Conversion of Bound Muons: Lepton Flavour and Number Violation

Tanja Geib

+ Alexander Merle: Phys. Rev. D93 (2016) 055039 \rightarrow technical details on $\mu^- e^-$

- + Stephen King, Alexander Merle, Jose Miguel No, Luca Panizzi: *Phys. Rev. D93* (2016) 073007 \rightarrow complementarity of $\mu^ e^-$ with LHC
- + Alexander Merle, Kai Zuber: Phys. Lett. B764 (2017) 157 \rightarrow 'appetiser' $\mu^ e^+$

+ Alexander Merle: Phys. Rev. D95 (2017) 055009 \rightarrow technical details on $\mu^- - e^+$

Max Planck Institute for Physics

Max-Planck-Institut für Physik (Werner Heisenberg Institut)

Erice, September 18, 2017

What happens in a μ^--e^\pm conversion $\ref{eq:process}$ experimentally a two-step process

First Step: μ^- is captured in an 'outer' atomic shell, and subsequently de-excites to the 1*s* ground state

Second Step: μ^- is captured by the nucleus and reemits an e^\pm

What happens in a μ^--e^\pm conversion $\ref{eq:process}$ experimentally a two-step process

First Step: μ^- is captured in an 'outer' atomic shell, and subsequently de-excites to the 1s ground state

Second Step: μ^- is captured by the nucleus and reemits an e^\pm

What happens in a μ^--e^\pm conversion $\ref{eq:process}$ experimentally a two-step process

First Step: μ^- is captured in an 'outer' atomic shell, and subsequently de-excites to the 1s ground state

Second Step: μ^- is captured by the nucleus and reemits an e^\pm

What happens in a μ^--e^\pm conversion $\ref{eq:process}$ experimentally a two-step process

First Step: μ^- is captured in an 'outer' atomic shell, and subsequently de-excites to the 1s ground state

Second Step: μ^- is captured by the nucleus and reemits an e^\pm

muon bound in 1s state with binding energy

$$\epsilon_B \simeq \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100}$$
 non-relativistic

 \bullet consider "coherent" process \rightarrow initial and final nucleus in ground state

+ in good approximation: both nuclei at rest

$$\Rightarrow E_e = \underbrace{m_{\mu} - \epsilon_B}_{E_{\mu}} + \underbrace{E_i - E_f}_{\sim \mathcal{O}(\text{MeV})} \sim \mathcal{O}(100 \text{ MeV})$$

 $\Rightarrow e^{\pm}$ is **relativistic** particle under influence of Coulomb potential: $E_e \simeq E_{\mu} \simeq m_{\mu}$ and $m_e \simeq 0$

• muon **bound** in **1s state** with binding energy

 $\epsilon_B \simeq \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100} \text{non-relativistic}$

- consider "coherent" process → initial and final nucleus in ground state
 - + in good approximation: both nuclei at rest

$$\Rightarrow E_e = \underbrace{m_{\mu} - \epsilon_B}_{E_{\mu}} + \underbrace{E_i - E_f}_{\sim \mathcal{O}(\text{MeV})} \sim \mathcal{O}(100 \text{ MeV})$$

 $\Rightarrow e^{\pm}$ is **relativistic** particle under influence of Coulomb potential: $E_e \simeq E_{\mu} \simeq m_{\mu}$ and $m_e \simeq 0$

• muon **bound** in **1s state** with binding energy

 $\epsilon_B \simeq \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100} \text{non-relativistic}$

- consider "coherent" process → initial and final nucleus in ground state
 - + in good approximation: both nuclei at rest

$$\Rightarrow E_e = \underbrace{m_{\mu} - \epsilon_B}_{E_{\mu}} + \underbrace{E_i - E_f}_{\sim \mathcal{O}(\text{MeV})} \sim \mathcal{O}(100 \text{ MeV})$$

 $\Rightarrow e^{\pm}$ is **relativistic** particle under influence of Coulomb potential: $E_e \simeq E_{\mu} \simeq m_{\mu}$ and $m_e \simeq 0$

• muon **bound** in **1s state** with binding energy

 $\epsilon_B \simeq \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100} \text{non-relativistic}$

- consider "coherent" process → initial and final nucleus in ground state
 - + in good approximation: both nuclei at rest

$$\Rightarrow E_e = \underbrace{m_{\mu} - \epsilon_B}_{E_{\mu}} + \underbrace{E_i - E_f}_{\sim \mathcal{O}(\text{MeV})} \sim \mathcal{O}(100 \text{ MeV})$$

 $\Rightarrow e^{\pm}$ is **relativistic** particle under influence of Coulomb potential: $E_e \simeq E_{\mu} \simeq m_{\mu}$ and $m_e \simeq 0$

TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$\mu^- - e^-$$

- occurs at single nucleon $(\Delta Q = 0)$
- dominated by coherent process

$$\mu^-$$
– e^+

- needs to occur at two nucleons to achieve $\Delta Q = 2 \rightarrow$ similar to $0\nu\beta\beta$
- around 40% of the process' total are g.s. → g.s., see Divari et al. Nucl. Phys. A703, 409 (2002)

\downarrow

further investigations needed: → confirm/obtain percentage that takes place "coherently" for other isotopes

 \rightarrow derive more involved spectrum for positrons 4/19

TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$\mu^-$$
– e^-

• occurs at single nucleon $(\Delta Q = 0)$

dominated by coherent process

 μ^- – e^+

- needs to occur at two nucleons to achieve $\Delta Q = 2 \rightarrow$ similar to $0 \nu \beta \beta$
- around 40% of the process' total are g.s. → g.s., see Divari *et* al. Nucl. Phys. A703, 409 (2002)

\downarrow

further investigations needed: → confirm/obtain percentage that takes place "coherently" for other isotopes

 \rightarrow derive more involved spectrum for positrons 4/19

TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$\mu^-$$
– e^-

- occurs at single nucleon $(\Delta Q = 0)$
- dominated by coherent process

$$\mu^-$$
– e^+

- needs to occur at two nucleons to achieve $\Delta Q = 2 \rightarrow$ similar to $0\nu\beta\beta$
- around 40% of the process' total are g.s. → g.s., see Divari *et al.* Nucl. Phys. A703, 409 (2002)

further investigations needed: \rightarrow confirm/obtain percentage that takes place "coherently" for other isotopes

 \rightarrow derive more involved spectrum for positrons 4/19

TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$\mu^-$$
– e^-

- occurs at single nucleon $(\Delta Q = 0)$
- dominated by coherent process

$$\mu^-$$
– e^+

- needs to occur at two nucleons to achieve $\Delta Q = 2 \rightarrow \text{similar to}$ $0\nu\beta\beta$
- around 40% of the process' total are g.s. → g.s., see Divari *et al.* Nucl. Phys. A703, 409 (2002)

\Downarrow

further investigations needed:

 \rightarrow confirm/obtain percentage that takes place "coherently" for other isotopes

 \rightarrow derive more involved spectrum for positrons $_{4/19}$

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (taking data \sim 2019) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

→ improvements can be transferred to $\mu^- - e^+$ conversion (choice of isotope decisive, see Yeo, Zuber *et al.* arXiv:1705.07464) → sensitivities on both processes will increase by **several orders of magnitude** in the foreseeable future

ightarrow target both processes with the same experimental setup

 \Rightarrow it's time to investigate these bound muon conversions to describe them within a **general framework** independent of the respective particle physics realisation 5/19

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (taking data \sim 2019) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

 \rightarrow improvements can be transferred to μ^--e^+ conversion (choice of isotope decisive, see Yeo, Zuber et al. arXiv:1705.07464)

 \rightarrow sensitivities on both processes will increase by several orders of magnitude in the foreseeable future

 \rightarrow target both processes with the same experimental setup

 \Rightarrow it's time to investigate these bound muon conversions to describe them within a **general framework** independent of the respective particle physics realisation 5/19

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (taking data \sim 2019) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

 \rightarrow improvements can be transferred to μ^--e^+ conversion (choice of isotope decisive, see Yeo, Zuber et al. arXiv:1705.07464)

 \rightarrow sensitivities on both processes will increase by several orders of magnitude in the foreseeable future

 \rightarrow target both processes with the same experimental setup

 \Rightarrow it's time to investigate these bound muon conversions to describe them within a **general framework** independent of the respective particle physics realisation 5/19

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

• only **one** extra particle: S^{++}

 \rightarrow lightest of possible new particles (UV completion e.g. Cocktail model) \rightarrow reduction of input parameters

- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

$$+ (D_{\mu}S)^{\dagger}(D^{\mu}S) + f_{ab} \overline{(\ell_{Ra})^{c}} \ell_{Rb} S^{++} + \text{h.c.} - \frac{g^{2} v^{4} \xi}{4 \lambda^{3}} S^{++} W_{\mu}^{-} W^{-\mu} + \text{h.c.}$$

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only **one** extra particle: *S*⁺⁺
 - \rightarrow lightest of possible new particles (UV completion e.g. Cocktail model) \rightarrow reduction of input parameters
 - tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
 - effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

$$+ (D_{\mu}S)^{\dagger}(D^{\mu}S) + \int_{ab} \overline{(\ell_{Ra})^{c}} \ell_{Rb}S^{++} + \text{h.c.} - \frac{g^{2}v^{4}\xi}{4\Lambda^{3}}S^{++}W_{\mu}^{-}W^{-\mu} + \text{h.c.}$$

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only **one** extra particle: S^{++} \rightarrow lightest of possible new particles (UV completion e.g. Cocktail model) \rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

$$+ (D_{\mu}S)^{\dagger}(D^{\mu}S) + f_{ab} \overline{(\ell_{Ra})^{c}} \ell_{Rb}S^{++} + \text{h.c.} - \frac{g^{2} \sqrt{4} \xi}{4 \Lambda^{3}}S^{++}W_{\mu}^{-}W^{-\mu} + \text{h.c.}$$

 μ^--e^- Conversion: Universally Valid for Models Involving Doubly Charged Singlet Scalars based on TG, Merle Phys.Rev. D93 (2016) 055039

 $\mu^-\!-e^-$ conversion realised at one-loop level

 $\mu^- - e^-$ Conversion: Universally Valid for Models Involving Doubly Charged Singlet Scalars based on TG, Merle Phys.Rev. D93 (2016) 055039

 $\mu^-\!-e^-$ conversion realised at one-loop level

Write branching ratio as product of nuclear and particle physics parts

$${
m BR}(\mu^-N
ightarrow e^-N) = rac{8 lpha^5 m_\mu Z_{
m eff}^4 Z F_
ho^2}{\Gamma_{
m capt}} \ \Xi^2$$

see Kuno, Okada Rev. Mod. Phys. 73 (2001) 151-202

 \rightarrow **factorisation** works perfectly for **photonic** contributions $\rightarrow \Xi$ has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics (A Z)

Particle physics information absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

Write branching ratio as product of nuclear and particle physics parts

$${
m BR}(\mu^-N
ightarrow e^-N) = rac{8lpha^5 m_\mu Z_{
m eff}^4 Z F_
ho^2}{\Gamma_{
m capt}}\ \Xi^2$$

see Kuno, Okada Rev. Mod. Phys. 73 (2001) 151-202

 \rightarrow factorisation works perfectly for photonic contributions \rightarrow Ξ has to be modified for non-photonic contributions to be a function

of the nuclear characteristics (A,Z)

Particle physics information absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

Write branching ratio as product of nuclear and particle physics parts

$${
m BR}(\mu^-N
ightarrow e^-N) = rac{8 lpha^5 m_\mu Z_{
m eff}^4 Z F_
ho^2}{\Gamma_{
m capt}} \ \Xi^2$$

see Kuno, Okada Rev. Mod. Phys. 73 (2001) 151-202

 \rightarrow factorisation works perfectly for photonic contributions

 \rightarrow Ξ has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics (A,Z)

Particle physics information absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

Write branching ratio as product of nuclear and particle physics parts

$${
m BR}(\mu^-N
ightarrow e^-N) = rac{8lpha^5 m_\mu Z_{
m eff}^4 Z F_
ho^2}{\Gamma_{
m capt}} \ \Xi^2$$

see Kuno, Okada Rev. Mod. Phys. 73 (2001) 151-202

 \rightarrow factorisation works perfectly for photonic contributions

 \rightarrow Ξ has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics (A,Z)

Particle physics information absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

Photonic Contribution: Results

In good approximation (up to a few per cent), we use

$$\begin{aligned} F_1(q'^2) &= G_1(q'^2) = -f_{es}^* f_{a\mu} \Big[\frac{2m_a^2 + m_\mu^2 \log\left(\frac{m_a}{M_S}\right)}{12\pi^2 M_S^2} + \frac{\sqrt{m_\mu^2 + 4m_a^2}(m_\mu^2 - 2m_a^2)}{12\pi^2 m_\mu M_S^2} \operatorname{Arctanh}\left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}}\right) \Big] \\ F_2(q'^2) &= -G_2(q'^2) = f_{es}^* f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2} \end{aligned}$$

with $q'^2 = -m_{\mu}^2$ for the particle physics factor:

$$\Xi_{\rm photonic}^{2} = \frac{1}{288 \, \pi^4 \, m_{\mu}^2 \, M_{S}^4} \left| \sum_{a=e, \, \mu, \, \tau} f_{ea}^* \, f_{a\mu} \left(4m_a^2 \, m_{\mu} - m_{\mu}^3 + 2\left(-2m_a^2 + m_{\mu}^2 \right) \sqrt{4m_a^2 + m_{\mu}^2} \right. \right. \\ \left. \left. \operatorname{Arctanh} \left[\frac{m_{\mu}}{\sqrt{4m_a^2 + m_{\mu}^2}} \right] + m_{\mu}^3 \, \ln \left[\frac{m_a^2}{M_S^2} \right] \right) \right|^2 \right|^2$$

→ while F_2 is independent of m_a , $|F_1|$ decreases with increasing m_a → hierarchy: $|F_2| < |F_1|$ **but** for $M_5 \sim 10$ GeV of order 10 % → compare to $\mu \rightarrow e\gamma$: $F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0$ and $F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- - e^-$ conversion enhanced by F_1 contribution

Photonic Contribution: Results

In good approximation (up to a few per cent), we use

$$\begin{aligned} F_1(q'^2) &= G_1(q'^2) = -f_{ea}^* f_{a\mu} \Big[\frac{2m_a^2 + m_\mu^2 \log\left(\frac{m_a}{M_S}\right)}{12\pi^2 M_S^2} + \frac{\sqrt{m_\mu^2 + 4m_a^2}(m_\mu^2 - 2m_a^2)}{12\pi^2 m_\mu M_S^2} \operatorname{Arctanh}\left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}}\right) \Big] \\ F_2(q'^2) &= -G_2(q'^2) = f_{ea}^* f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2} \end{aligned}$$

with $q'^2 = -m_{\mu}^2$ for the particle physics factor:

$$\Xi_{\rm photonic}^{2} = \frac{1}{288 \, \pi^4 \, m_{\mu}^2 \, M_{S}^4} \left| \sum_{a=e, \, \mu, \, \tau} f_{ea}^* \, f_{a\mu} \left(4m_a^2 \, m_{\mu} - m_{\mu}^3 + 2\left(-2m_a^2 + m_{\mu}^2 \right) \sqrt{4m_a^2 + m_{\mu}^2} \right. \right. \\ \left. \left. \operatorname{Arctanh} \left[\frac{m_{\mu}}{\sqrt{4m_a^2 + m_{\mu}^2}} \right] + m_{\mu}^3 \, \ln \left[\frac{m_a^2}{M_S^2} \right] \right) \right|^2 \right|^2$$

→ while F_2 is independent of m_a , $|F_1|$ decreases with increasing m_a → hierarchy: $|F_2| < |F_1|$ but for $M_S \sim 10$ GeV of order 10 % → compare to $\mu \rightarrow e\gamma$: $F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0$ and $F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- - e^-$ conversion enhanced by F_1 contribution

Photonic Contribution: Results

In good approximation (up to a few per cent), we use

$$\begin{aligned} F_1(q'^2) &= G_1(q'^2) = -f_{es}^* f_{a\mu} \Big[\frac{2m_a^2 + m_\mu^2 \log\left(\frac{m_a}{M_S}\right)}{12\pi^2 M_S^2} + \frac{\sqrt{m_\mu^2 + 4m_a^2}(m_\mu^2 - 2m_a^2)}{12\pi^2 m_\mu M_S^2} \operatorname{Arctanh}\left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}}\right) \Big] \\ F_2(q'^2) &= -G_2(q'^2) = f_{es}^* f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2} \end{aligned}$$

with $q'^2 = -m_\mu^2$ for the particle physics factor:

$$\Xi_{\rm photonic}^{2} = \frac{1}{288 \, \pi^4 \, m_{\mu}^2 \, M_{S}^4} \left| \sum_{a=e, \, \mu, \, \tau} f_{ea}^* \, f_{a\mu} \left(4m_a^2 \, m_{\mu} - m_{\mu}^3 + 2\left(-2m_a^2 + m_{\mu}^2 \right) \sqrt{4m_a^2 + m_{\mu}^2} \right. \right. \\ \left. \left. \operatorname{Arctanh} \left[\frac{m_{\mu}}{\sqrt{4m_a^2 + m_{\mu}^2}} \right] + m_{\mu}^3 \, \ln \left[\frac{m_a^2}{M_S^2} \right] \right) \right|^2 \right|^2$$

→ while F_2 is independent of m_a , $|F_1|$ decreases with increasing m_a → hierarchy: $|F_2| < |F_1|$ but for $M_S \sim 10$ GeV of order 10 % → compare to $\mu \rightarrow e\gamma$: $F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0$ and $F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- - e^-$ conversion enhanced by F_1 contribution

Combining the Contributions: Results

see TG, Merle Phys.Rev. D93 (2016) 055039

Benchmark Points:

 f_{ab} such that LFV/LNV bounds fulfilled + suitable neutrino mass matrix reproduced

- 'red': $f_{ee} \simeq 0$ and $f_{e\tau} \simeq 0$
- 'purple': $f_{ee} \simeq 0$ and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

• 'blue':
$$f_{e\mu}\simeqrac{f_{\mu au}^*}{f_{\mu\mu}^*}f_{e au}$$

choose **representative 'average' set** for each scenario to display M_S dependence

Results: Photonic Contribution vs $\mu \to e \gamma$ see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124

Results: Photonic Contribution vs $\mu ightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124

For $\mu^+ \rightarrow e^+ \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee} \, f_{e\mu}^* + f_{e\mu} \, f_{\mu\mu}^* + f_{e au} \, f_{ au\mu}^*
ight| \cdot \mathcal{C}$$

ightarrow some amount of cancellation

For $\mu^- - e^-$ conversion: !! other way around !!

 $\mathcal{A} \propto \left| \mathit{C}_{e} \mathit{f}_{ee}^{*} \mathit{f}_{e\mu} + \mathit{C}_{\mu} \mathit{f}_{e\mu}^{*} \mathit{f}_{\mu\mu} + \mathit{C}_{ au} \mathit{f}_{e au}^{*} \mathit{f}_{ au\mu}
ight|$

→ flavour-dependent coefficients: prevent similar cancellations → shape of amplitude leads to drastical change (not mainly off-shell contributions)

Results: Photonic Contribution vs $\mu ightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124

For $\mu^+ \rightarrow e^+ \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee} \, f_{e\mu}^* + f_{e\mu} \, f_{\mu\mu}^* + f_{e au} \, f_{ au\mu}^*
ight| \cdot \mathcal{C}$$

ightarrow some amount of cancellation

For μ^--e^- conversion: !! other way around !!

 $\mathcal{A} \propto \left| \mathit{C}_{e} \: \mathit{f}_{ee}^{*} \: \mathit{f}_{e\mu} + \mathit{C}_{\mu} \: \mathit{f}_{e\mu}^{*} \: \mathit{f}_{\mu\mu} + \mathit{C}_{\tau} \: \mathit{f}_{e\tau}^{*} \: \mathit{f}_{\tau\mu}
ight|$

→ flavour-dependent coefficients: prevent similar cancellations → shape of amplitude leads to drastical change (not mainly off-shell contributions)

Results: Photonic Contribution vs $\mu ightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124

For $\mu^+ \rightarrow e^+ \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee} \, f_{e\mu}^* + f_{e\mu} \, f_{\mu\mu}^* + f_{e au} \, f_{ au\mu}^*
ight| \cdot \mathcal{C}$$

ightarrow some amount of cancellation

For μ^--e^- conversion: !! other way around !!

 $\mathcal{A} \propto \left| \textit{C}_{e} \textit{f}_{ee}^{*} \textit{f}_{e\mu} + \textit{C}_{\mu} \textit{f}_{e\mu}^{*} \textit{f}_{\mu\mu} + \textit{C}_{\tau} \textit{f}_{e\tau}^{*} \textit{f}_{\tau\mu}
ight|$

 \rightarrow flavour-dependent coefficients: prevent similar cancellations \rightarrow shape of amplitude leads to drastical change (not mainly off-shell contributions)

Results: Complementarity

see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From **'average scenarios'** (depicted by lines), we can estimate the **lower limits on M**_S resulting from µ-e conversion:

current limit [GeV]	future sensitivity [GeV]	COMET I (Al-27) [GeV]
$M_S > 131.9 - 447.1$	$M_S > 1031.5 - 13271.3$	<i>M_S</i> >1954.1
$M_S > 42.5 - 152.3$	<i>M_S</i> >360.7 - 4885.2	<i>M_S</i> >694.5
$M_S > 33.9 - 118.1$	$M_S > 276.3 - 3656.1$	<i>M_S</i> >528.0

 \rightarrow Limits from μ^- - e^- conversion can be stronger than from LHC (but indirect)

Results: Complementarity

see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From 'average scenarios' (depicted by lines), we can estimate the lower limits on M_S resulting from μ -*e* conversion:

	current limit [GeV]	future sensitivity [GeV]	COMET I (Al-27) [GeV]
blue curve	M_{S} >131.9 - 447.1	$M_S > 1031.5 - 13271.3$	<i>M_S</i> >1954.1
purple curve	$M_{\rm S} > 42.5 - 152.3$	$M_S > 360.7 - 4885.2$	<i>M_S</i> >694.5
red curve	$M_{\rm S}$ > 33.9 - 118.1	$M_S > 276.3 - 3656.1$	<i>M_S</i> >528.0

 \rightarrow Limits from μ^- - e^- conversion can be stronger than from LHC (but indirect)

μ^- – e^+ Conversion from doubly charged scalars

Goal:

- formalism to describe $\mu^- e^+$ conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion → factorisation

Example: How to use existing nuclear matrix elements (NMEs) see Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

+ how to derive decay rate using the example of doubly charged scalars:
μ^- – e^+ Conversion from doubly charged scalars

Goal:

- formalism to describe $\mu^- e^+$ conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion → factorisation

Example: How to use existing nuclear matrix elements (NMEs) see Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

+ how to derive decay rate using the example of doubly charged scalars:

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

map model onto short-range operator ε₃^{LLz} on level of Lagrangian
 leads to dim-9 operator:

$$\mathcal{L}_{short-range}^{\mu e} \supset \frac{G_F^2}{2m_p} \epsilon_3^{xyz} \frac{J_x^{\nu} J_{y,\nu}}{J_x^{\nu} J_{z,\nu}} j_z$$

with two hadronic currents $J_{R,L}^{\nu} = \overline{d} \gamma^{\nu} (1 \pm \gamma_5) u$ and one

leptonic current $j_{R,L} = \overline{e^c}(1 \pm \gamma_5)\mu$

• that way, we obtain the decay rate:

$$\Gamma = \frac{g_A^4 \, G_F^4 \, m_e^2 \, m_\mu^2 \, |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow respective particle physics model fully encompassed within ϵ_3 \rightarrow isotope-dependent nuclear physics predominantly in NME $\mathcal{M}^{(\mu^-,e^+)}$

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

- map model onto short-range operator ϵ_3^{LLz} on level of Lagrangian
- leads to dim-9 operator:

$$\mathcal{L}_{short-range}^{\mu e} \supset \frac{\mathcal{G}_F^2}{2m_p} \epsilon_3^{xyz} \frac{J_x^{\nu} J_{y,\nu}}{J_x^{\nu} J_{z}} j_z$$

with two hadronic currents $J_{R,L}^{\nu} = \overline{d} \gamma^{\nu} (1 \pm \gamma_5) u$ and one

leptonic current
$$j_{R,L} = \overline{e^c}(1 \pm \gamma_5)\mu$$

• that way, we obtain the decay rate:

$$\Gamma = \frac{g_A^4 \, G_F^4 \, m_e^2 \, m_\mu^2 \, |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow respective particle physics model fully encompassed within ϵ_3 \rightarrow isotope-dependent nuclear physics predominantly in NME $\mathcal{M}^{(\mu^-,e^+)}$

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

- map model onto short-range operator ϵ_3^{LLz} on level of Lagrangian
- leads to dim-9 operator:

$$\mathcal{L}_{short-range}^{\mu e} \supset \frac{\mathcal{G}_{F}^{2}}{2m_{p}} \epsilon_{3}^{xyz} \frac{J_{x}^{\nu} J_{y,\nu}}{J_{x}^{\nu} J_{y,\nu}} j_{z}$$

with two hadronic currents $J_{R,L}^{\nu} = \overline{d} \gamma^{\nu} (1 \pm \gamma_5) u$ and one

leptonic current $j_{R,L} = \overline{e^c}(1\pm\gamma_5)\mu$

• that way, we obtain the decay rate:

$$\Gamma = \frac{g_A^4 \, G_F^4 \, m_e^2 \, m_\mu^2 \, |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow respective particle physics model fully encompassed within ϵ_3 \rightarrow isotope-dependent nuclear physics predominantly in NME $\mathcal{M}^{(\mu^-,e^+)}$

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Heavy Majorana neutrinos Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 14'

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 14'

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos

Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 14

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos

Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 14

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos

Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 147

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in eμ instead of ee sector

• there are much more settings/operators which are likely to sit within reach for the next generation of experiments

 \Rightarrow valuable new information from μ^- – e^+ conversion experiments

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in eμ instead of ee sector

• there are much more settings/operators which are likely to sit within reach for the next generation of experiments

 \Rightarrow valuable new information from μ^- – e^+ conversion experiments

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in *eμ* instead of *ee* sector

• there are much more settings/operators which are likely to sit within reach for the next generation of experiments

 \Rightarrow valuable new information from μ^- – e^+ conversion experiments

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in *e*μ instead of *ee* sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

 \Rightarrow valuable new information from $\mu^- - e^+$ conversion experiments

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in *e*μ instead of *ee* sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

 \Rightarrow valuable new information from μ^- - e^+ conversion experiments

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for μ⁻- e⁺ conversion
 Already done for COMET in Yeo, Zuber *et al.* arXiv:1705.07464
- Nuclear Matrix Elements:
 - isotope-dependent studies on percentage of process that is "coherent"
 - further nuclear matrix elements (NMEs) are desirable \rightarrow in particular for ²⁷AL ⁴⁰Ca and ³²S and for other operators like

 \Rightarrow there are promising models but we cannot judge them properly

• Particle Physics: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for $\mu^- e^+$ conversion
 - Already done for COMET in Yeo, Zuber et al. arXiv:1705.07464
- Nuclear Matrix Elements:
 - isotope-dependent studies on percentage of process that is "coherent"
 - further **nuclear matrix elements** (NMEs) are desirable

 \Rightarrow there are promising models but we cannot judge them properly

• Particle Physics: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for $\mu^- e^+$ conversion
 - Already done for COMET in Yeo, Zuber et al. arXiv:1705.07464
- Nuclear Matrix Elements:
 - isotope-dependent studies on percentage of process that is "coherent"
 - further **nuclear matrix elements** (NMEs) are desirable \rightarrow in particular for ²⁷Al, ⁴⁰Ca and ³²S, and for other operators like $\epsilon_{1,2}$

 \Rightarrow there are promising models but we cannot judge them properly

• Particle Physics: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for $\mu^- e^+$ conversion
 - Already done for COMET in Yeo, Zuber et al. arXiv:1705.07464

• Nuclear Matrix Elements:

- isotope-dependent studies on percentage of process that is "coherent"
- further nuclear matrix elements (NMEs) are desirable \rightarrow in particular for ²⁷Al, ⁴⁰Ca and ³²S, and for other operators like $\epsilon_{1,2}$

\Rightarrow there are promising models but we cannot judge them properly

• **Particle Physics:** for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for $\mu^- e^+$ conversion
 - Already done for COMET in Yeo, Zuber et al. arXiv:1705.07464

• Nuclear Matrix Elements:

- isotope-dependent studies on percentage of process that is "coherent"
- further nuclear matrix elements (NMEs) are desirable \rightarrow in particular for ²⁷Al, ⁴⁰Ca and ³²S, and for other operators like $\epsilon_{1,2}$

 \Rightarrow there are promising models but we cannot judge them properly

• Particle Physics: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

To optimise our chances, the following routes look most promising:

- Experiment: more detailed sensitivity studies for $\mu^- e^+$ conversion
 - Already done for COMET in Yeo, Zuber et al. arXiv:1705.07464

• Nuclear Matrix Elements:

- isotope-dependent studies on percentage of process that is "coherent"
- further nuclear matrix elements (NMEs) are desirable \rightarrow in particular for ²⁷Al, ⁴⁰Ca and ³²S, and for other operators like $\epsilon_{1,2}$

 \Rightarrow there are promising models but we cannot judge them properly

• Particle Physics: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^- e^-$ conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study
- $\mu^- e^+$ conversion:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
 - pointed out open questions and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
 - to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^- e^-$ conversion:
 - FIRST complete study of μ^--e^- conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
- complementarity: rich phenomenology of loop models → high- and low-energy processes → μ⁻- e⁻ conversion important part of study
 μ⁻- e⁺ conversion:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
 - pointed out open questions and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
 - to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- µ[−]− e[−] conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study

- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
- pointed out open questions and further models/operators
- LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
- to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- µ[−]− e[−] conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study
- $\mu^- e^+$ conversion:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
 - pointed out open questions and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
 - to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- µ⁻– e⁻ conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study

- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
- pointed out open questions and further models/operators
- LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
- to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- µ⁻– e⁻ conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study

- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
- pointed out open questions and further models/operators
- LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
- to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

- orders of magnitude improvement of sensitivities in near-future experiments
- µ⁻– e⁻ conversion:
 - FIRST complete study of $\mu^- e^-$ conversion via doubly charged scalars at 1-loop
 - \rightarrow far beyond previous EFT treatment/approximations
 - complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study

- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
- pointed out open questions and further models/operators
- LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
- to ensure progress, the different communities need to collaborate
- COMET: expecting to take first data in 2019

Thank you for your attention!!

Any questions?

Backup Slides

- estimate nuclear radius: $R = \overbrace{r_0}^{\sim \mathcal{O}(10^{-15} \text{ m})} A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$ • reduced Bohr radius: $a_0 \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$ $\mathcal{O}(10^{-10} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probability?!

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $\underbrace{a_0}_{\mathcal{O}(10^{-10} \text{ m})} \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probability?

 $\sim O(10^{-15} \text{ m})$

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $\underbrace{a_0}_{\mathcal{O}(10^{-10} \text{ m})} \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probabili

 $\sim O(10^{-15} \text{ m})$

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $\underbrace{a_0}_{\mathcal{O}(10^{-10} \text{ m})} \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probability?!

 $\sim O(10^{-15} \text{ m})$

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $\underbrace{a_0}_{\mathcal{O}(10^{-10} \text{ m})} \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probability?!

 $\sim O(10^{-15} \text{ m})$

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $\underbrace{a_0}_{\mathcal{O}(10^{-10} \text{ m})} \frac{m_e}{m_{\mu}} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: r_γ → ∞ and r_Z ≤ 10⁻¹⁸ m
 ⇒ for Z-exchange: μ⁻ has to be within nucleus! Probability?!

 $\sim O(10^{-15} \text{ m})$

Generating the Neutrino Mass

The mass is generated at two-loop level via the diagram

which leads to the neutrino mass

$$\mathcal{M}^{2\text{-loop}}_{\nu,ab} = rac{2\,\xi\,m_a\,m_b\,\mathcal{M}^2_{S}\,g_{ab}(1+\delta_{ab})}{\Lambda^3}\;\mathcal{I}ig[\mathcal{M}_W,\,\mathcal{M}_S,\,\muig]$$

- \longrightarrow Majorana mass term
- \longrightarrow further LNV processes
Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

Selection of interesting processes: low energy physics

Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

 f_{ab} such that bounds fulfilled + suitable light neutrino mass matrix reproduced

• 'red':
$$f_{ee} \simeq 0$$
 and $f_{e au} \simeq 0$

• 'purple':
$$f_{ee} \simeq 0$$
 and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

• 'blue':
$$f_{e\mu}\simeqrac{f_{\mu au}^{*}}{f_{\mu\mu}^{*}}\,f_{e au}$$

complementary check with **high energy experiments**: compute cross sections for e.g.

•
$$S^{\pm\pm} \rightarrow W^{\pm\pm}$$

•
$$S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm}$$

• ...

ightarrow some of the benchmark points already excluded by LHC data (7 ${
m TeV}$ run)

Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

 f_{ab} such that bounds fulfilled + suitable light neutrino mass matrix reproduced

• 'red':
$$f_{ee} \simeq 0$$
 and $f_{e au} \simeq 0$

• 'purple':
$$f_{ee} \simeq 0$$
 and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

• 'blue':
$$f_{e\mu}\simeqrac{f_{\mu au}^{*}}{f_{\mu\mu}^{*}}\,f_{e au}$$

complementary check with **high energy experiments**:

compute cross sections for e.g.

•
$$S^{\pm\pm} \rightarrow W^{\pm\pm}$$

• $S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm}$

• ...

 \rightarrow some of the benchmark points already excluded by LHC data (7 $\,{\rm TeV}_{\rm run})$

$$\mathcal{M} \propto \int \mathrm{d}^{3} r \, \overline{\psi_{jlm}^{e}}(\boldsymbol{p}_{e}, r) \, \Gamma^{\nu} \, \psi_{j_{\mu}l_{\mu}m_{\mu}}^{\mu}(\boldsymbol{p}_{\mu}, r) \underbrace{\langle \boldsymbol{N} | \overline{\boldsymbol{q}} \, \gamma_{\nu} \, \boldsymbol{q} | \boldsymbol{N} \rangle}_{Ze\rho^{(P)}(r) \, \delta_{\nu 0}}$$

 \rightarrow wave functions for μ^- and e^- obtained by solving modified Dirac equation (+ Coulomb potential)

 \rightarrow Most **general** (Lorentz-) invariant **expression** for Γ^{ν} :

$$\Gamma^{\nu} = \left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^2}\right) F_1(q'^2) + \frac{i \, \sigma^{\nu \rho} \, q'_{\rho}}{m_{\mu}} \, F_2(q'^2) + \left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^2}\right) \gamma_5 \, G_1(q'^2) + \frac{i \, \sigma^{\nu \rho} \, q'_{\rho}}{m_{\mu}} \, \gamma_5 \, G_2(q'^2)$$

with $q' = p_e - p_{\mu}$.

In non-relativistic limit: $\Rightarrow \psi_{jlm}$ and $Ze
ho^{(P)}(r)$ factorise from Γ^0 on matrix element level

$$\mathcal{M} \propto \int \mathrm{d}^3 r \, \overline{\psi_{jlm}^{\mathrm{e}}}(\boldsymbol{p}_{e}, r) \, \Gamma^{\nu} \, \psi_{j_{\mu} l_{\mu} m_{\mu}}^{\mu}(\boldsymbol{p}_{\mu}, r) \underbrace{\langle \boldsymbol{N} | \overline{\boldsymbol{q}} \, \gamma_{\nu} \, \boldsymbol{q} | \boldsymbol{N} \rangle}_{Ze\rho^{(P)}(r) \, \delta_{\nu 0}}$$

 \rightarrow wave functions for μ^- and e^- obtained by solving modified Dirac equation (+ Coulomb potential)

 \rightarrow Most **general** (Lorentz-) invariant **expression** for Γ^{ν} :

$$\Gamma^{\nu} = \left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^2}\right) F_1(q'^2) + \frac{i \, \sigma^{\nu \rho} \, q'_{\rho}}{m_{\mu}} \, F_2(q'^2) + \left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^2}\right) \gamma_5 \, G_1(q'^2) + \frac{i \, \sigma^{\nu \rho} \, q'_{\rho}}{m_{\mu}} \, \gamma_5 \, G_2(q'^2)$$

with $q' = p_e - p_{\mu}$.

In non-relativistic limit: $\Rightarrow \psi_{jlm}$ and $Ze
ho^{(P)}(r)$ factorise from Γ^0 on matrix element level

$$\mathcal{M} \propto \int \mathrm{d}^3 r \, \overline{\psi_{jlm}^e}(p_e, r) \, \Gamma^{\nu} \, \psi_{j_{\mu}l_{\mu}m_{\mu}}^{\mu}(p_{\mu}, r) \underbrace{\langle N | \overline{q} \, \gamma_{\nu} \, q | N \rangle}_{Ze\rho^{(P)}(r) \, \delta_{\nu 0}}$$

 \rightarrow wave functions for μ^- and e^- obtained by solving modified Dirac equation (+ Coulomb potential)

 \rightarrow Most general (Lorentz-) invariant expression for Γ^{ν} :

$$\Gamma^{\nu} = \left(\gamma^{\nu} - \frac{q^{\prime} q^{\prime \nu}}{q^{\prime 2}}\right) F_{1}(q^{\prime 2}) + \frac{i \sigma^{\nu \rho} q_{\rho}^{\prime}}{m_{\mu}} F_{2}(q^{\prime 2}) + \left(\gamma^{\nu} - \frac{q^{\prime} q^{\prime \nu}}{q^{\prime 2}}\right) \gamma_{5} G_{1}(q^{\prime 2}) + \frac{i \sigma^{\nu \rho} q_{\rho}^{\prime}}{m_{\mu}} \gamma_{5} G_{2}(q^{\prime 2})$$

with $q' = p_e - p_{\mu}$.

In non-relativistic limit: $\Rightarrow \psi_{jlm}$ and $Ze\rho^{(P)}(r)$ factorise from Γ^0 on matrix element level

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

$$\Rightarrow \Sigma \mathcal{I}^{\nu} = \frac{i}{(4\pi)^2 \varepsilon} [(2Q_S + 2Q_{I^+} - Q_{e^-} - Q_{\mu^-})P_L \gamma^{\nu}] = 0 |_{\mathcal{V}}$$

19/19

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

 $\Rightarrow \Sigma \mathcal{I}^{\nu} = \frac{i}{(4\pi)^2 \varepsilon} [(2Q_S + 2Q_{I^+} - Q_{e^-} - Q_{\mu^-})P_L \gamma^{\nu}] = 0 |_{\mathcal{N}}$

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

In form of $i\mathcal{M} = e f_{ea}^* f_{a\mu} A_{\nu}(q') \overline{u}_e(p_e) \mathcal{I}^{\nu} u_{\mu}(p_{\mu})$:

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{1}(-m_{\mu}^{2}) = \mathsf{G}_{1}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128 \, \pi^{2} m_{\mu}^{4}} \, \sum_{a=e, \, \mu, \, \tau} \, f_{ea}^{*} \, f_{a\mu} \left[2 \, m_{\mu}^{2} \left(-5m_{a}^{2} + 6m_{\mu}^{2} + 5M_{S}^{2} \right) - 2 \, S_{a} \, m_{\mu}^{2} \left(m_{a}^{2} + 3m_{\mu}^{2} - M_{S}^{2} \right) \right] \\ & \ln \left[\frac{2m_{a}^{2}}{2m_{a}^{2} + m_{\mu}^{2}(1+S_{a})} \right] + 4 \, S_{S} \, m_{\mu}^{2} \left(m_{a}^{2} + m_{\mu}^{2} - M_{S}^{2} \right) \, \ln \left[\frac{2M_{S}^{2}}{2M_{S}^{2} + m_{\mu}^{2}(1+S_{S})} \right] + \left(3m_{a}^{2} \left(2m_{a}^{2} - m_{\mu}^{2} \right) \right) \\ & -4M_{S}^{2} \right) + 5m_{\mu}^{4} - 7m_{\mu}^{2} \, M_{S}^{2} + 6M_{S}^{4} \right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}} \right] + 2 \, T_{a} \left(-6m_{a}^{2} + m_{\mu}^{2} + 6M_{S}^{2} \right) \ln \left[\frac{2m_{a} M_{S}}{m_{a}^{2} - m_{\mu}^{2} + M_{S}^{2} - 7_{a}} \right] \\ & + 2 \, m_{\mu}^{2} \left[\left(m_{a}^{4} + 8m_{a}^{2} \, m_{\mu}^{2} + M_{S}^{4} - 2M_{S}^{2} \left(m_{a}^{2} + 2m_{\mu}^{2} \right) \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, m_{a}, \, M_{S}, \, m_{a} \right] \\ & + 2 \left(m_{a}^{4} - 2M_{S}^{2} \left(m_{a}^{2} - 2m_{\mu}^{2} \right) + M_{S}^{4} \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, M_{s}, \, m_{a}, \, M_{S} \right] \right] \end{split}$$

$$\xrightarrow{M_{\mathcal{S}} \gg m_a} - f_{ea}^* f_{a\mu} \left[\frac{2m_a^2 + m_\mu^2 \log\left(\frac{m_a}{M_{\mathcal{S}}}\right)}{12\pi^2 M_{\mathcal{S}}^2} + \frac{\sqrt{m_\mu^2 + 4m_a^2}(m_\mu^2 - 2m_a^2)}{12\pi^2 m_\mu M_{\mathcal{S}}^2} \operatorname{Arctanh}\left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}}\right) \right] + \mathcal{O}(M_{\mathcal{S}}^{-4})$$

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{1}(-m_{\mu}^{2}) = \mathsf{G}_{1}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128 \, \pi^{2} m_{\mu}^{4}} \, \sum_{a=e, \, \mu, \, \tau} \, f_{ea}^{*} \, f_{a\mu} \left[2 \, m_{\mu}^{2} \left(-5m_{a}^{2} + 6m_{\mu}^{2} + 5M_{S}^{2} \right) - 2 \, S_{a} \, m_{\mu}^{2} \left(m_{a}^{2} + 3m_{\mu}^{2} - M_{S}^{2} \right) \right] \\ & \ln \left[\frac{2m_{a}^{2}}{2m_{a}^{2} + m_{\mu}^{2}(1+S_{a})} \right] + 4 \, S_{S} \, m_{\mu}^{2} \left(m_{a}^{2} + m_{\mu}^{2} - M_{S}^{2} \right) \, \ln \left[\frac{2M_{S}^{2}}{2M_{S}^{2} + m_{\mu}^{2}(1+S_{S})} \right] + \left(3m_{a}^{2} \left(2m_{a}^{2} - m_{\mu}^{2} \right) \right) \\ & -4M_{S}^{2} \right) + 5m_{\mu}^{4} - 7m_{\mu}^{2} \, M_{S}^{2} + 6M_{S}^{4} \right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}} \right] + 2 \, T_{a} \left(-6m_{a}^{2} + m_{\mu}^{2} + 6M_{S}^{2} \right) \ln \left[\frac{2m_{a} M_{S}}{m_{a}^{2} - m_{\mu}^{2} + M_{S}^{2} - 7_{a}} \right] \\ & + 2 \, m_{\mu}^{2} \left[\left(m_{a}^{4} + 8m_{a}^{2} \, m_{\mu}^{2} + M_{S}^{4} - 2M_{S}^{2} \left(m_{a}^{2} + 2m_{\mu}^{2} \right) \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, m_{a}, \, M_{S}, \, m_{a} \right] \\ & + 2 \left(m_{a}^{4} - 2M_{S}^{2} \left(m_{a}^{2} - 2m_{\mu}^{2} \right) + M_{S}^{4} \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, M_{S}, \, m_{a}, \, M_{S} \right] \right] \end{split}$$

$$\xrightarrow{M_{S}\gg m_{a}} - f_{ea}^{*} f_{a\mu} \left[\frac{2m_{a}^{2} + m_{\mu}^{2} \log\left(\frac{m_{a}}{M_{S}}\right)}{12\pi^{2}M_{S}^{2}} + \frac{\sqrt{m_{\mu}^{2} + 4m_{a}^{2}}(m_{\mu}^{2} - 2m_{a}^{2})}{12\pi^{2}m_{\mu}M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2} + 4m_{a}^{2}}}\right) \right] + \mathcal{O}(M_{S}^{-4})$$

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{1}(-m_{\mu}^{2}) = \mathsf{G}_{1}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128 \, \pi^{2} m_{\mu}^{4}} \, \sum_{a=e, \, \mu, \, \tau} \, f_{ea}^{*} \, f_{a\mu} \left[2 \, m_{\mu}^{2} \left(-5m_{a}^{2} + 6m_{\mu}^{2} + 5M_{S}^{2} \right) - 2 \, S_{a} \, m_{\mu}^{2} \left(m_{a}^{2} + 3m_{\mu}^{2} - M_{S}^{2} \right) \right] \\ & \ln \left[\frac{2m_{a}^{2}}{2m_{a}^{2} + m_{\mu}^{2}(1+S_{a})} \right] + 4 \, S_{S} \, m_{\mu}^{2} \left(m_{a}^{2} + m_{\mu}^{2} - M_{S}^{2} \right) \, \ln \left[\frac{2M_{S}^{2}}{2M_{S}^{2} + m_{\mu}^{2}(1+S_{S})} \right] + \left(3m_{a}^{2} \left(2m_{a}^{2} - m_{\mu}^{2} \right) \right) \\ & -4M_{S}^{2} \left(+5m_{\mu}^{4} - 7m_{\mu}^{2} \, M_{S}^{2} + 6M_{S}^{4} \right) \, \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}} \right] + 2 \, T_{a} \left(-6m_{a}^{2} + m_{\mu}^{2} + 6M_{S}^{2} \right) \, \ln \left[\frac{2m_{a} \, M_{S}}{m_{a}^{2} - m_{\mu}^{2} + M_{S}^{2} - 7_{a}} \right] \\ & + 2 \, m_{\mu}^{2} \left[\left(m_{a}^{4} + 8m_{a}^{2} \, m_{\mu}^{2} + M_{S}^{4} - 2M_{S}^{2} \left(m_{a}^{2} + 2m_{\mu}^{2} \right) \right) \, C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, m_{a}, \, M_{S}, \, m_{a} \right] \\ & + 2 \left(m_{a}^{4} - 2M_{S}^{2} \left(m_{a}^{2} - 2m_{\mu}^{2} \right) + M_{S}^{4} \right) \, C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, M_{S}, \, m_{a}, \, M_{S} \right] \right] \end{split}$$

$$\xrightarrow{M_{S}\gg m_{a}} - f_{ea}^{*} f_{a\mu} \left[\frac{2m_{a}^{2} + m_{\mu}^{2} \log\left(\frac{m_{a}}{M_{S}}\right)}{12\pi^{2}M_{S}^{2}} + \frac{\sqrt{m_{\mu}^{2} + 4m_{a}^{2}}(m_{\mu}^{2} - 2m_{a}^{2})}{12\pi^{2}m_{\mu}M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2} + 4m_{a}^{2}}}\right) \right] + \mathcal{O}(M_{S}^{-4})$$

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{2}(-m_{\mu}^{2}) = -G_{2}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \, \mu, \, \tau} \, f_{ea}^{*} \, f_{a\mu} \left[2 \, m_{\mu}^{2} \left(-m_{a}^{2} + 6m_{\mu}^{2} + M_{S}^{2} \right) + 2 \, S_{a} \, m_{\mu}^{2} \left(3m_{a}^{2} + m_{\mu}^{2} - 3M_{S}^{2} \right) \right] \\ & \mathsf{ln} \left[\frac{2m_{a}^{2}}{2m_{a}^{2} + m_{\mu}^{2}(1+S_{a})} \right] + 4 \, S_{S} \, m_{\mu}^{2} \left(- 3m_{a}^{2} + m_{\mu}^{2} + 3M_{S}^{2} \right) \, \mathsf{ln} \left[\frac{2M_{S}^{2}}{2M_{S}^{2} + m_{\mu}^{2}(1+S_{S})} \right] \\ & + \left(m_{a}^{2} \left(- 2m_{a}^{2} - 7m_{\mu}^{2} + 4M_{S}^{2} \right) + m_{\mu}^{4} + 5m_{\mu}^{2} \, M_{S}^{2} - 2M_{S}^{4} \right) \, \mathsf{ln} \left[\frac{m_{a}^{2}}{M_{S}^{2}} \right] + 2 \, T_{a} \left(2m_{a}^{2} - 3m_{\mu}^{2} - 2M_{S}^{2} \right) \\ & \mathsf{ln} \left[\frac{2m_{a} \, M_{S}}{m_{a}^{2} - m_{\mu}^{2} + M_{S}^{2} - T_{a}} \right] + 2 \, m_{\mu}^{2} \left[\left(-3m_{a}^{4} - 3M_{S}^{4} + 2M_{S}^{2} \left(3m_{a}^{2} + 2m_{\mu}^{2} \right) \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, m_{a}, \, M_{S}, \, m_{a} \right] \\ & + 2 \left(-3m_{a}^{4} + 2m_{a}^{2} \left(3M_{S}^{2} + 2m_{\mu}^{2} \right) - 3M_{S}^{4} \right) \, C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, M_{S}, \, m_{a}, \, M_{S} \right] \right] \end{split}$$

$$\xrightarrow{M_S \gg m_a} f_{ea}^* f_{a\mu} \frac{m_{\mu}^2}{24\pi^2 M_S^2} + \mathcal{O}(M_S^{-4})$$

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{2}(-m_{\mu}^{2}) = -G_{2}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128 \, \pi^{2} m_{\mu}^{4}} \sum_{a=e, \, \mu, \, \tau} \, f_{ea}^{*} \, f_{a\mu} \left[2 \, m_{\mu}^{2} \left(-m_{a}^{2} + 6m_{\mu}^{2} + M_{S}^{2} \right) + 2 \, S_{a} \, m_{\mu}^{2} \left(3m_{a}^{2} + m_{\mu}^{2} - 3M_{S}^{2} \right) \right] \\ & \mathsf{In} \left[\frac{2m_{a}^{2}}{2m_{a}^{2} + m_{\mu}^{2}(1+S_{a})} \right] + 4 \, S_{S} \, m_{\mu}^{2} \left(-3m_{a}^{2} + m_{\mu}^{2} + 3M_{S}^{2} \right) \, \mathsf{In} \left[\frac{2M_{S}^{2}}{2M_{S}^{2} + m_{\mu}^{2}(1+S_{S})} \right] \\ & + \left(m_{a}^{2} \left(-2m_{a}^{2} - 7m_{\mu}^{2} + 4M_{S}^{2} \right) + m_{\mu}^{4} + 5m_{\mu}^{2} \, M_{S}^{2} - 2M_{S}^{4} \right) \, \mathsf{In} \left[\frac{m_{a}^{2}}{M_{S}^{2}} \right] + 2 \, T_{a} \left(2m_{a}^{2} - 3m_{\mu}^{2} - 2M_{S}^{2} \right) \\ & \mathsf{In} \left[\frac{2m_{a} \, M_{S}}{m_{a}^{2} - m_{\mu}^{2} + M_{S}^{2} - T_{a}} \right] + 2 \, m_{\mu}^{2} \left[\left(-3m_{a}^{4} - 3M_{S}^{4} + 2M_{S}^{2} \left(3m_{a}^{2} + 2m_{\mu}^{2} \right) \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, m_{a}, \, M_{S}, \, m_{a} \right] \\ & + 2 \left(-3m_{a}^{4} + 2m_{a}^{2} \left(3M_{S}^{2} + 2m_{\mu}^{2} \right) - 3M_{S}^{4} \right) C_{0} \left[0, -m_{\mu}^{2}, \, m_{\mu}^{2}; \, M_{S}, \, m_{a}, \, M_{S} \right] \right] \end{split}$$

$$\xrightarrow{M_S \gg m_a} f_{ea}^* f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2} + \mathcal{O}(M_S^{-4})$$

Determine **form factors** with help of Mathematica package *Package*-X (Patel, arXiv:1503.01469):

$$\begin{split} & \mathsf{F}_{2}(-m_{\mu}^{2}) = -G_{2}(-m_{\mu}^{2}) = \\ & = -\frac{1}{128\,\pi^{2}m_{\mu}^{4}}\,\sum_{a=e,\,\,\mu,\,\,\tau}\,f_{ea}^{*}\,f_{a\mu}\,\left[2\,m_{\mu}^{2}\left(-m_{a}^{2}+6m_{\mu}^{2}+M_{S}^{2}\right)+2\,S_{a}\,m_{\mu}^{2}\left(3m_{a}^{2}+m_{\mu}^{2}-3M_{S}^{2}\right)\right] \\ & \ln\left[\frac{2m_{a}^{2}}{2m_{a}^{2}+m_{\mu}^{2}(1+S_{a})}\right]+4\,S_{5}\,m_{\mu}^{2}\left(-3m_{a}^{2}+m_{\mu}^{2}+3M_{S}^{2}\right)\,\ln\left[\frac{2M_{S}^{2}}{2M_{S}^{2}+m_{\mu}^{2}(1+S_{S})}\right] \\ & +\left(m_{a}^{2}\left(-2m_{a}^{2}-7m_{\mu}^{2}+4M_{S}^{2}\right)+m_{\mu}^{4}+5m_{\mu}^{2}\,M_{S}^{2}-2M_{S}^{4}\right)\ln\left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]+2\,T_{a}\left(2m_{a}^{2}-3m_{\mu}^{2}-2M_{S}^{2}\right) \\ & \ln\left[\frac{2m_{a}\,M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right]+2\,m_{\mu}^{2}\left[\left(-3m_{a}^{4}-3M_{S}^{4}+2M_{S}^{2}\left(3m_{a}^{2}+2m_{\mu}^{2}\right)\right)C_{0}\left[0,-m_{\mu}^{2},\,m_{\mu}^{2};\,m_{a},\,M_{S},\,m_{a}\right] \\ & +2\left(-3m_{a}^{4}+2m_{a}^{2}\left(3M_{S}^{2}+2m_{\mu}^{2}\right)-3M_{S}^{4}\right)C_{0}\left[0,-m_{\mu}^{2},\,m_{\mu}^{2};\,M_{S},\,m_{a},\,M_{S}\right]\right]\right] \end{split}$$

$$\xrightarrow{M_{S}\gg m_{a}} f_{ea}^{*} f_{a\mu} \frac{m_{\mu}^{2}}{24\pi^{2}M_{S}^{2}} + \mathcal{O}(M_{S}^{-4})$$

'Average Scenario' Couplings

	red	purple	blue
f _{ee}	10^{-16}	10^{-15}	10^{-1}
$f_{e\mu}$	10^{-2}	10 ⁻³	10^{-4}
$f_{e\tau}$	10^{-19}	10 ⁻²	10 ⁻²
$f_{\mu\mu}$	10^{-4}	10 ⁻³	10^{-3}
$f_{\mu au}$	10^{-5}	10 ⁻⁴	10^{-4}
$f_{ee} f_{e\mu}$	10^{-18}	10^{-18}	10^{-5}
$f_{e\mu} f_{\mu\mu}$	10 ⁻⁶	10^{-6}	10^{-7}
$f_{e\tau} f_{\mu\tau}$	10^{-24}	10 ⁻⁶	10 ⁻⁶

Table: First part: 'average scenario' couplings for the benchmark points as extracted from Tab. 7 in *King, Merle, Panizzi: arXiv:1406.4137*. Second part: combination of couplings that enter the μ -*e* conversion amplitude. The bold values indicate the dominant photonic contribution.

Short-range \leftrightarrow takes place inside the nucleus: **EFT** treatment \Rightarrow **Integrating out** the Z-boson:

\rightarrow four-point vertices

ightarrow consider operators up to **dimension six**

ightarrow for the coherent μ^--e^- conversion, the only vertex realised in this model is described by

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q \sin^2 \theta_W) \cos \theta_W}{g}}_{g_{RV(q)}} A_R(q'^2)}_{g_{RV(q)}} \overline{e_R} \gamma_{\nu} \mu_R \overline{q} \gamma^{\nu} q$$

in terms of the chiral form factor $A_R(q'^2)$

Short-range \leftrightarrow takes place inside the nucleus: **EFT** treatment \Rightarrow **Integrating out** the Z-boson:

- \rightarrow four-point vertices
- \rightarrow consider operators up to dimension six

 \rightarrow for the coherent μ^--e^- conversion, the only vertex realised in this model is described by

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q \sin^2 \theta_W) \cos \theta_W}{g}}_{g_{RV(q)}} A_R(q'^2)}_{g_{RV(q)}} \overline{e_R} \gamma_{\nu} \mu_R \overline{q} \gamma^{\nu} q$$

in terms of the chiral form factor $A_R(q^2)$

We can write the branching ratio as

$$BR(\mu^{-}N \to e^{-}N) = \frac{8\alpha^{5}m_{\mu}Z_{eff}^{4}ZF_{\rho}^{2}}{\Gamma_{capt}} \Xi_{non-photonic}^{2}\left(Z, N, A_{R}(q'^{2})\right)$$

 \rightarrow no perfect factorisation anymore: Ξ modified to be function of nuclear characteristics

 \rightarrow instead of lines we do have bands with finite widths for Ξ

 \Rightarrow determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

 $\Xi_{\text{particle}} \to \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)$

 \rightarrow dependence on nuclear characteristics

We can write the branching ratio as

$$BR(\mu^{-}N \to e^{-}N) = \frac{8\alpha^{5}m_{\mu}Z_{eff}^{4}ZF_{\rho}^{2}}{\Gamma_{capt}} \Xi_{non-photonic}^{2}\left(Z, N, A_{R}(q'^{2})\right)$$

 \rightarrow no perfect factorisation anymore: Ξ modified to be function of nuclear characteristics

- \rightarrow instead of lines we do have bands with finite widths for Ξ
- \Rightarrow determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

 $\Xi_{\text{particle}} \to \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)$

 \rightarrow dependence on nuclear characteristics

We can write the branching ratio as

$$BR(\mu^{-}N \to e^{-}N) = \frac{8\alpha^{5}m_{\mu}Z_{eff}^{4}ZF_{\rho}^{2}}{\Gamma_{capt}} \Xi_{non-photonic}^{2}\left(Z, N, A_{R}(q'^{2})\right)$$

 \rightarrow no perfect factorisation anymore: Ξ modified to be function of nuclear characteristics

- \rightarrow instead of lines we do have bands with finite widths for Ξ
- \Rightarrow determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

$$\Xi_{\text{particle}} \rightarrow \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)$$

 \rightarrow dependence on nuclear characteristics

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_3^{LLz} . But **why**?!

- There are a few earlier references available focussing on µ⁻ e⁺ conversion from Majorana neutrinos but no uniform formalism is used:
 - J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
 - A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
 - C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
 - J. D. Vergados, Phys. Rev. C24 (1981) 640
 - P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
 - ightarrow has the nuclear matrix elements (for ${
 m ^{48}Ti}$) that we use: ϵ_3^{LLz}
 - ightarrow explicit computation focussing on the nuclear physics
 - \Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

 \rightarrow guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_3^{LLz} . But **why**?!

- There are a few earlier references available focussing on μ⁻- e⁺ conversion from Majorana neutrinos but no uniform formalism is used:
 - J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
 - A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
 - C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
 - J. D. Vergados, Phys. Rev. C24 (1981) 640
 - P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
 - ightarrow has the nuclear matrix elements (for ${
 m ^{48}Ti}$) that we use: ϵ_3^{LLz}
 - ightarrow explicit computation focussing on the nuclear physics
 - \Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

 \rightarrow guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_3^{LLz} . But **why**?!

- There are a few earlier references available focussing on μ⁻- e⁺ conversion from Majorana neutrinos but no uniform formalism is used:
 - J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
 - A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
 - C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
 - J. D. Vergados, Phys. Rev. C24 (1981) 640
 - P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
 - ightarrow has the nuclear matrix elements (for $^{48}{
 m Ti}$) that we use: ϵ_3^{LLz}
 - \rightarrow explicit computation focussing on the nuclear physics
 - \Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

→ guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_3^{LLz} . But **why**?!

- There are a few earlier references available focussing on μ⁻- e⁺ conversion from Majorana neutrinos but no uniform formalism is used:
 - J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
 - A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
 - C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
 - J. D. Vergados, Phys. Rev. C24 (1981) 640
 - P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
 - ightarrow has the nuclear matrix elements (for $^{48}{
 m Ti}$) that we use: ϵ_3^{LLz}
 - \rightarrow explicit computation focussing on the nuclear physics
 - \Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

 \rightarrow guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

From amplitude to decay rate using Fermi's Golden rule:

$$\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int \mathrm{d}^3 k_e \left| \mathcal{M} \right|^2$$

So, we need to

• spin sum/average $\rightarrow 1/4$

• rewrite *nuclear matrix element* using that the muon wave function varies only slowly within nucleus: $\left|\mathcal{M}^{(\mu^-,e^+)\phi}\right|^2 = \langle \phi_{\mu} \rangle^2 \left|\mathcal{M}^{(\mu^-,e^+)}\right|^2$

• square delta-function: " $\delta(E_f - E_i + E_e - E_\mu)^2$ " = $\frac{T}{2\pi} \delta(E_f - E_i + E_e - E_\mu)$

and obtain the decay rate:

$$\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow can be generalised to ϵ_3^{xyz} for x=y \rightarrow for $x\neq y$ there is a relative sign switched in the nuclear matrix element

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

From amplitude to decay rate using Fermi's Golden rule:

$$\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int \mathrm{d}^3 k_e \left| \mathcal{M} \right|^2$$

So, we need to

- spin sum/average ightarrow 1/4
- rewrite *nuclear matrix element* using that the muon wave function varies only slowly within nucleus: $\left|\mathcal{M}^{(\mu^-,e^+)\phi}\right|^2 = \langle \phi_{\mu} \rangle^2 \left|\mathcal{M}^{(\mu^-,e^+)}\right|^2$
- square delta-function: " $\delta(E_f E_i + E_e E_\mu)^2$ " = $\frac{T}{2\pi} \delta(E_f E_i + E_e E_\mu)$

and obtain the decay rate:

$$\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow can be generalised to ϵ_3^{xyz} for x = y \rightarrow for $x \neq y$ there is a relative sign switched in the nuclear matrix element

Deriving the Decay Rate for ϵ_3 based on TG, Merle Phys. Rev. D95 (2017) 055009

From amplitude to decay rate using Fermi's Golden rule:

$$\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int \mathrm{d}^3 k_e \left| \mathcal{M} \right|^2$$

So, we need to

- spin sum/average ightarrow 1/4
- rewrite *nuclear matrix element* using that the muon wave function varies only slowly within nucleus: $\left|\mathcal{M}^{(\mu^-,e^+)\phi}\right|^2 = \langle \phi_{\mu} \rangle^2 \left|\mathcal{M}^{(\mu^-,e^+)}\right|^2$
- square delta-function: " $\delta(E_f E_i + E_e E_\mu)^2$ " = $\frac{T}{2\pi} \delta(E_f E_i + E_e E_\mu)$

and obtain the decay rate:

$$\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} \left| F(Z-2, E_e) \right| \langle \phi_\mu \rangle^2 \left| \mathcal{M}^{(\mu^-, e^+)} \right|^2$$

 \rightarrow can be generalised to ϵ_3^{xyz} for x = y

 \rightarrow for $x\neq y$ there is a relative sign switched in the nuclear matrix element

Combining the Contributions: Results

see TG, Merle Phys.Rev. D93 (2016) 055039

→ widths of the bands so small that appear as lines → non-photonic (DASHED) contributions **negligibly small** \downarrow → approximate process by its purely photonic (SOLID) contribution → **factorisation**: dependence on isotope only in width of limit

Non-Photonic Bands

• The amplitude that enters the non-photonic Ξ takes the form

 $\mathcal{A} \propto \left| f_{ee}^* f_{e\mu} D(m_e) + f_{e\mu}^* f_{\mu\mu} D(m_\mu) + f_{e\tau}^* f_{\tau\mu} D(m_{\tau}) \right|.$

- The function $D(m_a)$ strongly varies with m_a .
 - ightarrow dominant term stems from the tau propagating within the loop, i.e. $D(m_{ au})$

 \rightarrow exeeds the muon and electron contribution by three to four orders of magnitude

- blue/purple scenario: neither $f_{ee}^* f_{e\mu}$ nor $f_{e\mu}^* f_{\mu\mu}$ bypasses this difference + identic $f_{e\tau}^* f_{\tau\mu}$ in both scenarios
 - \rightarrow indistinguishable curves
- red/grey scenario:

dominant contributions: $f_{e\mu}^* f_{\mu\mu} D(m_{\mu}) \sim f_{e\tau}^* f_{\tau\mu} D(m_{\tau})$

 \rightarrow same order of magnitude, i.e. comparable values of non-photonic contribution

General Formalism for μ^- - e^+ Conversion from Short-Range Operators based on Päs *et al.* Phys.Lett. B498 (2001) 35, and TG, Merle, Zuber Phys.Lett. B764 (2017) 157

Employ **EFT formalism** to generally describe $\mu^- - e^+$ conversion \Rightarrow dim-9 **short-range operators**:

$$\begin{split} \mathcal{L}_{\text{short-range}}^{\mu e} &= \frac{G_F^2}{2m_\rho} \sum_{x,y,z=L,R} \left[\epsilon_1^{xyz} J_x J_y j_z + \epsilon_2^{xyz} J_x^{\nu \rho} J_{y,\nu \rho} j_z + \epsilon_3^{xyz} J_x^{\nu} J_{y,\nu} j_z + \epsilon_4^{xyz} J_x^{\nu} J_{y,\nu \rho} j_z^{\rho} \right] \\ &+ \epsilon_5^{xyz} J_x^{\nu} J_y j_{z,\nu} + \epsilon_6^{xyz} J_x^{\nu} J_y^{\rho} j_{z,\nu \rho} + \epsilon_7^{xyz} J_x J_y^{\nu \rho} j_{z,\nu \rho} + \epsilon_8^{xyz} J_{x,\nu \alpha} J_y^{\rho \alpha} j_{z,\rho}^{\nu} \right] \end{split}$$

using the hadronic currents:

$$J_{R,L} = \overline{d}(1 \pm \gamma_5)u, \quad J_{R,L}^{\nu} = \overline{d} \gamma^{\nu}(1 \pm \gamma_5)u, \quad J_{R,L}^{\nu\rho} = \overline{d} \sigma^{\nu\rho}(1 \pm \gamma_5)u,$$

and the leptonic currents:

$$\begin{split} j_{R,L} &= \overline{e^c} (1 \pm \gamma_5) \mu = 2 \overline{(e_{R,L})^c} \, \mu_{R,L}, \quad j_{R,L}^{\nu} = \overline{e^c} \, \gamma^{\nu} (1 \pm \gamma_5) \mu = 2 \overline{(e_{L,R})^c} \, \gamma^{\nu} \mu_{R,L} \,, \\ \text{and} \quad j_{R,L}^{\nu\rho} &= \overline{e^c} \, \sigma^{\nu\rho} (1 \pm \gamma_5) \mu = 2 \overline{(e_{R,L})^c} \, \sigma^{\nu\rho} \mu_{R,L} \,. \end{split}$$

> derive the **decay rate** using the example of doubly charged scalars

General Formalism for $\mu^- - e^+$ Conversion from Short-Range Operators based on Päs *et al.* Phys.Lett. B498 (2001) 35, and TG, Merle, Zuber Phys.Lett. B764 (2017) 157

Employ **EFT formalism** to generally describe $\mu^- - e^+$ conversion \Rightarrow dim-9 **short-range operators**:

$$\begin{split} \mathcal{L}_{\text{short-range}}^{\mu e} &= \frac{G_F^2}{2m_\rho} \sum_{x,y,z=L,R} \left[\epsilon_1^{xyz} J_x J_y j_z + \epsilon_2^{xyz} J_x^{\nu \rho} J_{y,\nu \rho} j_z + \epsilon_3^{xyz} J_x^{\nu} J_{y,\nu} j_z + \epsilon_4^{xyz} J_x^{\nu} J_{y,\nu \rho} j_z^{\rho} \right] \\ &+ \epsilon_5^{xyz} J_x^{\nu} J_y j_{z,\nu} + \epsilon_6^{xyz} J_x^{\nu} J_y^{\rho} j_{z,\nu \rho} + \epsilon_7^{xyz} J_x J_y^{\nu \rho} j_{z,\nu \rho} + \epsilon_8^{xyz} J_{x,\nu \alpha} J_y^{\rho \alpha} j_{z,\rho}^{\nu} \right] \end{split}$$

using the hadronic currents:

$$J_{R,L} = \overline{d}(1 \pm \gamma_5)u, \quad J_{R,L}^{\nu} = \overline{d} \gamma^{\nu}(1 \pm \gamma_5)u, \quad J_{R,L}^{\nu\rho} = \overline{d} \sigma^{\nu\rho}(1 \pm \gamma_5)u,$$

and the leptonic currents:

$$\begin{split} j_{R,L} &= \overline{e^c} (1 \pm \gamma_5) \mu = 2 \overline{(e_{R,L})^c} \, \mu_{R,L}, \quad j_{R,L}^{\nu} = \overline{e^c} \, \gamma^{\nu} (1 \pm \gamma_5) \mu = 2 \overline{(e_{L,R})^c} \, \gamma^{\nu} \mu_{R,L} \,, \\ \text{and} \quad j_{R,L}^{\nu\rho} &= \overline{e^c} \, \sigma^{\nu\rho} (1 \pm \gamma_5) \mu = 2 \overline{(e_{R,L})^c} \, \sigma^{\nu\rho} \mu_{R,L} \,. \end{split}$$

 \Rightarrow derive the **decay rate** using the example of doubly charged scalars
Start with the amplitude obtained from EFT diagram

which is

$$\begin{split} \langle N', f \left| S_{\text{eff}}^{(1)} \right| N, i \rangle &= -i \langle N', f \left| \int d^4 x \, \widehat{T} \left\{ \mathcal{L}_{\text{eff}} (x) \right\} \left| N, i \right\rangle \\ &= -i \frac{G_F^2}{2m_\rho} \, \epsilon_3^{LLR} \int d^4 x \, \langle N', f \left| \right. \widehat{T} \left\{ J_{L,\nu}(x) J_L^{\nu}(x) j_R(x) \right\} \left| N, i \right\rangle \end{split}$$

Start with the amplitude obtained from EFT diagram

which is

$$\begin{split} \langle N', f \left| S_{\text{eff}}^{(1)} \right| N, i \rangle &= -i \langle N', f \left| \int d^4 x \, \widehat{T} \left\{ \mathcal{L}_{\text{eff}}(x) \right\} \right| N, i \rangle \\ &= -i \, \frac{G_F^2}{2m_p} \, \epsilon_3^{LLR} \int d^4 x \, \langle N', f \left| \right. \, \widehat{T} \left\{ J_{L,\nu}(x) J_L^{\nu}(x) j_R(x) \right\} \left| N, i \rangle \end{split}$$

Structure can be split into hadronic and leptonic parts:

 $\langle N', f | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) j_R(x) \} | N, i \rangle = \langle N' | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) \} | N \rangle \langle f | j_R(x) | i \rangle$

Leptonic part:

- muon is bound in 1s state
- positron propagates freely under the influence of the nucleus' Coulomb potential

 \Rightarrow need to modify the free spinors *u* and *v* respectively

$$\langle f|j_{R}(x)|i\rangle = 2 e^{ik_{e} \cdot x} e^{-iE_{\mu} \cdot x^{0}} \sqrt{F(Z-2,E_{e})} \phi_{\mu}(\vec{x}) \overline{v_{e}}(k_{e}) P_{R} u_{\mu}(k_{\mu})$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function F(Z, E)

Structure can be split into hadronic and leptonic parts:

$$\langle N', f | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) j_R(x) \} | N, i \rangle = \langle N' | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) \} | N \rangle \langle f | j_R(x) | i \rangle$$

Leptonic part:

- muon is bound in 1s state
- positron propagates freely under the influence of the nucleus' Coulomb potential

 \Rightarrow need to modify the free spinors *u* and *v* respectively

$$\langle f|j_{R}(x)|i\rangle = 2 e^{ik_{e} \cdot x} e^{-iE_{\mu} \cdot x^{0}} \sqrt{F(Z-2,E_{e})} \phi_{\mu}(\vec{x}) \overline{v_{e}}(k_{e}) P_{R} u_{\mu}(k_{\mu})$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function F(Z, E)

Structure can be split into hadronic and leptonic parts:

$$\langle N', f | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) j_R(x) \} | N, i \rangle = \langle N' | \widehat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) \} | N \rangle \langle f | j_R(x) | i \rangle$$

Leptonic part:

- muon is bound in 1s state
- positron propagates freely under the influence of the nucleus' Coulomb potential
- \Rightarrow need to modify the free spinors *u* and *v* respectively

$$\langle f|j_{R}(x)|i\rangle = 2 e^{ik_{e} \cdot x} e^{-iE_{\mu} \cdot x^{0}} \sqrt{F(Z-2,E_{e})} \phi_{\mu}(\vec{x}) \overline{v_{e}}(k_{e}) P_{R} u_{\mu}(k_{\mu})$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function F(Z, E)

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions J_ν(x
- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}(\vec{k}^2, \Lambda_i)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce *second location* \tilde{x} over which we also "sum" $\int d^3\tilde{x}$

 \Rightarrow need to modify hadronic currents $J_{
u}$ respectively

 $\langle N' \big| \widehat{T} \big\{ J_{L,\nu}(x) J_L^{\nu}(x) \big\} \big| N \rangle \to \int \mathrm{d}^3 \tilde{x} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \langle N' \big| \mathrm{e}^{i \vec{k} \cdot (\vec{x} - \vec{x})} \widetilde{F}^2(\vec{k}^2, \Lambda_i) J_{L,\nu}(\vec{x}) J_L^{\nu}(\vec{x}) \big| N \rangle$

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions J_ν(x)
- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}(\vec{k}^2, \Lambda_i)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce *second location* \tilde{x} over which we also "sum" $\int d^3\tilde{x}$

 \Rightarrow need to modify hadronic currents $J_{
u}$ respectively

 $\langle N' \big| \widehat{T} \big\{ J_{L,\nu}(x) J_L^{\nu}(x) \big\} \big| N \rangle \to \int \mathrm{d}^3 \tilde{x} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \langle N' \big| \mathrm{e}^{i \vec{k} \cdot (\vec{x} - \vec{x})} \tilde{F}^2(\vec{k}^2, \Lambda_i) J_{L,\nu}(\vec{x}) J_L^{\nu}(\vec{x}) \big| N \rangle$

Hadronic part:

 hadronic currents can be approximated by their non-relativistic versions J_ν(x

- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}(\vec{k}^2, \Lambda_i)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce second location \tilde{x} over which we also "sum" $\int d^3\tilde{x}$

 \Rightarrow need to modify hadronic currents J_{ν} respectively

 $\langle N' \big| \widehat{T} \big\{ J_{L,\nu}(x) J_L^{\nu}(x) \big\} \big| N \rangle \to \int \mathrm{d}^3 \tilde{x} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \langle N' \big| \mathrm{e}^{i \vec{k} \cdot (\vec{x} - \vec{x})} \widetilde{F}^2(\vec{k}^2, \Lambda_i) J_{L,\nu}(\vec{x}) J_L^{\nu}(\vec{x}) \big| N \rangle$

Hadronic part:

 hadronic currents can be approximated by their non-relativistic versions J_ν(x

- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}(\vec{k}^2, \Lambda_i)$
- two nucleon interactions → take place with finite distance
 → introduce second location x̃ over which we also "sum" ∫ d³x̃
- \Rightarrow need to modify hadronic currents J_{ν} respectively

 $\langle N' \big| \widehat{T} \big\{ J_{L,\nu}(x) J_L^{\nu}(x) \big\} \big| N \rangle \to \int \mathrm{d}^3 \tilde{x} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \langle N' \big| \mathrm{e}^{i \vec{k} \cdot (\vec{x} - \vec{x})} \widetilde{F}^2(\vec{k}^2, \Lambda_i) J_{L,\nu}(\vec{x}) J_L^{\nu}(\vec{x}) \big| N \rangle$

Next:

• perform x^0 integration

 \rightarrow conservation of external energies $2\pi\delta(E_i + E_\mu - E_f - E_e)$

• write non-relativistic currents in term of effective transition operators:

 $\tilde{F}(\vec{k}^{2},\Lambda_{i})J_{L\nu}(\vec{x}) = \sum_{m} \tau_{m}^{-} \left(g_{V}\,\tilde{F}(\vec{k}^{2},\Lambda_{V})g_{\nu0} + g_{A}\,\tilde{F}(\vec{k}^{2},\Lambda_{A})g_{\nu j}\,\sigma_{m}^{j}\right)\delta^{(3)}(\vec{x}-\vec{r}_{m})$

with nuclear isospin raising operator τ_m^- and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator

 \Rightarrow allows for **factorisation** of nuclear physics from respective particle physics model:

$$\mathcal{M} = \frac{G_F^2 \epsilon_3^{\text{LLR}} g_A^2 m_e}{2R} \sqrt{F(Z-2, E_e)} \, \delta(E_f - E_i + E_e - E_\mu) \, \overline{v_e}(k_e) \, \mathrm{P_R} \, u_\mu(k_\mu) \, \mathcal{M}^{(\mu^-, e^+) \, \phi}$$

with $\mathcal{M}^{(\mu^-,e^+)\,\phi}$ being the *nuclear matrix element*.

Next:

• perform x^0 integration

 \rightarrow conservation of external energies $2\pi\delta(E_i + E_\mu - E_f - E_e)$

• write non-relativistic currents in term of **effective transition operators**:

$$\tilde{F}(\vec{k}^{2},\Lambda_{i}) J_{L\nu}(\vec{x}) = \sum_{m} \tau_{m}^{-} \left(g_{V} \tilde{F}(\vec{k}^{2},\Lambda_{V}) g_{\nu 0} + g_{A} \tilde{F}(\vec{k}^{2},\Lambda_{A}) g_{\nu j} \sigma_{m}^{j} \right) \delta^{(3)}(\vec{x}-\vec{r}_{m})$$

with nuclear isospin raising operator τ_m^- and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator

 \Rightarrow allows for **factorisation** of nuclear physics from respective particle physics model:

$$\mathcal{M} = \frac{G_F^2 \epsilon_3^{LLR} g_A^2 m_e}{2R} \sqrt{F(Z-2, E_e)} \,\delta(E_f - E_i + E_e - E_\mu) \,\overline{v_e}(k_e) \, \mathrm{P_R} \, u_\mu(k_\mu) \, \mathcal{M}^{(\mu^-, e^+) \, \phi}$$

with $\mathcal{M}^{(\mu^-,e^+)\phi}$ being the *nuclear matrix element*.

Next:

• perform x^0 integration

 \rightarrow conservation of external energies $2\pi\delta(E_i + E_\mu - E_f - E_e)$

• write non-relativistic currents in term of **effective transition operators**:

$$\tilde{F}(\vec{k}^{2},\Lambda_{i})J_{L\nu}(\vec{x}) = \sum_{m} \tau_{m}^{-} \left(g_{V}\tilde{F}(\vec{k}^{2},\Lambda_{V})g_{\nu0} + g_{A}\tilde{F}(\vec{k}^{2},\Lambda_{A})g_{\nu j}\sigma_{m}^{j}\right)\delta^{(3)}(\vec{x}-\vec{r}_{m})$$

with nuclear isospin raising operator τ_m^- and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator

 \Rightarrow allows for factorisation of nuclear physics from respective particle physics model:

$$\mathcal{M} = \frac{G_F^2 \epsilon_3^{LLR} g_A^2 m_e}{2R} \sqrt{F(Z-2, E_e)} \,\delta(E_f - E_i + E_e - E_\mu) \,\overline{v_e}(k_e) \, \mathrm{P_R} \, u_\mu(k_\mu) \, \mathcal{M}^{(\mu^-, e^+) \, \phi}$$

with $\mathcal{M}^{(\mu^-, e^+)\phi}$ being the *nuclear matrix element*.