Multi-Messenger Astronomy

Anna Franckowiak DESY, Zeuthen International School of Nuclear Physics, Erice September 23, 2017

The High-Energy Universe

Two New Windows to the Universe

Where Can We Look?

What are the Cosmic-Ray Sources?

Diffuse Neutrino Flux detected!

Diffuse Neutrino Flux detected!

Search for Neutrino Clusters in Space

ANTARES ApJ 786 (2014)

IceCube ApJ 835 (2017)

Large trials factor → Multiwavelength data can tell us where and when to look for neutrinos

Blazars

IceCube Collaboration, ICRC 2017 Fermi-LAT PRL 116(15) 151105 Astrophys.J. 835 (2017) no.1, 45

Blazars

Correlation study of 7 years of IceCube data and 862 Fermi-LAT blazars

Blazars contribute >80% to the gammaray background but less than 6% to the diffuse neutrino flux

IceCube Collaboration, ICRC 2017 Fermi-LAT PRL 116(15) 151105 Astrophys.J. 835 (2017) no.1, 45

Anna Franckowiak | Multimessenger | Page 10

Blazar Flares

- Gamma rays tell us WHERE and WHEN
- Major outburst of blazar PKS B1424–418 occurred in temporal and positional coincidence PeV neutrino
- > 5% chance coincidence

Gamma-Ray Bursts (GRBs)

- Extremely large energy release on the time-scale of 0.1-100 seconds
- Gamma rays tell us WHERE and WHEN

1172 GRBs correlated with IceCube data

563 GRBs correlated with ANTARES data

Gamma-Ray Bursts (GRBs)

- Extremely large energy release on the time-scale of 0.1-100 seconds
- Gamma rays tell us WHERE and WHEN

1172 GRBs correlated with IceCube data

563 GRBs correlated with ANTARES data

GRBs contribute less than 1% to observed diffuse neutrino flux. Potential large population of nearby low-luminosity GRBs not constrained

IceCube ApJ 843 (2017), 112 ANTARES Eur.Phys.J. C77 (2017) no.1, 20

GRB-Supernova Connection

ANTARES JCAP 1602 (2016) Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012) IceCube, MAGIC, VERITAS, 2016 JINST 11 P11009

ANTARES JCAP 1602 (2016) Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012) IceCube, MAGIC, VERITAS, 2016 JINST 11 P11009

ANTARES JCAP 1602 (2016) Ackermann et al.arXiv:0709.2640 IceCube A&A 539, A60 (2012) IceCube, MAGIC, VERITAS, 2016 JINST 11 P11009

IceCube, MAGIC, VERITAS, 2016 JINST 11 P11009

X-ray (Swift)

Anna Franckowiak | Multimessenger | Page 18

X-ray (Swift)

Expected EM Counterparts

Fast Follow-Up Possible!

Fast reaction by follow-up instruments are required to detect rapidly declining GRB afterglow

Anna Franckowiak | Multimessenger | Page 21

ANTARES JCAP 1602 (2016)

Public IceCube Alerts since April 2016

- Single high-energy events (> ~100TeV)
- > 8 / year, ~3 / year of astrophysical origin
- > First alert on 2016/04/27 \rightarrow large interest by astro community

Astrophysical Multimessenger Observatory Network (AMON)

http://sites.psu.edu/amon/ Keivani, et al., PoS(ICRC2017) 629

Supernova found by Pan-STARRS in public IceCube Alert

Pan-STARRS

IceCube, ICRC 2017

Pan-STARRS followed up IceCube alert on 2016-04-27 and found a recent supernova at z=0.3:

Light curve consistent with explosion days before neutrino alert

Supernova found by Pan-STARRS in public IceCube Alert

IceCube, ICRC 2017

Light curve consistent with explosion days before neutrino alert

Supernova found by Pan-STARRS in public IceCube Alert

IceCube, ICRC 2017

Light curve consistent with explosion days before neutrino alert

Chance probability - { if Ic (associated with GRBs): <1% if Ia (no HE neutrinos exp.): <10%

Gamma-ray Counterpart to ICECUBE-160731

> AGILE gamma-ray signal:

- No prompt emission in +/-1000 sec
- Gamma-ray signal 2 days before the neutrino event (~4σ post-trial significance)
- Possibly HBL blazar

AGILE intensity map (>100MeV)

F. Lucarelli et al, ApJ 846, Vol. 2, p. 121 (2017)

Anna Franckowiak | Multimessenger | Page 27

Two New Windows to the Universe

Another new Window to the Universe: Gravitational Waves

Abbott et al. (LIGO, Virgo Coll.), PRL (2016) 116, 061102

Black-hole Black-hole Merger

Merger of two black holes

$$36^{+5}_{-4}M_{\odot}$$

 $29^{+4}_{-4}M_{\odot}$

Energy radiated in gravitational waves:

$$3.0^{+0.5}_{-0.5} M_{\odot} c^2$$

Distance:

 410^{+160}_{-180} Mpc

Anna Franckowiak | Multimessenger | Page 31

Abbott et al. (LIGO, Virgo Coll.), PRL (2016) 116, 061102

Black Holes of Known Mass

Image credit: LIGO

Sky Localization

LIGO localizations

Simulated estimates with Virgo

Image credit: LIGO/Leo Singer (Milky Way image: Axel Mellinger)

Multi-Wavelength Follow-Up

Abbott et al., ApJ Letters (2016), 826

∋ 35

Multi-Wavelength Follow-Up

Initial GW Burst Recovery		Initial GCN Circular			Final sky map		
Fermi GBM, LAT, 1 IPN, INTEGRAL (a	MAXI, rchival)	Swift XRT	Swift XRT				Fermi LAT, MAXI
BOOTES-3	MASTER	Swift UVOT, SkyM Pan-STARRS1, KWFC	lapper, MA , QUEST, I	STER, TOROS, DECam, LT, P20	TAROT, VST, 00, Pi of the Sk	iPTF, Keck, Pan-STARR y, PESSTO, UH V	S1 TOROS
					VISTA		
			MWA	ASKAP, LOFAR	ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
		1					
· · · · ·	1	00			10 ¹		10 ²
$t - t_{\rm merger}$ (days)							

No electro-magnetic signature expected for blackhole black-hole mergers

Anna Franckowiak | Multimessenger | Page 36

Abbott et al., ApJ Letters (2016), 826

Hint for Gamma-ray Signal?

Gamma-Ray Burst Monitor finds short gamma-ray bursts coincident with gravitational wave signal **0.2% p-value**

- A. Loeb, ApJ Letters (2016) 819
- B. Zhang, ApJ (2016) 827
- R. Moharana, S.
 Razzaque, N. Gupta, P.
 Meszaros, PRD (2016) 93

Gravitational Waves (GW) and Neutrinos

Search for neutrinos from GW150914 in ANTARES and IceCube data in +/-500 sec \rightarrow no counterpart found

Neutrino could help to constrain direction and teach us about the GW source environment

LIGO, Virgo, ANTARES, IceCube Phys. Rev. D 93, 122010 (2016)

Cosmology with GW Sources

Schulz Nature (1986) D. Holz & s. Hughes ApJ (2005) 629 Nissanke+ 2010

Cosmology with GW Sources

Schulz Nature (1986) D. Holz & s. Hughes ApJ (2005) 629 Nissanke+ 2010

Future Improvements

- Next generation of neutrino detectors (KM3Net, IceCube Gen2)
 - Larger volume
 - Better angular resolution
- > Next generation GW detectors
 - Improved sensitivity
 - Better angular resolution
- New electro-magnetic surveys
 - Gamma-rays: CTA
 - X-rays: eROSITA
 - Radio: SKA
 - Optical: ZTF, LSST

Optical Surveys

ZTF can scan the entire Northern sky every night to 20.5 mag

ZTF will reach world-leading speed in finding spectroscopically-accessible transients

New Transients will be Accessible

Summary

- Neutrinos and GW are two unique new messengers from the highenergy Universe
- Neutrino sources still unknown
 - Multimessenger observations have been used to exclude / disfavor some source candidates
 - Others extensively studied
- > GW sources are known
 - Multimessenger observations could teach us about host environment
 - Future applications to cosmology
- More data and new instruments to come

Back-up

Neutrino Production Processes

Hadronuclear (e.g. star burst galaxies and galaxy clusters)

$$pp \rightarrow \left\{ \begin{array}{l} \pi^{0} \rightarrow \gamma \gamma \\ \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \nu_{\mu} \overline{\nu}_{\mu} \\ \pi^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu} \rightarrow e^{-} \overline{\nu}_{e} \overline{\nu}_{\mu} \nu_{\mu} \end{array} \right.$$

Photohadronic (e.g. gamma-ray bursts, active galactic nuclei)

$$p\gamma \rightarrow \Delta^{+} \rightarrow \left\{ \begin{array}{l} p \ \pi^{0} \rightarrow p \ \gamma \ \gamma \\ n \ \pi^{+} \rightarrow n \ \mu^{+} v_{\mu} \rightarrow n \ e^{+} v_{e} \overline{v}_{\mu} \ v_{\mu} \end{array} \right.$$

Neutrino Production Processes

Hadronuclear (e.g. star burst galaxies and galaxy clusters)

$$pp \rightarrow \left\{ \begin{array}{l} \pi^{0} \rightarrow \gamma \gamma \\ \pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow e^{+} v_{e} v_{\mu} \overline{v}_{\mu} \\ \pi^{-} \rightarrow \mu^{-} \overline{v}_{\mu} \rightarrow e^{-} \overline{v}_{e} \overline{v}_{\mu} v_{\mu} \end{array} \right.$$

Photohadronic (e.g. gamma-ray bursts, active galactic nuclei)

$$p\gamma \rightarrow \Delta^{+} \rightarrow \left\{ \begin{array}{l} p \ \pi^{0} \rightarrow p \ \gamma \ \gamma \\ n \ \pi^{+} \rightarrow n \ \mu^{+} v_{\mu} \rightarrow n \ e^{+} v_{e} \ \overline{v}_{\mu} \ v_{\mu} \end{array} \right.$$

Gamma-rays are not exclusively produced in hadronic processes

Fast Radio Bursts

Many possible models: some are possible neutrino sources (e.g. magnetar/SGR hyperflares)

S. B. Popov and K. A. Postnov, arXiv1307.4924 Halzen *et al.*(2005) asto-ph/0503348

No excess found from 29 bursts (13 unique locations) 25 time windows tested: 10 ms, 20 ms, 40 ms, ..., 0.97 days, 1.94 days

- Search for neutrinos correlated with GeV gamma-ray emission
- Denoised Fermi-LAT light curves as input time PDF

No correlation found in 3 years of IceCube data and ~50 variable gamma-ray sources

First HESE/EHE Alerts

Date	Туре	RA	Dec	50% Error
2016/04/27	HESE	240.6°	9.3°	0.6°
2016/07/31	EHE + HESE	214.5°	-0.3°	0.35°
2016/08/06	EHE	122.8°	-0.7°	0.11°
2016/08/14	HESE	200.3°	-32.4°	0.48°
2016/11/03	HESE	40.8°	12.6°	0.42°
2016/12/10	EHE	46.6°	15.0°	0.3°
2017/03/03	HESE	305.2°	-26.6°	0.5°
2017/03/21	EHE	98.3.1°	-14.5°	0.3°
2017/05/06	HESE	221.8°	-26.0°	1.2°

Alerts sent publicly via GCN through AMON

First HESE/EHE Alerts

Date	Туре	RA De		ec	50% Erro			
2016/04/27	HESE	240.6°	9.3°		0.6°		Alerts sent	
2016/07/31	EHE + HESE	214.5°	-0).3°	0.35°		publicly via	
2016/08/06	EHE	122.8°	-0).7°	0.11°		through	
2016/08/14	HESE	200.3°	3° -32.		0.48°		AMON	
2016/11/03	HESE	40.8°	12.6°		0.42°			
2016/12/10	- LIF	46.6°	15	5.0°	0.3°		gamma-rays	
2017/03/03		305.2°	-2	6.6°	0.5°			
2017/03/21	EHE	98.3.1°	-1	Tel	escope		Results	
2017/05/06 HESE		221.8°	-2	IPN			No detection	
Telescope	Results			Fe	rmi-LAT	5	unrelated blazars	
iPTF	3 transient	3 transients all AGN		Fermi-GBM FACT VERITAS			No detection	
MASTER	No detectio	No detection					No detection	
Pan-STARRS	7 SN candi	7 SN candidates					No detection	
		r on candidates		HAWC			No detection	
				N	1AGIC		No detection	

Gamma-Ray Follow-Up of Public Alerts

> All operating Cherenkov Telescopes observed

- H.E.S.S.: automatic follow-up in < 2min</p>
- VERITAS: automatic follow-up in 112 sec
- FACT
- MAGIC

Search for Neutrino Clusters in Space and Time

IceCube ApJ 807 (2015)

Anna Franckowiak | Multimessenger | Page 55

Search for Neutrino Clusters in Space and Time

ANTARES ApJ 786 (2014)

IceCube ApJ 835 (2017)

Gravitational Wave Events in First Observing Run

Binary coalescence search

Anna Franckowiak | Multimessenger | Page 58

Abbott et al. (LIGO, Virgo Coll.), PRL (2016) 116, 061102

Expected Number of GW Events

Extra-Galactic Neutrino Sources

Star forming galaxies

Galaxy clusters

Neutrino Production Processes

Gamma-ray background disfavors pp Neutrino Sources

Starburst galaxies and galaxy clusters contribute less than 30% to the diffuse neutrino flux

In the future Fermi-LAT will improve measurement of EGB and resolve more source \rightarrow better constraints

Anna Franckowiak | Multimessenger | Page 62

Bechtol et al. arXiv:1511.00688

Gamma-Ray Bursts (GRBs)

Gamma rays and X-rays tell us WHERE and WHEN

Cosmology with GW Sources

Standard candle

- Type la supernova
- equal intrinsic luminosity \rightarrow luminosity distance
- Standard siren"
 - GW signal delivers luminosity distance
 - Counterpart identification could deliver redshift
- Independent measurement with different systematics!

