

«ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE TO PAY A PERMANENT TRIBUTE TO GALILEO GALILEI, FOUNDER OF MODERN SCIENCE AND TO ENRICO FERMI, THE "ITALIAN NAVIGATOR", FATHER OF THE WEAK FORCES

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS

39th Course: NEUTRINOS IN COSMOLOGY, IN ASTRO-, PARTICLE- AND NUCLEAR PHYSICS

ERICE-SICILY: 16 – 24 SEPTEMBER 2017

FIRST RESULTS FROM THE CUORE EXPERIMENT

CUORE

Monica Sisti Università and INFN – Milano Bicocca on behalf of the CUORE collaboration

Cryogenic **U**nderground **O**bservatory for **R**are **E**vents

Primary goal: search for neutrinoless double beta decay (0νββ) of ¹³⁰Te

The CUORE detectors: TeO₂ thermal detectors Properties of thermal detectors TeO₂ Absorbers

- excellent energy resolution: (k_BCT²)^{1/2}
- large choice of absorber materials
- true calorimeters

- low specific heat
- large crystals available
- radiopure

CUORE is the latest evolution of a long series of TeO₂ detector arrays

CUORE-0: first step towards CUORE

Background reduction with respect to Cuoricino:

- factor 6 for surface contaminations
- factor of ~2.5 in the ROI

Not only a proof of concept of the CUORE detector but a small scale experiment

Massachusetts

Technology

Lawrence Livermore National Laboratory

VirginiaTech

Sapienza

Università di Roma

7

Monica Sisti – Erice, September 18, 2017

A DEGLI STUDI DI MILA

INFN LABORATORI NAZIONALI DEL GRAN SASSO

Average depth ~ 3600 m.w.e.

 μ flux: ~ 3 · 10⁻⁸ μ /s/cm²

n flux <10 MeV: 4·10⁻⁶ n/s/cm²

 γ flux < 3 MeV: 0.73 γ /s/cm²

CUORE cryogenic system

- Designed to cool down ~ 1 ton detector to ~10 mK
- Detector mechanically decoupled for extremely low vibrations
- Careful selection of materials for low background

- Cryogen free cryostat
- Fast cooling system(4He gas) down to ~50 K
- 5 pulse tube cryocooler down to ~4 K
- Dilution refrigerator down to ~10 mK
- Nominal cooling power: 3 μW @ 10 mK
- Cryostat total mass ~30 ton
- Mass to be cooled below 4 K: ~ 15 ton
- Mass to be cooled below 50 mK: ~ 3 ton (Pb, Cu and TeO₂)

CUORE CRYOGENIC SYSTEM COMMISSIONING

February 2016 everything installed but the CUORE towers:

- base T < 7 mK
- stable operation

Roman lead lateral shield

- Installation of the 19 CUORE towers:
- Performed in a radon-free environment
- Completed on August 26, 2016

September-November 2016:

- Installation of the cryostat interfaces and radiation shields
- Cryostat closure

CUORE cryostat cooldown

- Detector cooldown started on December 5, 2016
- Stable base temperature of ~7 mK reached on January 27, 2017
- Observed first detector pulses right
 after cooldown

After the successful cooldown, we faced the challenge to operate ~1000 thermal detectors in a completely new system

Pre-operations:

- DAQ and front-end electronics optimization
- Working points optimization
- Impressive results both in terms of temperature stabilization and noise abatement
- Commissioning phase completed in April 2017

Official CUORE data release

- 3 weeks of physics data preceded and succeeded by several days dedicated to calibration data
- Selected working temperature: 15 mK (stable within ~0.25 mK)
- Excellent data taking efficiency
- Much improved detector stability compared to Cuoricino/CUORE-0
- Calibration/physics ratio still to be optimized to maximize 0vββ efficiency

Operational performance:

- 984/988 active detectors (99.6%)
- for the first analysis: selected 889 best performing detectors (90% of the total)

Acquired statistics for $0\nu\beta\beta$ decay search:

- ^{nat}TeO₂ exposure: 38.1 kg·y
- ¹³⁰Te exposure: 10.6 kg·y

Data taking is going on: more to come!

²³²Th sources (strings) are deployed through the cryostat from room temperature into the detector core, providing a uniform calibration of all detectors

CALIBRATION RUNS

Average ("harmonic mean") energy resolution: 10.6 keV FWHM @ 2615 keV

Fit of the 2615 keV line in calibration spectrum

CALIBRATION RUNS

Average ("harmonic mean") energy resolution: 10.6 keV FWHM @ 2615 keV

Fit of the 2615 keV line in calibration spectrum

PHYSICS RUNS

Significantly better performance in physics data: (7.9 ± 0.6) keV FWHM @ 2615 keV

BASE CUTS:

remove period of low quality data (1% of the total live time)

PULSE SHAPE ANALYSIS (PSA) CUTS:

use 6 pulse shape parameters to identify real particle events

ANTI-COINCIDENCE CUTS:

exclude events that trigger more than one channel simultaneously

SIGNAL EFFICIENCY

			_
	Trigger and energy reconstruction	(98.469 ± 0.009)%	Same procedure developed for CUORE-0: Phys. Rev. C 93 (2016) 045503
	Anti-coincidence	(99.3 ± 0.3)%	
	PSA	(64 ± 3)%	
	All cuts except containment	(62.6 ± 3.4)%	
	0vββ containment	(88.345 ± 0.085)%	
	Overall signal efficiency	(55.3 ± 3)%	

Refining the data analysis to improve that!

CUORE measured background spectrum

Significant reduction of the background rate in the gamma region (as expected)

Background sources:

- Long lived natural radionuclides (⁴⁰K) and decay chains (²³²Th, ²³⁸U)
- Cosmogenically activated nuclides (60Co, 125Sb, ...)
- Environmental μ , γ and neutrons

CUORE expected background

CUORE expected counting rates and background spectra in the Region Of Interest (ROI) as obtained by a detailed (Geant4) Monte Carlo simulation of the complete CUORE setup with input information based on:

- radio-assays of the CUORE construction materials
- CUORE-0 background model [Eur. Phys. J. C 77 (2017) 13]

CUORE spectrum in the ROI region

Our blinding procedure produces an artificial peak in the ROI: a small blinded fraction of the events within ± 20 keV of the ²⁰⁸Tl 2615 keV peak is exchanged with the events within ± 20 keV of the ¹³⁰Te Q-value.

CUORE physics spectrum (blinded)

This method of blinding the data preserves the integrity of the possible $0\nu\beta\beta$ events while maintaining the spectral characteristics with measured energy resolution and introducing no discontinuity in the spectrum.

CUORE spectrum in the ROI region

Our blinding procedure produces an artificial peak in the ROI: a small blinded fraction of the events within ± 20 keV of the ²⁰⁸Tl 2615 keV peak is exchanged with the events within ± 20 keV of the ¹³⁰Te Q-value.

When all data analysis procedures are fixed the data are eventually unblinded.

CUORE spectrum in the ROI region

Our blinding procedure produces an artificial peak in the ROI: a small blinded fraction of the events within ± 20 keV of the ²⁰⁸TI 2615 keV peak is exchanged with the events within ± 20 keV of the ¹³⁰Te Q-value.

CUORE physics spectrum (unblinded)

When all data analysis procedures are fixed the data are eventually unblinded.

CUORE spectrum in the ROI region: fit

To determine the yield of 0vßß events we perform a simultaneous Unbinned Extended Maximum Likelihood fit in the ROI (2465 keV - 2575 keV) using a procedure similar to that of CUORE-0 [Phys. Rev. C 93 (2016) 045503].

The fit ha 3 components:

- a posited peak at the ¹³⁰Te Q-value
- a floating peak to account for the ⁶⁰Co sum gamma peak (2505 keV)
- a constant continuum background, attributed to multi-scatter Compton events from ²⁰⁸TI and to degraded alpha events (from surface contaminations)

FIT RESULTS

 \succ Events in the ROI: 50

 \geq ROI background index:

$$9.8^{+1.7}_{-1.5} \times 10^{-3}$$
 counts/keV/kg/y

$$(-0.03^{+0.07}_{-0.04}(stat)\pm 0.01(syst))\times 10^{-24} \text{ y}^{-1}$$

Combination with previous results

We combined the CUORE result with the previous ones from Cuoricino and CUORE-0, obtaining the best lower limit to date on ¹³⁰Te $0\nu\beta\beta$ half life:

 $\tau_{1/2}^{0\nu} > 6.6 \times 10^{24} \text{ y} (90\% \text{C.L.})$

Combination with previous results

Depending on the Nuclear Matrix Element (NME) calculations, this translates in the following upper limit range for the effective Majorana mass:

 $m_{_{\beta\beta}} < 210 - 590 \text{ meV}$

- CUORE is the first ton scale 0vββ experiment with thermal detectors
- The cryostat is working spectacularly well
- With 3 weeks of physics data we have surpassed the CUORE-0&Cuoricino limit
- Background rates are consistent with the background model and our predicted sensitivity remains unchanged

Thanks!

CUORE official inauguration: October 23, 2017 @ LNGS

Visit our web page:

https://cuore.lngs.infn.it