Neutrinos and structure formation in the Universe

Maria Archidiacono RWTH Aachen University

Internation School of Nuclear Physics, Erice-Italy, September 16-24 2016

What cosmology can tell us about neutrinos

- Neutrino mass sum: more precise than β (KATRIN) and double β decay (GERDA), but more model dependent. Not sensitive to Dirac vs Majorana, mixing angles, phases ...
- Hierarchy: not specifically sensitive to the hierarchy like NOvA, DUNE, PINGU, ORCA, Hyper-K, but the IH might be ruled out.
- Effective number of relativistic degrees of freedom, N_{eff}, (≈ Neutrino number)

Temperature	Process	v Constraints
$T_{\gamma} \sim 1 \text{ MeV}$	ν decoupling	
$T_{\gamma} \sim 1 \text{ MeV}$	BBN	Flavour, Number
$T_{\gamma} \sim 1 \text{ eV}$	СМВ	Number, (Mass)
$T_v \sim m_v / 3$	ν nr transition	
T _γ ~ 0.2 meV	Structure formation	Mass, (Number)

Temperature	Process	v Constraints
$T_{\gamma} \sim 1 \text{ MeV}$	ν decoupling	
$T_{\gamma} \sim 1 \text{ MeV}$	BBN	Flavour, Number
$T_{\gamma} \sim 1 \text{ eV}$	СМВ	Number, (Mass)
$T_v \sim m_v / 3$	ν nr transition	
$T_{\gamma} \sim 0.2 \text{ meV}$	Structure formation	Mass, (Number)

Neutrino decoupling

In the primordial Universe weak interactions keep neutrinos in equilibrium with the heat bath.

$$\begin{split} \Gamma &\approx G_F^2 T^5 < H & \Gamma_s \approx G_F^2 T^5 \sin^2 \theta_s < H \\ T_{dec} &\approx 1 \text{ MeV} \twoheadrightarrow \text{HDM} & T_{dec,s} \approx T_{dec} / \sin^2 \theta_s \\ e^+ e^- & \Rightarrow \gamma \gamma & T_{v,s} / T_{\gamma} &\approx (4/15)^{1/3} \\ T_v / T_\gamma &= (4/11)^{1/3} \\ T_v &\approx 1/a \end{split}$$

$$\rho_{rad} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right] \rho_{\gamma}$$

N_{eff} Effective number of relativistic degrees of freedom

- Other relativistic relics can contribute to N_{eff}
- This equation holds after decoupling and as long as all neutrinos are relativistic

Mangano et al., Nucl.Phys.B (2005)

Temperature	Process	ν Constraints
$T_{\gamma} \sim 1 \text{ MeV}$	ν decoupling	
Τ _γ ~1 MeV	BBN	Flavour, Number
$T_{\gamma} \sim 1 \text{ eV}$	СМВ	Number, (Mass)
$T_{v} \sim m_{v} / 3$	ν nr transition	
T _γ ~ 0.2 meV	Structure formation	Mass, (Number)

N_{eff} & BBN

Shortly after neutrino decoupling the weak interactions that kept neutrons and protons in statistical equilibrium freeze out.

 $\Delta N_{eff}(BBN) < 1 (95\% c.l.)$

N_{eff} & CMB(TT)

Hou et al., PRD (2013)

Background effects:

expansion rate

Perturbation effects (free-streaming):

- phase shift in δ_{γ}
- overall amplitude suppression (anisotropic stress)

$$N_{eff}(CMB) = 2.99 \pm 0.20 \ (68\% cl)$$

No room for (thermalized) eV sterile neutrinos, unless new physics Archidiacono et al., PRD (2015) & (2016)

$\Sigma m_v \& CMB(TT)$

This formula does not account for the distortions in the neutrino distributions.

$$\sum m_{v} < 0.59 \ eV (95\% c.l.)$$

- Bakground effects (z_{eq}, d_A, lateISW)
- Perturbation effects (earlyISW)

Archidiacono, et al., JCAP (2017)

Temperature	Process	v Constraints
$T_{\gamma} \sim 1 \text{ MeV}$	ν decoupling	
$T_{\gamma} \sim 1 \text{ MeV}$	BBN	Flavour, Number
$T_{\gamma} \sim 1 \text{ eV}$	СМВ	Number, (Mass)
$T_v \sim m_v / 3$	ν nr transition	
T _γ ~ 0.2 meV	Structure formation	Mass, (Number)

Neutrino non-relativistic transition

As long as neutrinos are relativistic they travel at the speed of light. When neutrinos become non-relativistic

 $z_{nr} \approx 1890 \text{ (m}_{v,i}/\text{1eV})$,

they travel through the Universe with a thermal velocity

$$v_{th,i} = \langle p \rangle / m_{v,i} \approx 3 T_{v,i} / m_{v,i} \approx 150 (1+z) (1eV/m_{v,i}) km/s$$

Neutrinos cannot be confined below the characteristic free-streaming scale defined by $v_{\text{th},\text{i}}.$

$$k_{nr,i}(z) = \frac{H(z_{nr,i})}{(1+z_{nr,i})} = 0.0145 Mpc^{-1} \left(\frac{m_{v,i}}{1eV}\right)^{1/2} \Omega_m^{1/2} h$$

$$k_{fs,i}(z) = \sqrt{\frac{3}{2}} \frac{H(z)}{(1+z)v_{th,i}(z)} = 0.113 Mpc^{-1} \left(\frac{m_{v,i}}{1eV}\right) \left(\frac{\Omega_m h^2}{0.14} \frac{5}{1+z}\right)^{1/2}$$

Neutrino non-relativistic transition

As long as neutrinos are relativistic they travel at the speed of light. When neutrinos become non-relativistic

 $z_{nr} \approx 1890 \text{ (m}_{v,i}/\text{1eV})$,

they travel through the Universe with a thermal velocity

$$v_{th,i} = \langle p \rangle / m_{v,i} \approx 3T_{v,i} / m_{v,i} \approx 150 (1+z) (1eV/m_{v,i}) km/s$$

Neutrinos cannot be confined below the characteristic free-streaming scale defined by $v_{\text{th},\text{i}}.$

Temperature	Process	v Constraints
$T_{\gamma} \sim 1 \text{ MeV}$	ν decoupling	
$T_{\gamma} \sim 1 \text{ MeV}$	BBN	Flavour, Number
$T_{\gamma} \sim 1 \text{ eV}$	СМВ	Number, (Mass)
$T_{v} \sim m_{v} / 3$	ν nr transition	
T _γ ~ 0.2 meV	Structure formation	Mass, (Number)

Large scale structure

Large scale structure

Neutrinos & structure formation

See Talk of Professor Jochum

$$\frac{k^2}{a^2}\phi = -4\pi G(\delta\rho_m) \qquad \left(\delta\rho_v <<\delta\rho_{cdm}\right)$$
$$H^2 = \frac{8\pi G}{3} \left(\rho_\gamma + \rho_b + \rho_{cdm} + \rho_v + \rho_\Lambda\right)$$

 $\delta_{cdm} \propto a$

only cold dark matter

 $\delta_{cdm} \propto a^{1-3/5f_{v}}$ in the presence of v cdm+hdm=mdm

$$\frac{P(k)^{\Lambda MDM}}{P(k)^{\Lambda CDM}} \approx 1 - 8f_{\nu}$$

Neutrino mass

Current bounds

Planck15(TT+TE+EE+lowP)+SDSS-DR7-P(k)+BAO

$$\sum m_v < 0.13 \ eV \ 95\% cl$$

Cuesta, Niro, Verde, Phys. Dark Univ (2016)

• Future constraints

CMB+Euclid

 $M_{v,fid} = 60 \ meV \ \sigma(M_v) = 15 \ meV$

Archidiacono, Brinckmann, Lesgourgues, Poulin, JCAP (2017) Archidiacono, Brinckmann, Clesse, Lesgourgues, Sprenger, in preparation

Caveat

Bias

Non-linearities

Bird et al., MNRAS (2012) Brandbyge et al., JCAP (2010) Castorina et al., JCAP (2014) LoVerde, PRD (2014) Raccanelli et al., (2017) Degeneracies

Archidiacono et al., JCAP (2017)

Non-linearities

Non-linearities

Bias & HMF

LoVerde, PRD (2014)

$$\begin{split} \delta_{g} &\approx b \delta_{m} \\ \delta_{m} &= \frac{\delta \rho_{c} + \delta \rho_{v}}{\rho_{c} + \rho_{v}} = f_{c} \delta_{c} + f_{v} \delta_{v} \end{split}$$

The variance of cdmonly yelds more universal results than the variance of the total matter.

Castorina et al., JCAP (2015)

Degeneracies & Model dependence

Archidiacono, et al., JCAP (2017)

Degeneracies & Model dependence

Archidiacono, et al., JCAP (2017)

Conclusions

- Cosmology is a powerful tool to constrain neutrino physics, but the results have to be taken with a grain of salt (model & systematics-non linear scales)
- Future galaxy (and hydrogen) surveys will be able to pin down the neutrino mass sum in the minimal extension of the ΛCDM and having systematics under control.

Conclusions

- Cosmology is a powerful tool to constrain neutrino physics, but the results have to be taken with a grain of salt (model & systematics-non linear scales)
- Future galaxy (and hydrogen) surveys will be able to pin down the neutrino mass sum in the minimal extension of the ΛCDM and having systematics under control.
- Take-home message: data tension → model extension!

Hierarchy

$$k > k_{nr} = 0.018 \left(\frac{m_v}{eV}\right)^{1/2} \Omega_m^{1/2} h / Mpc$$

Massive neutrinos & Halo profile

Brandbyge et al., JCAP (2010)

Massive neutrinos & HMF

