Neutrino-Nucleus Interactions and Oscillations

Ulrich Mosel

Institut für Theoretische Physik

Long-Baseline Experiment: T2K and NOvA

Future (2027): DUNE

 $\Delta m^2 L$ $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} \theta$ $4E_{\nu}$ a b 0.15 0.15 v_{μ} flux (AU) v_{μ} flux (AU) $\delta_{CP} = 0^{\circ}, \text{NH}$ $\delta_{CP} = 0^{\circ}$, NH $\delta_{CP} = 0^{\circ}$, IH $\delta_{CP} = 0^{\circ}, IH$ $P(v_{\mu} \downarrow v_{e})$ $\delta_{CP} = 90^{\circ}, \text{ NH}$ $\delta_{CP} = 90^\circ, \text{NH}$ Ve) 0.10 $\delta_{CP} = 270^\circ$, NH $\delta_{CP} = 270^\circ$, NH $\mathsf{P}(v_{\mu})$ 0.05 0.05 0.00 0.00 10 0.0 0.5 1.0 1.5 2.0 2.5 2 3.0 Δ 6 8 E_v (GeV) E_v (GeV)

From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016)

DUNE, 1300 km

HyperK (T2K) 295 km

Energies have to be known within 100 MeV (DUNE) or 50 MeV (T2K) Ratios of event rates to about 10%

Neutrinos on Nuclei

ArgoNeut Experiment

What is the ingoing state? Composition? Energy?

Oscillations and Neutrino Energy

PROBLEM:

Neutrinos are produced as secondary decay products of highenergy pA collisions

→ They have broad energy distributions Difference to any other high-energy and nuclear physics experiment! LHC: $\Delta E / E \sim 0.1 \%$

Neutrino-Oscillations

Simplified: 2 Flavors only

$$P(
u_{\mu}
ightarrow
u_{e}) = \sin^{2} 2\theta \sin^{2} \left(rac{\Delta m^{2} L}{4E_{
u}}
ight)$$

 Energy must be reconstructed from hadronic final state, observed in less-than-perfect detectors
 Compute backwards from final state to incoming neutrino

Reaction mechanism must be known for reconstruction: Nuclear Physics is essential, because targets are nuclei

vA Reaction

General structure: approximately factorizes

full event (four-vectors of all particles in final state) \cong initial interaction x final state interaction

Determines inclusive X-section

Determines the final state particles

Neutrino-Nucleon Cross Sections

Experimental error-bars directly enter into nuclear cross sections and limit accuracy of energy reconstruction

BUT: this is only part of the problem, The other part is FSI, since experiments use nuclear targets: H2O (T2K), CH (NovA), Ar40 (DUNE)

Neutrino Cross Sections: Nucleus

- All targets in long-baseline experiments are nuclei: C, O, Ar, Fe
- Cross sections on the nucleus:
 - QE + final state interactions (fsi)
 - Resonance-Pion Production + fsi
 - Deep Inelastic Scattering \rightarrow Pions + fsi
- Additional cross section on the nucleus:
 - Many-body effects, e.g., 2p-2h excitations
 - Coherent neutrino scattering and coh. pion production

Need for a Generator

- Need the full event for energy reconstruction
- Need to ,compute backwards' from final state to initial incoming neutrino energy
- Need initial neutrino-nucleon interactions and hadron-hadron final state interactions
- Need to do this in the energy range 0 30 GeV
- All generators presently used (GENIE, NEUT) contain outdated nuclear physics (Fermi-Gas, no nuclear binding, Rein-Segal for resonances, crude fsi)

Institut für Theoretische Physik, JLU Giessen

The Giessen Boltzmann-Uehling-Uhlenbeck Project

GiBUU was constructed with the aim to encode the "best possible" theory: gibuu.hepforge.org
 "BEST POSSIBLE" requires
 All neutrino energies, -> relativistic from outset, includes

resonances and DIS

All targets

Not just inclusive X-sections, but full events

Reasonable bound nuclear ground states

Erice 09/2017

Institut für Theoretische Physik

Institut für Theoretische Physik, JLU Giessen

Gibuu

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Initial interactions:

- Mean field potential with local Fermigas momentum distribution, nucleons are bound (not so in generators!)
- Initial interactions calculated by summing over interactions with all bound, Fermi-moving nucleons
- 2p2h from electron phenomenology

Final state interaction:

- propagates outgoing particles through the nucleus using quantum-kinetic transport theory, fully relativistic (off-shell transport possible).
 Initial and final interactions come from the same Hamiltonian.
 CONSISTENCY of inclusive and semi-inclusive X-sections
- Calculations give final state phase space distribution of all particles, four-vectors of all particles
 → generator

Pions

Pion production amplitude = resonance contrib + background (Born-terms) Resonance contrib V determined from e-scattering (MAID) A from PCAC ansatz Background: • Up to about Δ obtained from effective field theory • Beyond Δ unknown 2 pi BG totally unknown

Quantum-kinetic Transport Theory for FSI Collision term On-shell drift term $\mathcal{D}F(x,p) - \operatorname{tr}\left\{\Gamma f, \operatorname{Re}S^{\operatorname{ret}}(x,p)\right\}_{\operatorname{PB}} = C(x,p) \ .$ $\mathcal{D}F(x,p) = \{p_0 - H, F\}_{\rm PB} = \frac{\partial(p_0 - H)}{\partial x} \frac{\partial F}{\partial p} - \frac{\partial(p_0 - H)}{\partial p} \frac{\partial F}{\partial x}$ *H* contains mean-field potentials Describes time-evolution of F(x,p)Spectral function $F(x,p) = 2\pi g f(x,p) \mathcal{P}(x,p)$

Phase space distribution

Kadanoff-Baym equations with BM offshell term

Test with Electron Data: QE + Res

a necessary check for any generator development

0.24 GeV, 36 deg, $Q^2 = 0.02 \text{ GeV}^2$

 $0.56 \text{ GeV}, 60 \text{ deg}, Q^2 = 0.24 \text{ GeV}^2$

MiniBooNE

anti v

-0.65

-0.75

-0.85

-0.95

0.5

QE

2p2h

tot —

 T_{μ}

-0.25-

-0.35

-0.45

-0.55

ν

GiBUU 2016: no data adjustment

Erice 09/2017

0.50

Comparison with T2K incl. Data

Agreement for different neutrino flavors

T2K ND280 Pions on Water

Data: T2K ND Phys.Rev. D95 (2017) no.1, 012010

MINERvA Pions

CC charged pions

 $W < 1.4 \, GeV$

W < 1.8 GeV, multiple pions

Sensitivity of T2K to Energy Reconstruction

Erice 09/2017

Fig. 2. $\mathcal{P}_{\mu e}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

D.J. Ernst et al., arXiv:1303.4790 [nucl-th]

Reconstruction in T2K

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence

Erice 09/2017

Institut für Theoretische Physik

Generator Dependence of Oscillation Parameters

USTUS-LIEBIC

UNIVERSITÄ

Energy Reconstruction

Erice 09/2017

Theoretische Physik

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Summary

- Extraction of neutrino properties requires knowledge of neutrino energy to about 5% accuracy.
- In long-baseline experiments the incoming neutrino energy must be reconstructed from final state. Final state is only partially known because detectors are less-thanperfect.
- Backwards calculation from this partially known final state requires command both of hadronic final state interactions and of initial neutrino-nucleus reactions
- Present models can do this to about $10\% \rightarrow$ not good enough
- Precision neutrino long-baseline physics requires better state-of-the-art generators
- GiBUU is one such attempt

GiBUU: References

Essential References:

- I. Buss et al, Phys. Rept. 512 (2012) I contains both the theory and the practical implementation of transport theory
- 2. Gallmeister et al., Phys.Rev. C94 (2016), 035502 contains the latest changes in GiBUU2016
- 3. Mosel, Ann. Rev. Nucl. Part. Sci. 66 (2016) 171 short review, contains some discussion of generators
- 4. Mosel et al, Phys.Rev. C96 (2017) no.1, 015503 pion production comparison of MiniBooNE, T2K and MINERvA

