� ⌅ tan2 ⌅�,TBM � ei�⌅c/3 , (19)

where the relative phase � is determined by the strengths and phases of the VEV’s, ⇧0 and ⌃⇥
0.

With ⌅c ⌅ 0.22 and (⇧0⌃⇥
0) being real, the factor ei� turns out to be very close to 1. This

deviation thus naturally accounts for the di�erence between the prediction of the TBM matrix,

which gives tan2 ⌅�,TBM = 1/2, and the experimental best fit value, tan2 ⌅�,exp = 0.429. The

o� diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

⌅13 ⌅ ⌅c/3
⇧

2 ⇤ 0.05. We note that a more precise measurement of tan ⌅� will pin down the

phase of ⇧0⌃⇥
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ⇥2u : ⇥u : 1, md : ms : mb = ⇥2d : ⇥d : 1 , (20)

where ⇥u ⌅ (1/200) = 0.005 and ⇥d ⌅ (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 (1 + i)b 0

�(1� i)b c 0

b b 1

⇥

⌃⌃⌃⌅
,

Me

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 �(1� i)b b

(1 + i)b �3c b

0 0 1

⇥

⌃⌃⌃⌅
,

(21)

and with the choice of b ⇥ ⇧0⌃⇥
0/⇤0 = 0.00789 and c ⇥ ⌃0N0/⇤0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : m⇤ = 0.000870 : 0.143 : 1.00 . (23)

8

CG’s of 

SU(5) & T´

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ⌅ ⌥ = 0.227, s23 ⌅ A⌥2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 ⌃ 0 .
(49)

⇤

⇧
0.838 0.542 0.0583e�i227o

�0.385� 0.0345ei227o

0.594� 0.0224ei227o

0.705
0.384� 0.0346ei227o �0.592� 0.0224ei227o

0.707

⌅

⌃ (50)

⇧ |UMNS | =

⇤

⇧
0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707

⌅

⌃ (51)

J� = �0.00967 (52)

Charged lepton diagonalization matrix:
⇤

⇧
0.997ei177o

0.0823ei131o

1.31⇤ 10�5e�i45o

0.0823ei41.8o

0.997ei176o

0.000149e�i3.58o

1.14⇤ 10�6 0.000149 1

⌅

⌃ (53)

sin2 2⌃atm = 1, tan2 ⌃⇤ = 0.419, |Ue3| = 0.0583 (54)

tan2 ⌃⇤ ⌃ tan2 ⌃⇤,TBM +
1
2
⌃c cos ⌅ (55)
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Predictions of 3ν-Mixing Paradigm
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sum rule among masses 
⇒ small predicted region 
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Symmetry Relations 

• QLC-I


• QLC-II


• testing symmetry relations: a more robust way to distinguish different classes 

of models

mixing parameters best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing parameters best fit 3σ range

θe
23 41.2o 35.1o - 52.6o

θe
12 33.6o 30.6o - 36.8o

θe
13 8.9o 7.5o -10.2o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; Dutta, Mimura; 
M.-C.C., Mahanthappa 

θe13 ≅ θc / 3√2

(BM)

(TBM)
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measuring leptonic mixing parameters to the 
precision of those in quark sector

☜ slight inconsistent

☜ Too small



“Large” Deviations from TBM in A4 

• Different A4 breaking patterns:
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invertednormal

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

non-maximal θ23 ➩ normal hierarchydeviations 
correlated mass ordering ➩ symmetry breaking patterns



“Large” Deviations from TBM in A4 

• Correlation between Dirac CP phase and θ13:
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M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

            

correlations 
⇕ 

 symmetry 
breaking pattern



CP Violation



Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)



 Group Theoretical Origin of CP Violation

• if Z3 symmetric ⇒〈∆1 = ∆2 = ∆3 ∆  real


• Complex effective mass matrix: phases determined by group theory 
(   L1          L2    ) ( R

1   R
2 )

C i j k : 
complex CG 
coefficients of 

G

36

C112

Discrete 
symmetry G

Basic idea

C121 C211 C223

C112

C121

C211

C223

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)



Novel Origin of CP (Time Reversal) Violation

37

complex CGs ➪ CP symmetry 
cannot be defined for certain 

groups  

CP Violation from 
Group Theory!

M.-C.C, M. Fallbacher, 

K.T. Mahanthappa, M. Ratz, 


A. Trautner, NPB (2014)



Group Theoretical Origin of CP Violation
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complex CGs ➪ G and physical CP transformations do not commute 

L(x)

L(Px)

L' (Px) 

ca
no

nic
al 

CP

autom
orphism

 u

Constraints on generalized CP transformations

8

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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physical CP 
transformations

u has to be a class-inverting,   
        involutory automorphism of G 
➪ non-existence of such automorphism  
        in certain groups 
➪ calculable physical CP violation in  
        generic setting

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

unitary 
transformation U examples: T7, ∆(27), …..



Cosmological Connections 
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• RH heavy neutrino decay:

• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton 

number asymmetry  
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated
due to the interference of the tree-level diagram (a) and the one-loop vertex correction
(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), after carrying out the loop integration,
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Diagram (c) is the one-loop self-energy. For |Mi �M1| ⇤ |�i � �1|, the
self-energy diagram gives the term
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in Eq. 1.84. For hierarchical RH neutrino masses, M1 ⇥ M2, M3, the
asymmetry is then given by,
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is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,
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Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
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1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ≪ M2, M3, the
asymmetry is then given by,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Leptonic CP violation ⇒ ∆L ∝ 

Leptogenesis

• RH heavy neutrino decay:
• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton number 

asymmetry  
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That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow

Leptonic CP violation ⇒

≠ 0

leptons antileptons

Fukugita, Yanagida, 1986

Standard Leptogenesis

Neutrino Yukawa 
coupling



Dirac Leptogenesis

• Leptogenesis possible even when neutrinos 
are Dirac particles (no ∆L = 2 violation)


• Characteristics of Sphaleron effects:

• only left-handed fields couple to 

sphalerons

• sphalerons change (B+L) but not (B-L)

• sphaleron effects in equilibrium                

for T > Tew
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K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; 
H. Murayama, A. Pierce, 2002
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ≪ TEW , provided,

λ2 !
Teq

MPl

≪
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number

Diagram from K. Dick, M. 
Lindner, M. Ratz, D. Wright, 
2000

late time LR equilibration of 
neutrinos making Dirac 

leptogenesis possible with 
primordial ∆L = 0



Outlook



Summary

• Fundamental origin of fermion mass hierarchy and flavor mixing still not 
known


• Neutrino masses: evidence of physics beyond the SM


• Symmetries: 

• can provide an understanding of the pattern of fermion masses and mixing

• Grand unified symmetry + discrete family symmetry ⇒ predictive power 


• Symmetries ⇒ Correlations, Correlations, Correlations!!! 


• Dirac vs Majorana?  - should remain open minded!

• naturally light Dirac neutrinos from discrete R-symmetry 

• suppressed nucleon decays and naturally small mu term 
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Summary

•Discrete Groups (of Type I) affords a Novel origin of CP violation:  
•Complex CGs ⇒ Group Theoretical Origin of CP Violation  

• NOT all outer automorphisms correspond to physical CP 
transformations 

• Condition on automorphism for physical CP transformation 

44

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations
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class inverting, 
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Dirac Majorana

GUTs

SUSY with 
R 

symmetries

Extra 
dimension

Type I 
seesawType II, 

Type III 
seesaw

Radiative 
mass 

generation

SUSY 
with RPVextra 

U(1)

proton 
decaycollider signatures cLFV∆B ≠ 0, ∆L = 4



Backup Slides



Sterile Neutrinos

 - All previous discussions applicable to sterile  

   neutrinos also

 - Tension with standard cosmology

 - Tension with non-unitarity

 - Reversed spectrum for neutrino less double beta   

   decay



MaVaNs

• Exotic scalar field A (acceleron) with logarithmic, 
temperature-dependent potential


•  Dark Energy density: Λ4 ~ (10-2.5 eV)4 ~ (Δm2)2


• A-dependent “heavy” Majorana neutrino masses


• Active-Sterile mixing ~ (mactive / Msterile)1/2 

R. Fardon, A. Nelson, N. Weiner (2003)

3

The effective potential for A is given by its zero temper-
ature scalar potential, V0, and the contribution from the
neutrino background,

V (A, T ) = V0 (A) + �V (A, T ) . (3)

We first consider a logarithmic scalar potential [19],

V0 = ⇤

4
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1 +
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����

◆
, (4)

with � small compared to the range of relevant A val-
ues. We will discuss a quadratic potential in § IV when
we introduce the SUSY version of theory. Taking the
light neutrino to be relativistic, the full scalar potential
at finite T is
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We assume, quite generally, that the sterile neutrino mass
has A-dependent and -independent terms,

mN (A) = m0 + A. (6)

In this case, the light neutrino mass is m⌫ (A) =

m2
D/ (m0 + A), resulting in an effective potential of

V (A, T ) = ⇤

4
log

✓
1 +

����
A
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+

m4
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24 (m0 + A)
2 . (7)

The first term tends to push the scalar field toward
smaller values, while the second (the importance of which
increases at high T ) prefers larger values of A; the inter-
play of the two determines the value of A that minimizes
the effective potential. At high temperatures, A can be
large compared to m0. When this is the case, minimiz-
ing the effective potential results in A / T so that the
heavy (mostly sterile) neutrino tracks the temperature,
M / T . The light neutrinos mass is therefore smaller at
large temperatures, m⌫ / T�1. At some temperature,
A becomes comparable to m0. A then moves toward its
minimum as determined by V0 and the neutrino masses
approach the temperature-independent values M ' m0

and m ' m2
D/m0.

We illustrate this behavior in Fig. 1, showing the
neutrino masses and A as functions of temperature for
⇤ = 3.4 ⇥ 10

�2
eV, mD = 0.22 eV, m0 = 1 eV, and

 = 10

�6. Although the heavy neutrino’s mass chosen
to be 1 eV today, it is always large compared to the
temperature so that its number density is exponentially
suppressed and it has no cosmological impact. Corre-
spondingly, the light neutrino mass grows until it reaches
a present-day value of 0.05 eV around T = 0.1 eV. Since
the active neutrino becomes non-relativistic after its mass
becomes independent of temperature it will act as hav-
ing a mass m ' m2

D/m0 = 0.05 eV with regards to its
impact on cosmology. The active-sterile mixing angle
is ✓ ' p

m/M = 0.2 today and decreases like T�1 for
T > 0.1 eV.

FIG. 1. Mostly active and mostly sterile neutrino masses, m
and M respectively, (solid, black) as functions of the tem-
perature for a logarithmic scalar potential of Eq. (4) with
⇤ = 3.4 ⇥ 10�2 eV. The Majorana mass depends on the
scalar field A as in Eq. (6) with m0 = 1 eV and  = 10�6.
The Dirac mass is taken to be mD = 0.22 eV. Also shown
is the value of A, (dotted, red). For convenience, the gray,
dashed line shows where the mass is equal to the temperature.

B. Including three active neutrinos

Expanding this simple scenario to incorporate three
active flavors so that the broad range of neutrino oscilla-
tion data can be described is straightforward. The Dirac
and Majorana masses become matrices,

Lmass = �mD↵i⌫↵Ni �mNijNiNj + h.c., (8)

where ↵ = e, µ, ⌧ labels the active flavors while i, j la-
bel the sterile neutrinos (there must be at least two to
generate the solar and atmospheric mass splittings). For
definiteness, we use three sterile neutrinos. In the basis
where mNij = mNi�ij is diagonal and taking a Dirac
mass matrix of the form

mD =

0

BBB@

�
q

2
3 m̄1

q
1
3 m̄2 0q

1
6 m̄1

q
1
3 m̄2

q
1
2 m̄3q

1
6 m̄1

q
1
3 m̄2 �

q
1
2 m̄3

1

CCCA
(9)

leads to light neutrinos, ⌫̂i, with masses mi = m̄2
i /mNi

and a light neutrino mixing matrix, U , that is approxi-
mately tribimaximal.1 The effective potential in Eq. (5)
now reads
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1
Deviating from exact tribimaximal mixing to accommodate the

data, in particular Ue3 6= 0, is easy to accomplish by modifying

the texture of the Dirac mass matrix slightly.
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We assume, quite generally, that the sterile neutrino mass
has A-dependent and -independent terms,
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The first term tends to push the scalar field toward
smaller values, while the second (the importance of which
increases at high T ) prefers larger values of A; the inter-
play of the two determines the value of A that minimizes
the effective potential. At high temperatures, A can be
large compared to m0. When this is the case, minimiz-
ing the effective potential results in A / T so that the
heavy (mostly sterile) neutrino tracks the temperature,
M / T . The light neutrinos mass is therefore smaller at
large temperatures, m⌫ / T�1. At some temperature,
A becomes comparable to m0. A then moves toward its
minimum as determined by V0 and the neutrino masses
approach the temperature-independent values M ' m0

and m ' m2
D/m0.

We illustrate this behavior in Fig. 1, showing the
neutrino masses and A as functions of temperature for
⇤ = 3.4 ⇥ 10

�2
eV, mD = 0.22 eV, m0 = 1 eV, and

 = 10

�6. Although the heavy neutrino’s mass chosen
to be 1 eV today, it is always large compared to the
temperature so that its number density is exponentially
suppressed and it has no cosmological impact. Corre-
spondingly, the light neutrino mass grows until it reaches
a present-day value of 0.05 eV around T = 0.1 eV. Since
the active neutrino becomes non-relativistic after its mass
becomes independent of temperature it will act as hav-
ing a mass m ' m2

D/m0 = 0.05 eV with regards to its
impact on cosmology. The active-sterile mixing angle
is ✓ ' p

m/M = 0.2 today and decreases like T�1 for
T > 0.1 eV.

FIG. 1. Mostly active and mostly sterile neutrino masses, m
and M respectively, (solid, black) as functions of the tem-
perature for a logarithmic scalar potential of Eq. (4) with
⇤ = 3.4 ⇥ 10�2 eV. The Majorana mass depends on the
scalar field A as in Eq. (6) with m0 = 1 eV and  = 10�6.
The Dirac mass is taken to be mD = 0.22 eV. Also shown
is the value of A, (dotted, red). For convenience, the gray,
dashed line shows where the mass is equal to the temperature.

B. Including three active neutrinos

Expanding this simple scenario to incorporate three
active flavors so that the broad range of neutrino oscilla-
tion data can be described is straightforward. The Dirac
and Majorana masses become matrices,
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Deviating from exact tribimaximal mixing to accommodate the

data, in particular Ue3 6= 0, is easy to accomplish by modifying

the texture of the Dirac mass matrix slightly.

T> 0.1 eV: A ∝T  
T < 0.1 eV: A → 0
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FIG. 1. Mostly active and mostly sterile neutrino masses, m
and M respectively, (solid, black) as functions of the tem-
perature for a logarithmic scalar potential of Eq. (4) with
⇤ = 3.4 ⇥ 10�2 eV. The Majorana mass depends on the
scalar field A as in Eq. (6) with m0 = 1 eV and  = 10�6.
The Dirac mass is taken to be mD = 0.22 eV. Also shown
is the value of A, (dotted, red). For convenience, the gray,
dashed line shows where the mass is equal to the temperature.

B. Including three active neutrinos

Expanding this simple scenario to incorporate three
active flavors so that the broad range of neutrino oscilla-
tion data can be described is straightforward. The Dirac
and Majorana masses become matrices,

Lmass = �mD↵i⌫↵Ni �mNijNiNj + h.c., (8)

where ↵ = e, µ, ⌧ labels the active flavors while i, j la-
bel the sterile neutrinos (there must be at least two to
generate the solar and atmospheric mass splittings). For
definiteness, we use three sterile neutrinos. In the basis
where mNij = mNi�ij is diagonal and taking a Dirac
mass matrix of the form
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leads to light neutrinos, ⌫̂i, with masses mi = m̄2
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Deviating from exact tribimaximal mixing to accommodate the

data, in particular Ue3 6= 0, is easy to accomplish by modifying

the texture of the Dirac mass matrix slightly.

Early Universe (T>0.1 eV):  
small active-sterile mixing

Terrestrial Experiments:  
sizable active-sterile mixing

Consistent with Cosmology; Bonus: DE



Neutrinoless Double Beta Decay
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Group Theoretical Origin of  
CP Violation: a toy model



Novel Origin of CP (Time Reversal) Violation

• more generally, for discrete groups that do not have class-inverting, involutory automorphism, 
CP is generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ physical CP violation 
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Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

CP Violation from 
Group Theory!

M.-C.C, M. Fallbacher, 

K.T. Mahanthappa, M. Ratz, 


A. Trautner, NPB (2014)



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0 S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].
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Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change
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such that in the new basis the matrices Ur
i

take the simple form
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W ⇤
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i

. (2.40)

For type II A groups, all the ⌃r
i

’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Example for a type I group:

�(27)
• decay asymmetry in a toy model
• prediction of CP violating phase from group theory
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Toy Model based on Δ(27)

• Field content


• Interactions
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Decay amplitudes in a toy example based on �(27)
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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“flavor” structures determined by 
(complex) CG coefficients

arbitrary coupling constants: 
                  f, g, hΨ, hΣ



Toy Model based on Δ(27)

• Particle decay
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Decay asymmetry

+ Decay Y !   
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one–loop integral IS = I(MS,MY )

one–loop integral IX = I(MX ,MY )invariant under rephasing of the fields

independent of the phases of f and g
+ Cancellation requires delicate adjustment of the relative phase
' := arg(h h⇤⌃)
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IX

⇤
y ' not stable under quantum corrections
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equality would require MX = MS

cannot be ensured by outer automorphism of �(27)
bottom–line:
model based on �(27) violates CP!
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Decay Asymmetry

• Decay asymmetry


• properties of ε

• invariant under rephasing of fields

• independent of phases of f and g

• basis independent
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✏Y!�� =
�(Y ! ��)� �(Y ⇤ ! ��)

�(Y ! ��) + �(Y ⇤ ! ��)
(1)

1

Let us now study the decay Y !   . Interference between tree–level and one–loop
diagrams (figures 3(a)– 3(c)) leads to a CP asymmetry "

Y!  , which is proportional to

"
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Here I
S

= I(M
S

,M
Y

) and I
X

= I(M
X

,M
Y

) denote appropriate phase space factors and
the loop integral, which are non–trivial functions of the masses of S and Y , and X and
Y , respectively. Note that "

Y!  is

(i) invariant under rephasing of the fields,

(ii) independent of the phases of f and g, and

(iii) independent of the chosen basis as it is proportional to the trace of coupling ma-
trices.

Notice, however, that the asymmetry can vanish if there is a cancellation between the two
terms, which would require a delicate adjustment of the relative phase ' := arg(h h⇤

⌃)
of h and h⌃. In what follows, we will argue that if such a cancellation occurs, this is
either (i) a consequence of a larger discrete symmetry than �(27) being present or (ii)
it is not immune to quantum corrections.

In the first case, a new symmetry has to be present which relates S and X in such
a way as to guarantee M

S

= M
X

and |g| = |f |, as well as h and h⌃ to warrant
' = �2⇡/6. Clearly, this cannot be due to an outer automorphism and, hence, no CP
transformation of a�(27) setup since such transformations never relate the trivial singlet
10 to other representations. If such a symmetry exists, it has to enhance the original
flavor symmetry of the setup, and it is, therefore, no longer appropriate to speak of a
�(27) model.

In the second case, given that Im [I
S

] 6= Im [I
X

] for M
S

6= M
X

, an adjustment which
cancels the asymmetry will require arg(h h⇤

⌃) to be di↵erent from �2⇡/6 in general.
Note that the diagrams of figures 3(b) and 3(c) also yield vertex corrections which are
relevant for the renormalization group equations (RGEs) for h and h⌃. These equations
are given by11

16⇡2 dh 
dt

= h 
�
a |h |2 + b |h⌃|2 + . . .

�
+ c h⌃

⇥|f |2 + !2 |g|2⇤ , (3.4a)
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�
a |h⌃|2 + b |h |2 + . . .

�
+ c h 

⇥|f |2 + ! |g|2⇤ , (3.4b)

where t = ln(µ/µ0) is the logarithm of the renormalization scale, a, b and c are real
coe�cients, and the omission represents terms like the square of the gauge coupling.
This leads to an RGE for h h⇤

⌃ with the structure

16⇡2 d

dt
(h h

⇤
⌃) = h h

⇤
⌃ ⇥ real + c

�|h |2 + |h⌃|2
� ⇥|f |2 + !2 |g|2⇤ . (3.5)

11Note that GH /⌃G† = !2 H /⌃.
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Decay Asymmetry

• Decay asymmetry


• cancellation requires delicate adjustment of relative phase

• for non-degenerate MS and MX: 


• phase φ unstable under quantum corrections 

• for 


• phase φ stable under quantum corrections 

• relations cannot be ensured by an outer automorphism (i.e. GCP) of Δ(27) 

• require symmetry larger than Δ(27)
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Decay asymmetry

+ Decay Y !   

"Y!  = |f |2 Im
⇥
IS
⇤

Im
⇥
h h⇤⌃

⇤
+ |g|2 Im

⇥
IX

⇤
Im

⇥
!h h⇤⌃

⇤

one–loop integral IS = I(MS,MY )

one–loop integral IX = I(MX ,MY )invariant under rephasing of the fields

independent of the phases of f and g
+ Cancellation requires delicate adjustment of the relative phase
' := arg(h h⇤⌃)

+ Im
⇥
IS
⇤
, Im

⇥
IX

⇤
y ' not stable under quantum corrections

+ Im
⇥
IS
⇤
= Im

⇥
IX

⇤
& |f | = |g|y ' stable under quantum corrections

BUT symmetry is larger than �(27)y no longer a �(27) model

equality would require MX = MS

cannot be ensured by outer automorphism of �(27)

bottom–line:
model based on �(27) violates CP!
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)



Spontaneous CP Violation with Calculable CP Phase
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Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10
U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

Â CP asymmetry with calculable phases

"Y!  / |g|2 |h |2 Im
⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ
⇤�

phase predicted by group theory

Â group–theoretical origin of CP Chen and Mahanthappa (2009)

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10
U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

L �
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�
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�
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Â CP asymmetry with calculable phases
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Group theoretical origin 
of CP violation!

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

M.-C.C., K.T. Mahanthappa (2009)

∆(27) ⊂

Type IIA → Type I



CP Transformation

• Canonical CP transformation


• Generalized CP transformation
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Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The canonical CP transformation

The canonical CP transformation

+ scalar field operator

�(x) =
Z

d3p
1

2E~p

⇥
a(~p) e�i p·x + b†(~p) ei p·x⇤

annihilates particlecreates anti–particle
+ CP exchanges particles & anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields
Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)0

BBBBBBBBB@

"
�ri1

#
"
�ri2

#
...

1

CCCCCCCCCA

fCP7��!
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BBBBBBBBB@

- %
Uri1

. &
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Uri2

. &
. . .

1

CCCCCCCCCA

0

BBBBBBBBB@

"
�⇤ri1

#
"
�⇤ri2

#
...

1

CCCCCCCCCA
field transforming in representation ri2

+ fCP depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner, and Schmidt (2013)

Holthausen, Lindner, and Schmidt (2013)
+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987);

Grimus, Rebelo (1995) 

unitary matrix
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Generalized CP Transformation
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Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T0

⇥
�12 ⌦ (x3 ⌦ y3)11

⇤
10
/ �

�
x1 y1 + !

2 x2 y2 + ! x3 y3
�

! = e2⇡ i/3
+ canonical CP transformation maps A4/T0 invariant contraction to

something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0
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x2
x3

1

A fCP7��!

0
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x⇤2
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y⇤3
y⇤2

1
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Generalized CP transformations
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⇥
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Â need generalized CP transformation fCP: �
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Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987) 

G and CP transformations do not commute 
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The Bickerstaff-Damhus automorphism (BDA)

• Bickerstaff-Damhus automorphism (BDA) u


• BDA vs. Clebsch-Gordan (CG) coefficients
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Bickerstaff, Damhus (1985)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i ( ? )

unitary & symmetric

+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u
fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri (u(g)) = ⇢ri(g)⇤ 8 g 2 G and 8 i
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?

• Frobenius-Schur indicator:


• Twisted Frobenius-Schur indicator
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Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1
|G|

X

g2G
�ri(g

2) =
1
|G|

X

g2G
tr
⇥
⇢ri(g)2⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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Three Types of Finite Groups
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Three types of groups

Three types of groups

group G with
automorphisms u

there is a
u for which

no FS(n)
u is 0

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

no

Type II: u defines
a physical CP
transformation

yes

all FS(1)
u are

+1 for a u

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

yes

Type II B groups GII B:

there is no basis in which
all CG’s are real

no

Mu-Chun Chen, UC Irvine                                                                                                                                                       WIN2015, Heidelberg



Low Scale Seesaw Scenarios

• New particles:

• Type I seesaw: generally decouple from collider experiments

• Type II seesaw: 

• Type III seesaw: observable displaced vertex

• Inverse seesaw: non-unitarity effects

• Radiative mass generation: model dependent - singly/doubly charged 

SU(2) singlet, even colored scalars in loops

• New interactions:


• LR symmetric model: WR

• R parity violation:

• …..

TeV Scale Seesaw Models

• With new particles:

• type-I seesaw 


• generally decouple from collider physics


• type-II seesaw


• TeV scale doubly charged Higgs ⇔ small couplings

• unique signatures:


• decay BR � mass ordering
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m⇤ ⌅= 0

yD, m⇤ ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

V > 0.01

V < 0.1

qq ⇥ �+� ��⇥ + jets (� ⌅= ⇥)

y�LL

�++ ⇥ e+e�, µ+µ�, ⌅+⌅�

1

Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, ‘08; ...Perez, Han, Huang, Li, Wang, ‘08; 

Kersten, Smirnov, 2007

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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 Lazarides, 1980; Mohapatra, Senjanovic, 1980

~(1,3,2)
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2

persymmetry (SUSY) with bilinear violation of R parity can be tested at the LHC in a crucial way and potentially

falsified. We identify the regions of minimal supergravity (mSUGRA) parameters, event reconstruction efficiencies and

luminosities where the LHC will be able to probe the atmospheric neutrino mixing angle with sensitivity competitive

to its low-energy determination by underground experiments, both for 7 and 14 TeV center-of-mass energies.

For the sake of definiteness, we consider the minimal supergravity model supplemented with bilinear R parity

breaking [22–24] added at the electroweak scale; we refer to this scenario as RmSUGRA. In this effective model one

typically finds that the atmospheric scale is generated at tree level by a weak-scale neutralino-exchange seesaw, while

the solar scale is induced radiatively [22]. The LSP lacks a symmetry to render it stable and, given the neutrino mass

scales indicated by oscillation experiments, typically decays inside the LHC detectors [22, 23, 25] 1. As an illustration

we depict the neutralino LSP decay length in Fig. 1. We can see from Fig. 1 that the expected decay lengths are large

enough to be experimentally resolved, leading to displaced vertex events [33, 34].

Figure 1: χ̃0
1 decay length in the plane m0,m1/2 for A0 = −100 GeV, tan β = 10 and µ > 0.

More strikingly, one finds that in such a RmSUGRA model one has a strict correlation between neutralino de-

cay properties measurable at high-energy collider experiments and neutrino mixing angles determined in low-energy

neutrino oscillation experiments, that is

tan2 θatm ≃
BR(χ̃0

1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

. (1)

The derivation of Eq. (1) can be found in [25]. In short, the relation between the neutralino decay branching ratio

and the low-energy neutrino angle in the bilinear model can be understood in the following way. At tree-level in

RmSUGRA the neutrino mass matrix is given by [22]

meff =
M1g2+M2g′

2

4 det(Mχ0)

⎛

⎜

⎝

Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ

⎞

⎟

⎠
(2)

where Λi = µvi+vDϵi and ϵi and vi are the bilinear superpotential parameters and scalar neutrino vacuum expectation

value, respectively. Equation (2) is diagonalized by two angles; the relevant one for this discussion is the angle

tan θ23 = −Λµ

Λτ
. One can understand this tree-level mass as a seesaw-type neutrino mass with the right-handed

neutrino and the Yukawa couplings of the ordinary seesaw replaced by the neutralinos of the minimal supersymmetric

1 We may add, parenthetically, that such schemes require a different type of dark matter particle, such as the axion [28]. Variants with
other forms of supersymmetric dark matter, such as the gravitino [29–32], are also possible.

Mukhopadhyaya, Roy, Vissani, 1998

Franceschino, Hambye, Strumia,2008



Cautions!!! Is it really the νR in Type I seesaw?

Limits on Neutrino Mixing 

E. Tiras – University of  Iowa




August 5, 2015
 16


Dimuon(

Expanded(view(of(the(region:(
40(GeV(<(mN(<(250(GeV(

Phys."Le<."B"748"(2015)"144"

•  By(assuming(the(theoretical(prediction(for(the(branching(fraction(for((((N ! W±µ⌥

|VµN |2 < 0.00470 for mN = 90 GeV

|VµN |2 < 0.0123 for mN = 200 GeV

|VµN |2 < 0.583 for mN = 500 GeV

•  These"results"extend"considerably"the"regions"excluded"by"previous"direct"searches.""

Talk by E. Tiras

m� ⌅= 0

yD, m� ⇥ 0

MR � 100 GeV

mD � me � 10�4 GeV

⇤ V =
mD

MR
� 10�4 GeV

100 GeV
= 10�6

1

Introduction Cancellations & Symmetries Colliders Conclusions

Electroweak-Scale Singlets

What if mR ∼ 100 GeV?

mD ∼ 10−4 GeV = 100 keV ∼ me
! Not totally unreasonable

⇒ RH neutrinos may be within reach of LHC and ILC

Yukawa couplings tiny⇒ irrelevant for colliders

Gauge interactions via mixing, e.g.

N

l−

W
∝ V = mDmR

−1 ∼ 10−4 GeV
100 GeV

= 10−6

Observation at colliders needs V " 0.01
Han, Zhang, PRL 97 (2006); del Aguila, Aguilar-Saavedra, Pittau, J. Phys. Conf.
Ser. 53 (2006); Bray, Lee, Pilaftsis, hep-ph/0702294

⇒ no way?

RH neutrino production thru 
active-sterile mixing:

RH neutrino relevant for ν 
mass generation  
     ➪ ｜VμN｜2 = 10-12   
unless extremely fine-tuned

Kersten, Smirnov (2007)
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TeV Scale Seesaw Models

• With new particles:

• type-I seesaw 


• generally decouple from collider physics


• type-II seesaw


• TeV scale doubly charged Higgs ⇔ small couplings


• unique signatures:


• decay BR ↔ mass ordering
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Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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TeV Scale Seesaw Models

• With new particles:

• type-III seesaw


• TeV scale triplet decay : observable displaced vertex


• neutral component  Σ0  can be dark matter candidate

• Radiative Seesaw


• Zee-Babu model (neutrino mass at 2 loop)

• singly+doubly charged SU(2) singlet scalars


• neutrino mass at higher loops: TeV scale RH neutrinos

• loop particles can also have color charges


• enhanced production cross section
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Foot, Lew, He, Joshi, 1989; Ma, 1998

June 3, 2011 0:18 WSPC/INSTRUCTION FILE TeVSeesaw-proof
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exist seven massive physical Higgs bosons: two neutral Higgses, H1, H2, one CP
odd Higgs, A, two singlet charged Higgses, H±, and two doubly charged Higgses,
H±±.

The generic prediction of the model is the existence of the doubly charged Hig-
gses, which couple only to the leptons, but not to the quarks. A unique signature
of this class of model is that the doubly charged Higgses decay into same sign di-
leptons (for a recent general discussion on the same sign dilepton signals at the
collider experiments, see, Ref. 9),

�±± ! `±`±, (` = e, µ, ⌧) (5)

which do not have any SM or MSSM backgrounds. As pointed out in Ref. 10, the
doubly charged Higgses can be produced at the LHC via the Drell-Yan,

qq ! �⇤, Z⇤ ! H++H��, qq0 ! W ⇤ ! H±±H⌥ . (6)

As the production of the triplet Higgs is through the gauge interactions, it is in-
dependent of the small light-heavy neutrino mixing and consequently can have un-
suppressed production cross section, in contrast to the case of the Type-I seesaw.
It has been shown that, for a triplet mass in the range of (200-1000) GeV, the cross
section can be 0.1-100 fb. With 300 fb�1, a doubly charged Higgs, �++, with mass
of 600 GeV can be discovered at the LHC.

Phenomenology associated with the triplet Higgs at a linear collider has also
been investigated11.

2.1.3. Type-III Seesaw

The Weinberg operator can also be UV completed by the mediation of a SU(2)L
triplet fermion, ⌃ = (⌃+,⌃0,⌃�), with zero hypercharge12. The e↵ective neutrino
mass is y2⌫v

2/⇤, where y⌫ is the Dirac Yukawa coupling of the triplet lepton to the
SM lepton doublet and the Higgs and ⇤ is the lepton number violation scale. To
have ⇤ ⇠ 1 TeV, y⌫ has a value ⇠ 10�6.

Because the triplet lepton ⌃ has weak gauge interactions, their production cross
section is unsuppressed, contrary to the case of the Type-I seesaw. The signature
with relatively high rate is13

pp ! ⌃0⌃+ ! ⌫W+W±`⌥ ! 4 jets + /ET + ` . (7)

As the masses of ⌃± and ⌃0 are on the order of sub-TeV region, the displaced
vertices from the primary production vertex in the ⌃0, ⌃± decays can be visible13.
The triplet lepton lifetime is related to the e↵ective neutrino mass spectrum

⌧  1 mm⇥
✓
0.05 eVP

i mi

◆✓
100 GeV

⇤

◆2

. (8)

For the normal hierarchy case (
P

i mi ' 0.05 eV), this leads to ⌧  1 mm for ⇤ '
100 GeV. (For other collider studies, see Ref. 14.) In addition, in the supersymmetric

E. J. Chun, 2009

Franceschino, Hambye, Strumia,2008

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.

6

Zee 1986; Babu, 1989

Krauss, Nasri, Trodden, 2003; E. Ma, 
2006; Aoki, Kanemura, Seto, 2009

Perez, Han, Spinner, Trenkel, 2011

ΣR: ~(1,3,0)



TeV Scale Seesaw Models

• With new interactions:

• SUSY LR Model:


• tested via searches for WR


• More Naturally: inverse seesaw or higher dimensional operators or Extra Dim


• inverse seesaw 

• non-unitarity effects


• enhanced LFV (both SUSY and non-SUSY cases)

• correlation
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Azuleos et al 06; del Aguila et al 07, Han et al 
07; Chao, Luo, Xing, Zhou, ‘08; ...

June 3, 2011 0:18 WSPC/INSTRUCTION FILE TeVSeesaw-proof

TeV Scale Models of Neutrino Masses and Their Phenomenology 5

case, it has been pointed out that15 the neutral component of the super-partner of
the triplet lepton, ⌃̃0, can be a realization of the minimal dark matter16.

Due to the mixing between the triplet lepton and the SM lepton doublets, tree
level flavor changing neutral currents (FCNCs) are present in models with type-III
seesaw17. Constraints from LFV processes such as `i ! `j + �, µ � e conversion,
etc. have been investigated18.

Type-III seesaw has been utilized in models with family symmetries, including
a µ � ⌧ symmetry model19 and a A4 symmetry model20. It can also naturally be
incorporated in models with anomaly mediated SUSY breaking21.

2.2. Inverse Seesaw Mechanism

In the so-called inverse seesaw mechanism22,23, with the addition of an extra singlet
S for each generation besides a RH neutrino ⌫R, the following 9⇥ 9 neutrino mass
matrix can be generated, in the basis of (⌫L, ⌫R, S),

M⌫ =

0

@
0 M

D

0
MT

D

0 M
NS

0 M
NS

M
S

1

A . (9)

Here the Majorana mass term for ⌫R is forbidden. It is possible to have a large
Dirac mass, M

D

, and TeV scale RH neutrino masses, if the following condition is
satisfied,

M
S

⌧ M
D

⌧ M
NS

. (10)

The e↵ective light neutrino mass matrix is given by, to the leading order,

M
eff

' (M
D

M�1
NS

)M
S

(M
D

M�1
NS

)T . (11)

In other words, the smallness of the neutrino masses is due to the smallness of the
lepton number violation coupling, M

S

, which is lower than the EW scale. Viable ef-
fective neutrino masses can be obtained with M

NS

⇠ O(1 TeV), M
D

⇠ O(100 GeV),
and M

S

⇠ O(0.1 keV).
In the inverse seesaw framework, sizable non-unitarity e↵ects 24 and lepton flavor

violation25 are expected. In addition, in a supersymmetric model of this type, a
strong correlation is found between the lightest chargino decay widths and the
widths of the lepton flavor violating charged lepton decays26,

BR(�̃±
1 ! Ñ1+2 + µ±)

BR(�̃±
1 ! Ñ1+2 + ⌧±)

/ BR(µ ! e+ �)

BR(⌧ ! e+ �)
. (12)

In both SUSY27 cases and a non-SUSY28 case with inverse seesaw, the branching
fractions of the charged lepton flavor violating decays, `i ! `j + �, are found to be
enhanced. Implications for neutrinoless double beta decay have been investigated
in Ref. 29.

Hirsch, Kernreiter, Romao, del Moral, 2010

Mohapatra,1986; Mohapatra, Valle, 1986; Gonzalez-Garcia, Valle, 1989



A Novel Origin of CP Violation

• more generally, for discrete groups that do not have class-inverting, involutory 
automorphism, CP is generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ physical CP violation
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Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!


