Short baseline neutrino oscillation experiments at nuclear reactors

Christian Buck, MPIK Heidelberg

Erice School, Sicily Sept, 17th 2017

Neutrino oscillations

IBD reaction

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

$$E_{th}$$
 = 1.8 MeV
 E_{vis} = E_v – 0.8 MeV

Oscillation at reactors

Reactor neutrino anomaly

- New flux prediction in context of θ_{13} experiments
- Updates on conversion from measured beta spectra at ILL (Müller et al., Huber)

R = 0.940 ± 0.024 (2.5 deviation from unity)

Spectral distortion

Y.Abe et al., JHEP10 (2014)

- Excess events in 4 6 MeV region
- Similar behavior seen in Daya Bay, RENO and NEOS
- Background and energy scale disfavored
- Neutrino prediction?!

Sterile neutrino could explain rate anomaly, not spectral distortion

Sterile neutrino solution

 $\Delta m^2 \approx 1 \text{ eV}^2$, $\sin^2(2\theta) \approx 0.1$

Data and expectation with (blue) and without (black dashed) sterile neutrino

 $L \propto \frac{L}{L}$ Oscillation length:

Allowed region from combination of reactor, Ga source, MiniBooNE

End of sterile neutrino option?

Daya Bay, PRL118, 251801 (2017):

Rate vs fuel evolution
Combined fit for ²³⁵U and ²³⁹Pu
²³⁹Pu consistent with model
²³⁵U almost 8% lower
Disfavor equal deficit at 2.6σ
Hayes et al. (arXiv 1707.07728)

"...conclude that there is currently not enough information...to rule out ... sterile neutrinos." *Giunti et al. (arXiv 1708.01133)* Combined analysis of DB evolution

data and global rate data favors oscillation over ²³⁵U/²³⁹Pu *Dentler et al. (arXiv 1709.0429)*

*"…*sterile neutrino hypothesis cannot be rejected based on global data…"

Normalization of flux predictions fully correlated?

Reactor experiments worldwide

Antineutrino Global Map 2015, Sci.Rep.5 (2015) 13945

NEOS

DANSS

- 3 GW LEU reactor (h = 3.5 m)
- 10.7 12.7 m baseline (moveable)
- 1 m³ plastic scintillator strips (2500!) covered by Gd ("safe detector design")
- Low background site (cosmics: 5%)

Overburden: 50 mw.e.

I.Alekseev et al., JINST 11 (2016) P11011

DANSS premilinary results

About 5000 neutrino events/day (data taking since April 2016)

Stereo

- ILL Grenoble: 57.8 MW HEU reactor
- 10 m baseline
- Gd liquid scintillator (1800 liters)
- Segmentation (6 Target cells)

Stereo analysis

Neutrino-4

Check of 1/L² behaviour

- 90 MW reactor (35x42x42cm³)
- Gd liquid scintillator (3 m³)
- 6-12 m baseline (moveable!)
- Cosmic background! (S/B ≈ 0.25)
- Full scale data since June 2016

A.P.Serebrov et al. arXiv:1702.00941 (2017)

Neutrino-4: first results

Neutrino-4 data normalized to 0.936 (lack of accurate abs. efficiency)

A.P.Serebrov et al. arXiv:1702.00941 (2017)

Solid

- 6-9 m from HEU reactor (60 MW)
- New technology: Composite scintillator (⁶LiF)
- High segmentation (13000 cubes)
- Detector mass: 1600 kg

Commissioning Summer 2017, started data taking?

Solid: Prototype to full scale

Prospect (US)

- HFIR: 85 MW, 7-12 m baseline
- 3000 liter Li-loaded liquid scintillator
- 10x12 segmented optical array
- S/B projected ≈3

K.Heeger, TAUP 2017

Prospect Outlook Sensitivity: 3 o CL **Dsc/Nul** Phase-I (1 yr), Multiple Positions 0.98 Phase-I (3 yr), Multiple Positions SBL Anomaly (Kopp), 95% CL All v, Disappearance Exps (Kopp), 95% CL SBL + Gallium Anomaly (RAA), 95% CL 0.85 Daya Bay Exclusion, 95% CL Mass Splitting: 1.78 eV2; Osc. Amplitude: 0.09 0.86 Δm_{14}^2 0.84 PROSPECT (3 yrs) 0.82 L/E 3o, 3yrs 3σ, 1yr Start data taking 2017 Daya Bay 10^{-1} About 160 kevents/y 10^{-2} 10^{-1} 4 σ test of best fit in 1 y $\sin^2 2\theta_{14}$

Max-Planck-Institut Für Kernphysik

Sterile neutrinos at reactors

Name	P _{th} (MW)	L (m)	Dep. (mwe)	M _{targ.} (t)	Tech.	Seg.	S/N	Start
Neos	2700	25	20	1	Gd-LS	Ν	22	2015
DANSS	3000	9-12	50	0.9	Gd-PS	Y	≈20	2016
Neutrino4	90	<mark>6-12</mark>	5-10	1.5	Gd-LS	Y	<1	2016
Stereo	57.8	9-11	15	1.7	Gd-LS	Y	≈1	2016
Solid	100	6-11	10	1.6	⁶ Li-PS	Y	≈1	2017
Prospect	85	7-12	few	3	⁶ Li-LS	Y	3	2017

Other detection techniques

Coherent elastic neutrino nucleus scattering (CEvNS)

Nuclear Power Plan Brokdorf, 3.9 GW

Start data taking this year!

Summary

- All mixing angles and mass splittings measured in three flavor neutrino model
- Reactor neutrinos at short baseline observe anomalous behavior for rate and shape (correlated?)
- Worldwide search for light sterile neutrinos at reactors
- Several experiments started or are close to full scale data taking
- Sensitivity of experiments should allow to test most important allowed regions within the next two years

